Dmitry M Korzhnev

University of Connecticut, Сторс, Connecticut, United States

Are you Dmitry M Korzhnev?

Claim your profile

Publications (58)425.46 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Human ubiquitin-specific protease 7 (USP7) is a deubiquitinating enzyme that prevents protein degradation by removing poly-ubiquitin chains from its substrates. It regulates stability of a number of human transcription factors and tumor suppressors and plays a critical role in the development of several types of cancer, including prostate and small cell lung cancer. In addition, human USP7 is targeted by several viruses of the Herpesviridae family and is required for effective Herpesvirus infection. The USP7 C-terminal region (C-USP7) contains five Ubiquitin-Like domains (UBL1-5) that interact with several USP7 substrates. Although structures of the USP7 C-terminus bound to its substrates could provide vital information for understanding USP7 substrate specificity, no such data has been available to date. In this work we have demonstrated that the USP7 UBL domains can be studied in isolation by solution NMR spectroscopy and have determined the structure of the UBL1 domain. Furthermore, we have employed NMR and viral plaque assays to probe the interaction between the C-USP7 and HSV-1 immediate-early protein ICP0 (infected cell protein 0), which is essential for efficient lytic infection and virus reactivation from latency. We have shown that depletion of the USP7 in HFF-1 cells negatively affects the efficiency of HSV-1 lytic infection. We have also found that USP7 directly binds ICP0 via its C-terminal UBL1-2 domains and mapped the USP7 binding site for ICP0. This study, therefore, represents a first step toward understanding the molecular mechanism of C-USP7 specificity toward its substrates and may provide the basis for future development of novel anti-viral and anti-cancer therapies. Copyright © 2015, The American Society for Biochemistry and Molecular Biology.
    No preview · Article · Jul 2015 · Journal of Biological Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: The structural characterization of low-populated states of proteins with accuracy comparable to that achievable for native states is important for understanding the mechanisms of protein folding and function, as well as misfolding and aggregation. Because of the transient nature of these low-populated states, they are seldom detected directly under conditions that favor folding. The activation domain of human procarboxypeptidase A2 (ADA2h) is an α/β-protein that forms amyloid fibrils at low pH presumably initiated from a denatured state with a considerable amount of residual structure. Here we used Carr-Parcell-Meiboom-Gill relaxation dispersion (CPMG RD) NMR spectroscopy to characterize the structure of the denatured state of the ADA2h I71V mutant under conditions that favor folding. Under these conditions, the lifetime of the denatured state of the I71V ADA2h is of the order of milliseconds and its population is about several percent, which makes this mutant amenable to studies by CPMG RD methods. The nearly complete set of CPMG RD derived backbone 15N, 13C and 1H NMR chemical shifts in the I71V ADA2h denatured state reveals that it retains a significant fraction (up to 50-60%) of native-like α-helical structure, while the regions encompassing native β-strands are structured to a much lesser extent. The native-like α-helical structure of the denatured state can bring together hydrophobic residues on the same sides of α-helices, making them available for intra- or inter-molecular interactions. CPMG RD data analysis thus allowed a detailed structural characterization of the ADA2h denatured state under folding conditions not previously achieved for this protein.
    No preview · Article · Jun 2015 · Biochemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stalled replication forks are a critical problem for the cell because they can lead to complex genome rearrangements that underlie cell death and disease. Processes such as DNA damage tolerance and replication fork reversal protect stalled forks from these events. A central mediator of these DNA damage responses in humans is the Rad5-related DNA translocase, HLTF. Here, we present biochemical and structural evidence that the HIRAN domain, an ancient and conserved domain found in HLTF and other DNA processing proteins, is a modified oligonucleotide/oligosaccharide (OB) fold that binds to 3' ssDNA ends. We demonstrate that the HIRAN domain promotes HLTF-dependent fork reversal in vitro through its interaction with 3' ssDNA ends found at forks. Finally, we show that HLTF restrains replication fork progression in cells in a HIRAN-dependent manner. These findings establish a mechanism of HLTF-mediated fork reversal and provide insight into the requirement for distinct fork remodeling activities in the cell. Copyright © 2015 Elsevier Inc. All rights reserved.
