Anand Swaroop

National Eye Institute, 베서스다, Maryland, United States

Are you Anand Swaroop?

Claim your profile

Publications (316)1909.1 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic studies of survival outcomes have been proposed and conducted recently, but statistical methods for identifying genetic variants that affect disease progression are rarely developed. Motivated by our ongoing real studies, here we develop Cox proportional hazard models using functional regression (FR) to perform gene-based association analysis of survival traits while adjusting for covariates. The proposed Cox models are fixed effect models where the genetic effects of multiple genetic variants are assumed to be fixed. We introduce likelihood ratio test (LRT) statistics to test for associations between the survival traits and multiple genetic variants in a genetic region. Extensive simulation studies demonstrate that the proposed Cox RF LRT statistics have well-controlled type I error rates. To evaluate power, we compare the Cox FR LRT with the previously developed burden test (BT) in a Cox model and sequence kernel association test (SKAT), which is based on mixed effect Cox models. The Cox FR LRT statistics have higher power than or similar power as Cox SKAT LRT except when 50%/50% causal variants had negative/positive effects and all causal variants are rare. In addition, the Cox FR LRT statistics have higher power than Cox BT LRT. The models and related test statistics can be useful in the whole genome and whole exome association studies. An age-related macular degeneration dataset was analyzed as an example.
    Full-text · Article · Jan 2016 · Genetic Epidemiology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Cell death in neurodegeneration occurs at the convergence of diverse metabolic pathways. In the retina, a common underlying mechanism involves mitochondrial dysfunction since photoreceptor homeostasis and survival are highly susceptible to altered aerobic energy metabolism. We sought to develop an assay to directly measure oxygen consumption in intact retina with the goal of identifying alterations in respiration during photoreceptor dysfunction and degeneration. Methods: Circular punches of freshly isolated mouse retina, adjacent to the optic nerve head, were used in the microplate-based Seahorse Extracellular Flux Analyzer to measure oxygen consumption. Tissue integrity was evaluated by propidium iodide staining and live imaging. Different substrates were tested for mitochondrial respiration. Basal and maximal respiration were expressed as oxygen consumption rate (OCR) and respectively measured in Ames' medium before and after the addition of mitochondrial uncoupler, BAM15. Results: We show that glucose is an essential substrate for retinal mitochondria. At baseline, mitochondria respiration in the intact wild-type retina was close to maximal, with limited reserve capacity. Similar OCR and limited mitochondrial reserve capacity was also observed in cone-only Nrl-/- retina. However, the retina of Pde6brd1/rd1, Cep290rd16/rd16 and Rpgrip1-/- mice, all with dysfunctional or no photoreceptors, had reduced OCR and higher mitochondrial reserve capacity. Conclusions: We have optimized a method to directly measure oxygen consumption in acutely isolated, ex vivo mouse retina and demonstrate that photoreceptors have low mitochondrial reserve capacity. Our data provide a plausible explanation for the high vulnerability of photoreceptors to altered energy homeostasis caused by mutations or metabolic challenges.
    No preview · Article · Jan 2016 · Investigative ophthalmology & visual science
  • Source

    Full-text · Dataset · Jan 2016
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Advanced age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, with limited therapeutic options. Here we report on a study of >12 million variants, including 163,714 directly genotyped, mostly rare, protein-altering variants. Analyzing 16,144 patients and 17,832 controls, we identify 52 independently associated common and rare variants (P < 5 [times] 10-8) distributed across 34 loci. Although wet and dry AMD subtypes exhibit predominantly shared genetics, we identify the first genetic association signal specific to wet AMD, near MMP9 (difference P value = 4.1 [times] 10-10). Very rare coding variants (frequency <0.1%) in CFH, CFI and TIMP3 suggest causal roles for these genes, as does a splice variant in SLC16A8. Our results support the hypothesis that rare coding variants can pinpoint causal genes within known genetic loci and illustrate that applying the approach systematically to detect new loci requires extremely large sample sizes.
    Full-text · Article · Dec 2015 · Nature Genetics
  • Source

