Alisha Mohamed-Hadley

University of Pennsylvania, Philadelphia, Pennsylvania, United States

Are you Alisha Mohamed-Hadley?

Claim your profile

Publications (7)53.91 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Because of its low toxicity, low-dose (LD) chemotherapy is ideally suited for combination with antiangiogenic drugs. We investigated the impact of tumor vascular endothelial growth factor A (VEGF-A) expression on the efficacy of LD paclitaxel chemotherapy and its interactions with the tyrosine kinase inhibitor SU5416 in the ID8 and ID8-Vegf models of ovarian cancer. Functional linear models using weighted penalized least squares were utilized to identify interactions between Vegf, LD paclitaxel and antiangiogenic therapy. LD paclitaxel yielded additive effects with antiangiogenic therapy against tumors with low Vegf expression, while it exhibited antagonism to antiangiogenic therapy in tumors with high Vegf expression. This is the first preclinical study that models interactions of LD paclitaxel chemotherapy with antiangiogenic therapy and tumor VEGF expression and offers important lessons for the rational design of clinical trials.
    Full-text · Article · Jan 2008 · Journal of Translational Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cooperation between oncolytic herpes simplex virus (HSV) and host effector immune mechanisms has been previously described. In the present study, we investigated the mechanism underlying such cooperation in a murine syngeneic model of ovarian carcinoma. Therapeutic administration of HSV-1716, a replication-restricted mutant, resulted in significant reduction of tumor growth and a significant survival advantage. Intratumoral injection of HSV-1716 induced expression of IFN-gamma, MIG, and IP-10 in the tumor. This was accompanied by a significant increase in the number of tumor-associated NK and CD8+ T cells expressing CXCR3 and CD25. Ascites from HSV-1716-treated animals efficiently induced in vitro migration of NK and CD8+ T cells, which was dependent on the presence of MIG and IP-10. Murine monocytes and dendritic cells (DCs) were responsible for the production of MIG and IP-10 upon HSV-1716 infection. In monocytes, this was partially abrogated by neutralizing antibodies against IFN-alpha and -beta, thus indicating a role for type-1 IFNs in the reported effect. Human ovarian carcinomas showed high numbers of monocytes and DCs. Upon HSV-1716 infection, human monocyte-derived DCs produced large amounts of IFN-gamma and upregulated MIG and IP-10 expression. These results indicate that HSV-1716 induces an inflammatory response that may facilitate antitumor immune response upon oncolytic therapy.
    Full-text · Article · Dec 2005 · Molecular Therapy
  • [Show abstract] [Hide abstract]
    ABSTRACT: The involvement of immune mechanisms in tumor angiogenesis is unclear. Here we describe a new mechanism of tumor vasculogenesis mediated by dendritic cell (DC) precursors through the cooperation of β-defensins and vascular endothelial growth factor-A (Vegf-A). Expression of mouse β-defensin-29 recruited DC precursors to tumors and enhanced tumor vascularization and growth in the presence of increased Vegf-A expression. A new leukocyte population expressing DC and endothelial markers was uncovered in mouse and human ovarian carcinomas coexpressing Vegf-A and β-defensins. Tumor-infiltrating DCs migrated to tumor vessels and independently assembled neovasculature in vivo. Bone marrow–derived DCs underwent endothelial-like differentiation ex vivo, migrated to blood vessels and promoted the growth of tumors expressing high levels of Vegf-A. We show that β-defensins and Vegf-A cooperate to promote tumor vasculogenesis by carrying out distinct tasks: β-defensins chemoattract DC precursors through CCR6, whereas Vegf-A primarily induces their endothelial-like specialization and migration to vessels, which is mediated by Vegf receptor-2.
    No preview · Article · Aug 2004 · Nature Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NKG2D serves as one of the most potent activating receptors for effector lymphocytes. in peripheral tissues. Here we report the characterization of Letal, the first human trans-membrane NKG2D ligand lacking an immunoglobulin-like alpha-3 ectodomain. Letal is constitutively expressed by a variety of normal tissues, and is upregulated in tumor cells of different origins. Unlike other NKG2D ligands, Letal mRNA expression progressively decreased after treatment of tumor cells with retinoic acid. Simultaneous T-cell receptor activation and engagement of Letal stimulated proliferation of CD8(+) cells and dramatically increased IL-2 and IFNgamma secretion. In addition, Letal induced the killing of cancer cells by CD8(+) and NK cells. These results suggest that Letal delivers activating signals to NK cells and promotes tumor immune surveillance by inducing the expansion of anti-tumor cytotoxic lymphocytes.