    Full-text · Article · Jun 2015 · Molecular cell
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ubiquitin-mediated interactions are critical for the cellular DNA damage response (DDR). Therefore, many DDR-related proteins contain ubiquitin-binding domains, including ubiquitin-binding zinc fingers (UBZs). The majority of these UBZ domains belong to the C2H2 (type 3 Polη-like) or C2HC (type 4 Rad18-like) families. We have used NMR spectroscopy to characterize the binding to ubiquitin and determine the structure of the type 4 UBZ domain (UBZ4) from human Rad18, which is a key ubiquitin ligase in the DNA damage tolerance pathway responsible for mono-ubiquitination of the DNA sliding clamp PCNA. The Rad18-UBZ domain binds ubiquitin with micromolar affinity and adopts a β1-β2-α fold similar to the previously characterized type 3 UBZ domain (UBZ3) from the translesion synthesis DNA polymerase Polη. However, despite nearly identical structures, a disparity in the location of binding-induced NMR chemical shift perturbations shows that the Rad18-UBZ4 and Polη-UBZ3 bind ubiquitin in distinctly different modes. The Rad18-UBZ4 interacts with ubiquitin with the α-helix and the β1-strand as shown by the structure of the Rad18-UBZ - ubiquitin complex determined in this work, while the Polη-UBZ3 exclusively utilizes the α-helix. Our findings suggest the existence of two classes of UBZ domains in DDR-related proteins with similar structures but unique ubiquitin binding properties and provide context for further study to establish the differential roles of these domains in the complex cellular response to DNA damage.
    No preview · Article · Aug 2014 · Biochemistry
  • Source

    Full-text · Article · Aug 2013 · Journal of Biomolecular NMR
  • Yulia Pustovalova · Mark W Maciejewski · Dmitry M Korzhnev
    [Show abstract] [Hide abstract]
    ABSTRACT: Rev1 is a Y-family translesion synthesis (TLS) DNA polymerase involved in bypass replication across sites of DNA damage and postreplicational gap filling. In the process of TLS high-fidelity replicative DNA polymerases stalled by DNA damage are replaced by error-prone TLS enzymes responsible for the majority of mutagenesis in eukaryotic cells. The polymerase exchange that gains low-fidelity TLS polymerases access to DNA is mediated by their interactions with proliferating cell nuclear antigen (PCNA). Rev1 stands alone from other Y-family TLS enzymes since it lacks the consensus PCNA-interacting protein box (PIP-box) motif, instead utilizing other modular domains for PCNA binding. Here we report solution NMR structure of an 11 kDa BRCA1 C-terminus (BRCT) domain from S. cerevisiae Rev1, and demonstrate with the use of TROSY NMR methods that Rev1-BRCT domain directly interacts with an 87 kDa PCNA in solution. The domain adopts α/β fold (β1-α1-β2-β3-α2-β4-α3-α4) typical for BRCT domain superfamily. PCNA-binding interface of the Rev1-BRCT domain comprises conserved residues of the outer surface of the α1 helix, α1-β1, β2-β3 and β3-α2 loops. On the other hand, Rev1-BRCT binds to the inter-domain region of PCNA that overlaps with the binding site for the PIP-box motif. Furthermore, Rev1-BRCT domain bound to PCNA can be displaced by increasing amounts of the PIP-box peptide from TLS DNA polymerase polη, suggesting that Rev1-BRCT and polη PIP-box interactions with the same PCNA monomer are mutually exclusive. These results provide structural insights into PCNA recognition by TLS DNA polymerases that help better understand TLS regulation in eukaryotes.