    Full-text · Dataset · Oct 2015
  • Source

    Full-text · Dataset · Oct 2015
  • Source

    Full-text · Article · Oct 2015 · Nature
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.
    Full-text · Article · Oct 2015 · Nature
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Retinal neurodegenerative diseases are especially attractive targets for gene replacement therapy, which appears to be clinically effective for several monogenic diseases. X-linked forms of retinitis pigmentosa (XLRP) are relatively severe blinding disorders, resulting from progressive photoreceptor dysfunction primarily caused by mutations in RPGR or RP2 gene. With a goal to develop gene therapy for the XLRP-RP2 disease, we first performed detailed characterization of the Rp2-knockout (Rp2-KO) mice and observed early-onset cone dysfunction, which was followed by progressive cone degeneration, mimicking cone vision impairment in XLRP patients. The mice also exhibited distinct and significantly delayed falling phase of photopic b-wave of electroretinogram (ERG). Concurrently, we generated a self-complementary adeno-associated viral (AAV) vector carrying human RP2-coding sequence and demonstrated its ability to mediate stable RP2 protein expression in mouse photoreceptors. A long-term efficacy study was then conducted in Rp2-KO mice following AAV-RP2 vector administration. Preservation of cone function was achieved with a wide dose range over 18-month duration, as evidenced by photopic ERG and optomotor tests. The slower b-wave kinetics was also completely restored. Morphologically, the treatment preserved cone viability, corrected mis-trafficking of M-cone opsin and restored cone PDE6 expression. The therapeutic effect was achieved even in mice that received treatment at an advanced disease stage. The highest AAV-RP2 dose group demonstrated retinal toxicity, highlighting the importance of careful vector dosing in designing future human trials. The wide range of effective dose, a broad treatment window and long-lasting therapeutic effects should make the RP2 gene therapy attractive for clinical development.
    Full-text · Article · Sep 2015 · Human Molecular Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Whole exome sequencing (WES) is a powerful technique for identifying sequence changes in the human genome. The goal of this study was to delineate the genetic defects in patients with inherited retinal diseases (IRDs) using WES. WES was performed on 90 patient DNA samples from 68 families and 226 known genes for IRDs were analyzed. Sanger sequencing was used to validate potential pathogenic variants that were also subjected to segregation analysis in families. Thirty-three causative mutations (19 novel and 14 known) in 25 genes were identified in 33 of the 68 families. The vast majority of mutations (30 out of 33) have not been reported in the Israeli and the Palestinian populations. Nine out of the 33 mutations were detected in additional families from the same ethnic population, suggesting a founder effect. In two families, identified phenotypes were different from the previously reported clinical findings associated with the causative gene. This is the largest genetic analysis of IRDs in the Israeli and Palestinian populations to date. We also demonstrate that WES is a powerful tool for rapid analysis of known disease genes in large patient cohorts.
    Full-text · Article · Aug 2015 · Scientific Reports
  • [Show abstract] [Hide abstract]
    ABSTRACT: The derivation of three-dimensional (3-D) stratified neural retina from pluripotent stem cells has permitted investigations of human photoreceptors. We have generated a H9 human embryonic stem cell subclone that carries a GFP reporter under the control of the promoter of cone-rod homeobox (CRX), an established marker of post-mitotic photoreceptor precursors. The CRXp-GFP reporter replicates endogenous CRX expression in vitro when the H9 subclone is induced to form self-organizing 3-D retina-like tissue. At day 37, CRX+ photoreceptors appear in the basal or middle part of neural retina and migrate to apical side by day 67. Temporal and spatial patterns of retinal cell type markers recapitulate the predicted sequence of development. Cone gene expression is concomitant with CRX, whereas rod differentiation factor NRL is first observed at day 67. At day 90, robust expression of NRL and its target nuclear receptor NR2E3 is evident in many CRX+ cells, while minimal S-opsin and no rhodopsin or L/M-opsin is present. The transcriptome profile, by RNA-seq, of developing human photoreceptors is remarkably concordant with mRNA and immunohistochemistry data available for human fetal retina although many targets of CRX, including phototransduction genes, exhibit a significant delay in expression. We report on temporal changes in gene signatures, including expression of cell surface markers and transcription factors; these expression changes should assist in isolation of photoreceptors at distinct stages of differentiation and in delineating co-expression networks. Our studies establish the first global expression database of developing human photoreceptors, providing a reference map for functional studies in retinal cultures. This article is protected by copyright. All rights reserved. © 2015 AlphaMed Press.
    No preview · Article · Jul 2015 · Stem Cells
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the Retinitis Pigmentosa GTPase Regulator (RPGR) gene account for over 70% of X-linked retinitis pigmentosa (XLRP) and 15-20% of all inherited retinal degeneration. Gene replacement therapy for RPGR-XLRP was hampered by the relatively slow disease progression in mouse models and by difficulties in cloning the full-length RPGR-ORF15 cDNA that includes a purine-rich 3'-coding region; however, its effectiveness has recently been demonstrated in four dogs with RPGR mutations. To advance the therapy to clinical stage, we generated new stable vectors in AAV8 or AAV9 carrying mouse and human full-length RPGR-ORF15 coding sequence and conducted a comprehensive long-term dose-efficacy study in Rpgr-knockout mice. After validating their ability to produce full-length proteins that localize to photoreceptor connecting cilia, we evaluated various vector doses in mice during a two-year study. We demonstrate that eyes treated with a single injection of mouse or human RPGR-ORF15 vector at an optimal dose maintained the expression of RPGR-ORF15 throughout the study duration and exhibited higher ERG amplitude, thicker photoreceptor layer, and better targeting of opsins to outer segments compared to sham-treated eyes. Furthermore, mice that received treatment at an advanced age also showed remarkable preservation of retinal structure and function. Retinal toxicity was observed at high vector doses, highlighting the importance of careful dose optimization in future clinical experiments. Our long-term dose-efficacy study should facilitate the design of human trials with human RPGR-ORF15 vector as a clinical candidate.
    No preview · Article · Jul 2015 · Human Molecular Genetics
  • Source