    Full-text · Article · Jul 2003 · Cancer biology & therapy
  • Lin Zhang · Nuo Yang · Alisha Mohamed-Hadley · Stephen C Rubin · George Coukos
    [Show abstract] [Hide abstract]
    ABSTRACT: Vascular endothelial growth factor (VEGF) carries out multifaceted functions in tumor development, and it exists as at least five isoforms with distinct biologic activities and clinical implications. Several strategies have been developed to block VEGF for cancer therapy; however, the approach to target-specific VEGF isoform(s) has not been explored to date. In the present study, we show that DNA vector-based RNA interference (RNAi), in which RNAi sequences targeting murine VEGF isoforms are inserted downstream of an RNA polymerase III promoter, has potential applications in isoform-specific "knock-down" of VEGF. Large molecular weight VEGF isoforms were specifically reduced in vitro in the presence of isoform-specific RNAi constructs. Additionally, H1 promoter may be superior to U6 promoter when used for vector-based RNAi of VEGF isoforms. This strategy provides a novel tool to study the function of various VEGF isoforms and may contribute to VEGF isoform-specific treatment in cancer.
    No preview · Article · May 2003 · Biochemical and Biophysical Research Communications
  • [Show abstract] [Hide abstract]
    ABSTRACT: The first tissue-specific angiogenic molecule, endocrine gland-derived vascular endothelial growth factor (EG-VEGF), was identified recently in human ovary, raising hopes of developing tumor type-specific angiogenesis inhibitors. In the present study, we analyzed the expression of EG-VEGF mRNA in normal human tissues and ovarian neoplasms by quantitative real-time reverse transcription-PCR. EG-VEGF mRNA was expressed in all ovarian neoplasms examined. No significant difference was identified among benign, low malignant potential neoplasms or stage I ovarian cancer, all of which exhibited 2-fold lower mRNA levels compared with normal premenopausal ovaries. EG-VEGF mRNA levels further decreased in late stage compared with early stage carcinomas (P < 0.05) and were consistently lower in laser capture microdissected tumor islets compared with surrounding stroma. EG-VEGF was undetectable by reverse transcription-PCR in 17 established epithelial ovarian cancer cell lines or in cultured human ovarian surface epithelial cells, whereas it was detected in peripheral blood as well as tumor-infiltrating T lymphocytes. Finally, in contrast to VEGF, EG-VEGF mRNA levels did not correlate with clinical outcome in advanced ovarian carcinoma. These results suggest that EG-VEGF is most likely derived from nonepithelial components of ovarian carcinomas and may play a marginal role in promoting angiogenesis in advanced ovarian carcinoma. We postulate that EG-VEGF-targeted antiangiogenic therapy may prove useful in early stage but not in advanced stage ovarian carcinoma.
    No preview · Article · Jan 2003 · Clinical Cancer Research
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vascular endothelial growth factor (VEGF) has been implicated as a potent regulator of angiogenesis in tumors, and its protein exists as at least five isoforms with distinct biologic activities and clinical significance. Tumors under metabolic stress conditions dramatically increase VEGF expression due to both increased transcription and decreased mRNA degradation. However, it is not known how stress conditions regulate expression of each VEGF isoform. Here, we report a novel Taqman real-time RT-PCR strategy for quantification of all murine VEGF isoforms and find that (1) glucose starvation dramatically up-regulates the mRNA level of all VEGF isoforms, with the three abundant isoforms, VEGF120, VEGF164, and VEGF188, increasing at a similar rate, while the rare isoform VEGF144 is more markedly up-regulated; (2) glucose starvation induces a significant increase of the relative abundance of VEGF144 mRNA, but not the more prevalent isoforms VEGF120, VEGF164, and VEGF188, compared to total VEGF; and (3) the stability of each isoform mRNA differs under the control conditions as well as glucose starvation. The latter significantly stabilizes mRNA of all VEGF isoforms at a different rate, with VEGF144 most significantly stabilized. Our results indicate that under metabolic stress conditions VEGF144 is the most dramatically up-regulated VEGF isoform, probably through mechanism(s) different from the three abundant VEGF isoforms.
    No preview · Article · May 2002 · Biochemical and Biophysical Research Communications

Publication Stats

598 Citations
53.91 Total Impact Points


  • 2002-2008
    • University of Pennsylvania
      • • Ovarian Cancer Research Center
      • • Center for Research on Reproduction and Women's Health
      Philadelphia, Pennsylvania, United States