    No preview · Article · Jun 2013 · Journal of Molecular Biology
  • Source
    Dmitry M Korzhnev

    Preview · Article · Oct 2012 · Journal of Molecular Biology
  • Source

    Full-text · Article · Sep 2012 · Nature Structural & Molecular Biology
  • Source
    Yulia Pustovalova · Irina Bezsonova · Dmitry M Korzhnev
    [Show abstract] [Hide abstract]
    ABSTRACT: Human Rev1 is a translesion synthesis (TLS) DNA polymerase involved in bypass replication across sites of DNA damage and postreplicational gap-filling. Rev1 plays an essential structural role in TLS by providing a binding platform for other TLS polymerases that insert nucleotides across DNA lesions (polη, polι, polκ) and extend the distorted primer-terminus (polς). We use NMR spectroscopy to demonstrate that the Rev1 C-terminal domain utilizes independent interaction interfaces to simultaneously bind a fragment of the 'inserter' polη and Rev7 subunit of the 'extender' polς, thereby serving as a cassette that may accommodate several polymerases making them instantaneously available for TLS. STRUCTURED SUMMARY OF PROTEIN INTERACTIONS: REV1, REV3 and REV7physically interact by nuclear magnetic resonance (View interaction), molecular sieving (View interaction) and isothermal titration calorimetry (View interaction). REV3 and REV7bind by molecular sieving (View interaction) REV1 and Polη-RIR peptidebind by nuclear magnetic resonance (View interaction) REV1, REV3, REV7 and Polη-RIR peptidephysically interact by nuclear magnetic resonance (View interaction).
    Preview · Article · Jul 2012 · FEBS letters
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rev1 is a translesion synthesis (TLS) DNA polymerase essential for DNA damage tolerance in eukaryotes. In the process of TLS stalled high-fidelity replicative DNA polymerases are temporarily replaced by specialized TLS enzymes that can bypass sites of DNA damage (lesions), thus allowing replication to continue or postreplicational gaps to be filled. Despite its limited catalytic activity, human Rev1 plays a key role in TLS by serving as a scaffold that provides an access of Y-family TLS polymerases polη, ι, and κ to their cognate DNA lesions and facilitates their subsequent exchange to polζ that extends the distorted DNA primer-template. Rev1 interaction with the other major human TLS polymerases, polη, ι, κ, and the regulatory subunit Rev7 of polζ, is mediated by Rev1 C-terminal domain (Rev1-CT). We used NMR spectroscopy to determine the spatial structure of the Rev1-CT domain (residues 1157-1251) and its complex with Rev1 interacting region (RIR) from polη (residues 524-539). The domain forms a four-helix bundle with a well-structured N-terminal β-hairpin docking against helices 1 and 2, creating a binding pocket for the two conserved Phe residues of the RIR motif that upon binding folds into an α-helix. NMR spin-relaxation and NMR relaxation dispersion measurements suggest that free Rev1-CT and Rev1-CT/polη-RIR complex exhibit μs-ms conformational dynamics encompassing the RIR binding site, which might facilitate selection of the molecular configuration optimal for binding. These results offer new insights into the control of TLS in human cells by providing a structural basis for understanding the recognition of the Rev1-CT by Y-family DNA polymerases.