    Full-text · Dataset · Jul 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Age-related macular degeneration (AMD) is a major cause of blindness in the western world. While genetic studies have linked both common and rare variants in genes involved in regulation of the complement system to increased risk of development of AMD, environmental factors, such as smoking and nutrition, can also significantly affect the risk of developing the disease and the rate of disease progression. Since epigenetics has been implicated in mediating, in part, the disease risk associated with some environmental factors, we investigated a possible epigenetic contribution to AMD. We performed genome-wide DNA methylation profiling of blood from AMD patients and controls. No differential methylation site reached genome-wide significance; however, when epigenetic changes in and around known GWAS-defined AMD risk loci were explored, we found small but significant DNA methylation differences in the blood of neovascular AMD patients near age-related maculopathy susceptibility 2 (ARMS2), a top-ranked GWAS locus preferentially associated with neovascular AMD. The methylation level of one of the CpG sites significantly correlated with the genotype of the risk SNP rs10490924, suggesting a possible epigenetic mechanism of risk. Integrating genome-wide DNA methylation analysis of retina samples with and without AMD together with blood samples, we further identified a consistent, replicable change in DNA methylation in the promoter region of protease serine 50 (PRSS50). These methylation changes may identify sites in novel genes that are susceptible to non-genetic factors known to contribute to AMD development and progression.
    No preview · Article · Jun 2015 · Epigenetics: official journal of the DNA Methylation Society
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genetic analysis of clinical phenotypes in consanguineous families is complicated by co-inheritance of large DNA regions carrying independent variants. Here we characterized a family with early onset cone-rod dystrophy (CRD) and muscular dystrophy. Homozygosity mapping followed by whole exome sequencing revealed a nonsense mutation, p.R270*, in ALMS1 and two novel potentially disease-causing missense variants, p.R1581C and p.Y2070C, in DYSF. ALMS1 and DYSF are genetically and physically linked on chromosome 2 in a genomic region suggested by homozygosity mapping and associated with Alström syndrome, which includes CRD, and with limb girdle muscular dystrophy, respectively. Affected family members lack additional systemic manifestations of Alström syndrome but exhibit mild muscular dystrophy. RNA-seq data did not reveal any significant variations in ALMS1 transcripts in the human retina. Our study thus implicates ALMS1 as a non-syndromic retinal disease gene and suggests a potential role of variants in interacting cilia genes in modifying clinical phenotypes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
    No preview · Article · Jun 2015 · Human Mutation
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Worldwide, age-related macular degeneration (AMD) is a serious threat to vision loss in individuals over 50 years of age with a pooled prevalence of approximately 9%. For 2020, the number of people afflicted with this condition is estimated to reach 200 million. While AMD lesions presenting as geographic atrophy (GA) show high inter-individual variability, only little is known about prognostic factors. Here, we aimed to elucidate the contribution of clinical, demographic and genetic factors on GA progression. Analyzing the currently largest dataset on GA lesion growth (N = 388), our findings suggest a significant and independent contribution of three factors on GA lesion growth including at least two genetic factors (ARMS2-rs10490924 [P < 0.00088] and C3-rs2230199 [P < 0.00015]) as well as one clinical component (presence of GA in the fellow eye [P < 0.00023]). These correlations jointly explain up to 7.2% of the observed inter-individual variance in GA lesion progression and should be considered in strategy planning of interventional clinical trials aimed at evaluating novel treatment options in advanced GA due to AMD.Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
    Full-text · Article · May 2015 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: Distinct mutations in the centrosomal-cilia protein CEP290 lead to diverse clinical findings in syndromic ciliopathies. We show that CEP290 localizes to the transition zone in ciliated cells, precisely to the region of Y-linkers between central microtubules and plasma membrane. To create models of CEP290-associated ciliopathy syndromes, we generated Cep290(ko/ko) and Cep290(gt/gt) mice that produce no or a truncated CEP290 protein, respectively. Cep290(ko/ko) mice exhibit early vision loss and die from hydrocephalus. Retinal photoreceptors in Cep290(ko/ko) mice lack connecting cilia, and ciliated ventricular ependyma fails to mature. The minority of Cep290(ko/ko) mice that escape hydrocephalus demonstrate progressive kidney pathology. Cep290(gt/gt) mice die at mid-gestation, and the occasional Cep290(gt/gt) mouse that survives shows hydrocephalus and severely cystic kidneys. Partial loss of CEP290-interacting ciliopathy protein MKKS mitigates lethality and renal pathology in Cep290(gt/gt) mice. Our studies demonstrate domain-specific functions of CEP290 and provide novel therapeutic paradigms for ciliopathies. Published by Oxford University Press 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