    No preview · Article · Jun 2012 · Biochemistry
  • Source
    Dmitry M Korzhnev · Tomasz L Religa · Lewis E Kay
    [Show abstract] [Hide abstract]
    ABSTRACT: Studies of protein folding and the intermediates that are formed along the folding pathway provide valuable insights into the process by which an unfolded ensemble forms a functional native conformation. However, because intermediates on folding pathways can serve as initiation points of aggregation (implicated in a number of diseases), their characterization assumes an even greater importance. Establishing the role of such intermediates in folding, misfolding, and aggregation remains a major challenge due to their often low populations and short lifetimes. We recently used NMR relaxation dispersion methods and computational techniques to determine an atomic resolution structure of the folding intermediate of a small protein module-the FF domain-with an equilibrium population of 2-3% and a millisecond lifetime, 25 °C. Based on this structure a variant FF domain has been designed in which the native state is selectively destabilized by removing the carboxyl-terminal helix in the native structure to produce a highly populated structural mimic of the intermediate state. Here, we show via solution NMR studies of the designed mimic that the mimic forms distinct conformers corresponding to monomeric and dimeric (K(d) = 0.2 mM) forms of the protein. The conformers exchange on the seconds timescale with a monomer association rate of 1.1·10(4) M(-1) s(-1) and with a region responsible for dimerization localized to the amino-terminal residues of the FF domain. This study establishes the FF domain intermediate as a central player in both folding and misfolding pathways and illustrates how incomplete folding can lead to the formation of higher-order structures.
    Preview · Article · May 2012 · Proceedings of the National Academy of Sciences
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have recently reported the atomic resolution structure of a low populated and transiently formed on-pathway folding intermediate of the FF domain from human HYPA/FBP11 [Korzhnev, D. M.; Religa, T. L.; Banachewicz, W.; Fersht, A. R.; Kay, L.E. Science 2011, 329, 1312-1316]. The structure was determined on the basis of backbone chemical shift and bond vector orientation restraints of the invisible intermediate state measured using relaxation dispersion nuclear magnetic resonance (NMR) spectroscopy that were subsequently input into the database structure determination program, CS-Rosetta. As a cross-validation of the structure so produced, we present here the solution structure of a mimic of the folding intermediate that is highly populated in solution, obtained from the wild-type domain by mutagenesis that destabilizes the native state. The relaxation dispersion/CS-Rosetta structures of the intermediate are within 2 Å of those of the mimic, with the nonnative interactions in the intermediate also observed in the mimic. This strongly confirms the structure of the FF domain folding intermediate, in particular, and validates the use of relaxation dispersion derived restraints in structural studies of invisible excited states, in general.
    No preview · Article · Dec 2011 · The Journal of Physical Chemistry B
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several all-helical single-domain proteins have been shown to fold rapidly (microsecond time scale) to a compact intermediate state and subsequently rearrange more slowly to the native conformation. An understanding of this process has been hindered by difficulties in experimental studies of intermediates in cases where they are both low-populated and only transiently formed. One such example is provided by the on-pathway folding intermediate of the small four-helix bundle FF domain from HYPA/FBP11 that is populated at several percent with a millisecond lifetime at room temperature. Here we have studied the L24A mutant that has been shown previously to form nonnative interactions in the folding transition state. A suite of Carr-Purcell-Meiboom-Gill relaxation dispersion NMR experiments have been used to measure backbone chemical shifts and amide bond vector orientations of the invisible folding intermediate that form the input restraints in calculations of atomic resolution models of its structure. Despite the fact that the intermediate structure has many features that are similar to that of the native state, a set of nonnative contacts is observed that is even more extensive than noted previously for the wild-type (WT) folding intermediate. Such nonnative interactions, which must be broken prior to adoption of the native conformation, explain why the transition from the intermediate state to the native conformer (millisecond time scale) is significantly slower than from the unfolded ensemble to the intermediate and why the L24A mutant folds more slowly than the WT.