    No preview · Article · Apr 2015 · Human Molecular Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genomics and genetics have invaded all aspects of biology and medicine, opening uncharted territory for scientific exploration. The definition of "gene" itself has become ambiguous, and the central dogma is continuously being revised and expanded. Computational biology and computational medicine are no longer intellectual domains of the chosen few. Next generation sequencing (NGS) technology, together with novel methods of pattern recognition and network analyses, has revolutionized the way we think about fundamental biological mechanisms and cellular pathways. In this review, we discuss NGS-based genome-wide approaches that can provide deeper insights into retinal development, aging and disease pathogenesis. We first focus on gene regulatory networks (GRNs) that govern the differentiation of retinal photoreceptors and modulate adaptive response during aging. Then, we discuss NGS technology in the context of retinal disease and develop a vision for therapies based on network biology. We should emphasize that basic strategies for network construction and analyses can be transported to any tissue or cell type. We believe that specific and uniform guidelines are required for generation of genome, transcriptome and epigenome data to facilitate comparative analysis and integration of multi-dimensional data sets, and for constructing networks underlying complex biological processes. As cellular homeostasis and organismal survival are dependent on gene-gene and gene-environment interactions, we believe that network-based biology will provide the foundation for deciphering disease mechanisms and discovering novel drug targets for retinal neurodegenerative diseases. Copyright © 2015. Published by Elsevier Ltd.
    Full-text · Article · Feb 2015 · Progress in Retinal and Eye Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Retinal neurodegeneration associated with the dysfunction or death of photoreceptors is a major cause of incurable vision loss. Tremendous progress has been made over the last two decades in discovering genes and genetic defects that lead to retinal diseases. The primary focus has now shifted to uncovering disease mechanisms and designing treatment strategies, especially inspired by the successful application of gene therapy in some forms of congenital blindness in humans. Both spontaneous and laboratory-generated mouse mutants have been valuable for providing fundamental insights into normal retinal development and for deciphering disease pathology. Here, we provide a review of mouse models of human retinal degeneration, with a primary focus on diseases affecting photoreceptor function. We also describe models associated with retinal pigment epithelium dysfunction or synaptic abnormalities. Furthermore, we highlight the crucial role of mouse models in elucidating retinal and photoreceptor biology in health and disease, and in the assessment of novel therapeutic modalities, including gene- and stem-cell-based therapies, for retinal degenerative diseases. © 2015. Published by The Company of Biologists Ltd.
    Preview · Article · Feb 2015 · Disease Models and Mechanisms
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: The Israeli population has a unique genetic make-up, with a high prevalence of consanguineous marriages and autosomal recessive diseases. In rod-dominated phenotypes, disease-causing genes and mutations that differ from those identified in other populations are often incurred. Here we use whole exome sequencing (WES) to identify genetic defects in Israeli families with cone-dominated retinal phenotypes. Methods: Clinical analysis included family history, detailed ocular examination, visual function testing and retinal imaging. WES, followed by segregation analysis, was performed in 6 cone-dominated retinopathy families in which prior mutation analysis did not reveal the causative gene. Based on the WES findings, we screened 106 additional families with cone-dominated phenotypes. Results: WES analysis revealed mutations in known retinopathy genes in five out of the six families: two pathogenic mutations in the GUCY2D gene in three families, and one each in CDHR1 and C8orf37. Targeted screening of additional cone-dominated families led to identification of GUCY2D mutations in four other families, which included two highly probable novel disease-causing variants. Conclusions: Our study suggest that GUCY2D is a major cause of autosomal dominant cone- and cone-rod dystrophies in Israel; this is similar to other Caucasian populations and is in contrast to retinitis pigmentosa (primary rod disease) where the genetic make-up of the Israeli population is distinct from other ethnic groups. We also conclude that WES permits more comprehensive and rapid analyses that can be followed by targeted screens of larger samples to delineate the genetic structure of retinal disease in unique population cohorts. Copyright © 2014 by Association for Research in Vision and Ophthalmology.
    No preview · Article · Dec 2014 · Investigative Ophthalmology & Visual Science