    Full-text · Article · Jun 2011 · Journal of the American Chemical Society
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Wilson disease protein (ATP7B) is a copper-transporting member of the P-type ATPase superfamily, which plays a central role in copper homeostasis and interacts with the copper chaperone Atox1. The N-terminus of ATP7B is comprised of six copper-binding domains (WCBDs), each capable of binding one copper atom in the +1 oxidation state. To better understand the regulatory effect of copper binding to these domains, we have performed NMR characterization of WCBD4-6 (domains 4-6 of ATP7B). (15)N relaxation measurements on the apo and Cu(I)-bound WCBD4-6 show that there is no dramatic change in the dynamic properties of this three-domain construct; the linker between domains 4 and 5 remains flexible, domains 5 and 6 do not form a completely rigid dimer but rather have some flexibility with respect to each other, and there is minimal change in the relative orientation of the domains in the two states. We also show that, contrary to previous reports, the protein-protein interaction between Atox1 and the copper-binding domains takes place even in the absence of copper. Comparison of apo and Cu(I)-bound spectra of WCBD1-6 shows that binding of Cu(I) does not induce the formation of a unit that tumbles as a single entity, consistent with our results for WCBD4-6. We propose that copper transfer to and between the N-terminal domains of the Wilson Cu-ATPase occurs via protein interactions that are facilitated by the flexibility of the linkers and the motional freedom of the domains with respect to each other.
    No preview · Article · Oct 2010 · Biochemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proteins can sample conformational states that are critical for function but are seldom detected directly because of their low occupancies and short lifetimes. In this work, we used chemical shifts and bond-vector orientation constraints obtained from nuclear magnetic resonance relaxation dispersion spectroscopy, in concert with a chemical shift-based method for structure elucidation, to determine an atomic-resolution structure of an "invisible" folding intermediate of a small protein module: the FF domain. The structure reveals non-native elements preventing formation of the native conformation in the carboxyl-terminal part of the protein. This is consistent with the kinetics of folding in which a well-structured intermediate forms rapidly and then rearranges slowly to the native state. The approach introduces a general strategy for structure determination of low-populated and transiently formed protein states.
    No preview · Article · Sep 2010 · Science
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NMR relaxation dispersion spectroscopy is a powerful method for studying protein conformational dynamics whereby visible, ground and invisible, excited conformers interconvert on the millisecond time-scale. In addition to providing kinetics and thermodynamics parameters of the exchange process, the CPMG dispersion experiment also allows extraction of the absolute values of the chemical shift differences between interconverting states, /Delta(omega)/, opening the way for structure determination of excited state conformers. Central to the goal of structural analysis is the availability of the chemical shifts of the excited state that can only be obtained once the signs of Delta(omega) are known. Herein we describe a very simple method for determining the signs of (1)H(N) Delta(omega) values based on a comparison of peak positions in the directly detected dimensions of a pair of (1)H(N)-(15)N correlation maps recorded at different static magnetic fields. The utility of the approach is demonstrated for three proteins that undergo millisecond time-scale conformational rearrangements. Although the method provides fewer signs than previously published techniques it does have a number of strengths: (1) Data sets needed for analysis are typically available from other experiments, such as those required for measuring signs of (15)N Delta(omega) values, thus requiring no additional experimental time, (2) acquisition times in the critical detection dimension can be as long as necessary and (3) the signs obtained can be used to cross-validate those from other approaches.
    Full-text · Article · Jun 2010 · Journal of Biomolecular NMR
  • [Show abstract] [Hide abstract]
    ABSTRACT: Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion NMR spectroscopy has emerged as a powerful tool for quantifying the kinetics and thermodynamics of millisecond exchange processes between a major, populated ground state and one or more minor, low populated and often invisible ‘excited’ conformers. Analysis of CPMG data-sets also provides the magnitudes of the chemical shift difference(s) between exchanging states (|Δϖ|), that inform on the structural properties of the excited state(s). The sign of Δϖ is, however, not available from CPMG data. Here we present one-dimensional NMR experiments for measuring the signs of 1HN and 13Cα Δϖ values using weak off-resonance R 1ρ relaxation measurements, extending the spin-lock approach beyond previous applications focusing on the signs of 15N and 1Hα shift differences. The accuracy of the method is established by using an exchanging system where the invisible, excited state can be converted to the visible, ground state by altering conditions so that the signs of Δϖ values obtained from the spin-lock approach can be validated with those measured directly. Further, the spin-lock experiments are compared with the established H(S/M)QC approach for measuring the signs of chemical shift differences. For the Abp1p and Fyn SH3 domains considered here it is found that while H(S/M)QC measurements provide signs for more residues than the spin-lock data, the two different methodologies are complementary, so that combining both approaches frequently produces signs for more residues than when the H(S/M)QC method is used alone.
    No preview · Article · Mar 2010 · Journal of Biomolecular NMR
  • Hugo van Ingen · Dmitry M Korzhnev · Lewis E Kay
    [Show abstract] [Hide abstract]
    ABSTRACT: Marginally and transiently populated conformational states of biomolecules can play important functional roles in biochemical processes. It is of significant interest, therefore, to develop tools for characterizing the structural and dynamical properties of these excited states. One recent development has been the emergence of spin-state-selective relaxation dispersion methods for quantifying dipolar vector orientations in invisible excited-state conformers through measurement of residual dipolar couplings (RDCs). Particularly powerful are 1HN-(15)N RDCs that can be measured with high sensitivity on fractionally aligned, deuterated, uniformly 15N-labeled protein samples. Fractional alignment also produces nonzero 1HN-(1)HN dipolar couplings. These can be problematic for the extraction of robust 1HN-(15)N RDC values, and hence amide bond vector orientations, in cases where the amide proton of interest and a proximal amide proton have small chemical shift differences and a significant 1HN-(1)HN dipolar coupling. Here, we show that while this strong coupling effect leads to aberrant relaxation dispersion profiles, extracted excited-state 1HN-(15)N RDCs are for the most part only marginally affected. Experimental examples of such aberrant profiles are provided, as well as a theoretical consideration of the influence of this strong coupling effect and numerical simulations that assess its impact on extracted parameters.
    No preview · Article · Aug 2009 · The Journal of Physical Chemistry B
  • [Show abstract] [Hide abstract]
    ABSTRACT: Surfaces of many binding domains are plastic, enabling them to interact with multiple targets. An understanding of how they bind and recognize their partners is therefore predicated on characterizing such dynamic interfaces. Yet, these interfaces are difficult to study by standard biophysical techniques that often 'freeze' out conformations or that produce data averaged over an ensemble of conformers. In this study, we used NMR spectroscopy to study the interaction between the C-terminal SH3 domain of CIN85 and ubiquitin that involves the 'classical' binding sites of these proteins. Notably, chemical shift titration data of one target with another and relaxation dispersion data that report on millisecond time scale exchange processes are both well fit to a simple binding model in which free protein is in equilibrium with a single bound conformation. However, dissociation constants and chemical shift differences between free and bound states measured from both classes of experiment are in disagreement. It is shown that the data can be reconciled by considering three-state binding models involving two distinct bound conformations. By combining titration and dispersion data, kinetic and thermodynamic parameters of the three-state binding reaction are obtained along with chemical shifts for each state. A picture emerges in which one bound conformer has increased entropy and enthalpy relative to the second and chemical shifts similar to that of the free state, suggesting a less packed interface. This study provides an example of the interplay between entropy and enthalpy to fine-tune molecular interactions involving the same binding surfaces.
    No preview · Article · Feb 2009 · Journal of Molecular Biology
  • Dmitry M. Korzhnev · Lewis E. Kay
    [Show abstract] [Hide abstract]
    ABSTRACT: ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
    No preview · Article · Jun 2008 · ChemInform

Publication Stats

3k Citations
425.46 Total Impact Points


  • 2011-2015
    • University of Connecticut
      • Department of Molecular, Microbial and Structural Biology
      Сторс, Connecticut, United States
  • 2012
    • University of Wisconsin–Madison
      Madison, Wisconsin, United States
  • 2002-2011
    • University of Toronto
      • Department of Chemistry
      Toronto, Ontario, Canada
  • 1995-2001
    • Russian Academy of Sciences
      • Institute of Inorganic Chemistry
      Moskva, Moscow, Russia