Publication Stats

13k Citations
1,909.10 Total Impact Points

Institutions

  • 2009-2016
    • National Eye Institute
      베서스다, Maryland, United States
  • 2010-2015
    • NEI Corporation
      Сомерсет, New Jersey, United States
  • 2009-2015
    • National Institutes of Health
      • Laboratory of Neurobiology-Neurodegeneration and Repair
      베서스다, Maryland, United States
  • 1992-2014
    • University of Michigan
      • • Department of Human Genetics
      • • Department of Ophthalmology and Visual Sciences
      Ann Arbor, Michigan, United States
  • 2011
    • University of Massachusetts Medical School
      • Department of Ophthalmology
      Worcester, Massachusetts, United States
  • 2008
    • University of California, San Diego
      San Diego, California, United States
  • 2007
    • Champalimaud Neuroscience Program
      Lisboa, Lisbon, Portugal
  • 2002
    • University of Pennsylvania
      • Scheie Eye Institute
      Philadelphia, Pennsylvania, United States
  • 1999
    • Johns Hopkins University
      • Department of Molecular Biology and Genetics
      Baltimore, Maryland, United States
    • University of Houston
      • Department of Biology and Biochemistry
      Houston, TX, United States
  • 1997
    • Lund University
      • Department of Ophthalmology
      Lund, Skåne, Sweden
  • 1996
    • Concordia University–Ann Arbor
      Ann Arbor, Michigan, United States
  • 1995
    • Massachusetts Institute of Technology
      • Department of Biology
      Cambridge, MA, United States
  • 1985-1995
    • Yale University
      • • Department of Genetics
      • • Department of Molecular Biophysics and Biochemistry
      New Haven, Connecticut, United States
  • 1991
    • Stanford Medicine
      Stanford, California, United States
  • 1990
    • Howard Hughes Medical Institute
      Ашбърн, Virginia, United States
  • 1988-1990
    • Yale-New Haven Hospital
      New Haven, Connecticut, United States