Paul K Herman

The Ohio State University, Columbus, Ohio, United States

Are you Paul K Herman?

Claim your profile

Publications (35)295.17 Total impact

  • Source
    Daniel J Klionsky · Kotb Abdelmohsen · Akihisa Abe · Md Joynal Abedin · Hagai Abeliovich · Abraham Acevedo Arozena · Hiroaki Adachi · Christopher M Adams · Peter D Adams · Khosrow Adeli · [...] · Orsolya Kapuy · Vassiliki Karantza · Md Razaul Karim · Parimal Karmakar · Arthur Kaser · Susmita Kaushik · Thomas Kawula · A Murat Kaynar · Po-Yuan Ke · Zun-Ji Ke ·

    Full-text · Dataset · Jan 2016
  • Source
    Daniel J Klionsky · Kotb Abdelmohsen · Akihisa Abe · Md Joynal Abedin · Hagai Abeliovich · Abraham Acevedo Arozena · Hiroaki Adachi · Christopher M Adams · Peter D Adams · Khosrow Adeli · [...] · Xiao-Feng Zhu · Yuhua Zhu · Shi-Mei Zhuang · Xiaohong Zhuang · Elio Ziparo · Christos E Zois · Teresa Zoladek · Wei-Xing Zong · Antonio Zorzano · Susu M Zughaier ·
    [Show abstract] [Hide abstract]
    ABSTRACT: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.
    Full-text · Article · Jan 2016 · Autophagy
  • [Show abstract] [Hide abstract]
    ABSTRACT: The interior of the eukaryotic cell is a highly compartmentalized space containing both membrane-bound organelles and the recently-identified nonmembranous ribonucleoprotein (RNP) granules. This study examines in Saccharomyces cerevisiae the assembly of one conserved type of the latter compartment, known as the stress granule. Stress granules form in response to particular environmental cues and have been linked to a variety of human diseases, including amyotrophic lateral sclerosis. To further our understanding of these structures, a candidate genetic screen was employed to identify regulators of stress granule assembly in quiescent cells. These studies identified a ubiquitin-specific protease, Ubp3, as having an essential role in the assembly of these RNP granules. This function was not shared by other members of the Ubp protease family and required Ubp3 catalytic activity as well as its interaction with the cofactor, Bre5. Interestingly, the loss of stress granules was correlated with a decrease in the long-term survival of stationary phase cells. This phenotype is similar to that observed in mutants defective for the formation of a related RNP complex, the Processing-body. Altogether, these observations raise the interesting possibility of a general role for these types of cytoplasmic RNP granules in the survival of G 0 -like resting cells.
    No preview · Article · Oct 2015 · Molecular and Cellular Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cytoplasm of the eukaryotic cell is subdivided into distinct functional domains by the presence of a variety of membrane-bound organelles. The remaining aqueous space may be further partitioned by the regulated assembly of discrete ribonucleoprotein (RNP) complexes that contain particular proteins and mRNAs. These RNP granules are conserved structures whose importance is highlighted by studies linking them to human disorders like amyotrophic lateral sclerosis. However, relatively little is known about the diversity, composition and physiological roles of these cytoplasmic structures. To begin to address these issues, we examined the cytoplasmic granules formed by a key set of signaling molecules, the protein kinases of the budding yeast, Saccharomyces cerevisiae. Interestingly, a significant fraction of these proteins, almost 20%, was recruited to cytoplasmic foci specifically as cells entered into the G0-like quiescent state, stationary phase. Co-localization studies demonstrated that these foci corresponded to eight different granules, including four that had not been reported previously. All of these granules were found to rapidly disassemble upon the resumption of growth and the presence of each was correlated with cell viability in the quiescent cultures. Finally, this work also identified new constituents of known RNP granules, including the well-characterized Processing body and stress granule. The composition of these latter structures is therefore more varied than previously thought and could be an indicator of additional biological activities being associated with these complexes. Altogether, these observations indicate that quiescent yeast cells contain multiple distinct cytoplasmic granules that may make important contributions to their long-term survival.
    Full-text · Article · Oct 2014 · Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Research in autophagy continues to accelerate,(1) and as a result many new scientists are entering the field. Accordingly, it is important to establish a standard set of criteria for monitoring macroautophagy in different organisms. Recent reviews have described the range of assays that have been used for this purpose.(2,3) There are many useful and convenient methods that can be used to monitor macroautophagy in yeast, but relatively few in other model systems, and there is much confusion regarding acceptable methods to measure macroautophagy in higher eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers of autophagosomes versus those that measure flux through the autophagy pathway; thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from fully functional autophagy that includes delivery to, and degradation within, lysosomes (in most higher eukaryotes) or the vacuole (in plants and fungi). Here, we present a set of guidelines for the selection and interpretation of the methods that can be used by investigators who are attempting to examine macroautophagy and related processes, as well as by reviewers who need to provide realistic and reasonable critiques of papers that investigate these processes. This set of guidelines is not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to verify an autophagic response.
    Full-text · Dataset · Dec 2013
  • Source
    Khyati H Shah · Bo Zhang · Vidhya Ramachandran · Paul K Herman
    [Show abstract] [Hide abstract]
    ABSTRACT: A variety of ribonucleoprotein (RNP) granules form in eukaryotic cells in order to regulate the translation, decay and localization of the encapsulated mRNAs. The work here examined the assembly and function of two highly conserved RNP structures, the Processing body (P body) and stress granule, in the yeast, Saccharomyces cerevisiae. These granules are induced by similar stress conditions and contain translationally-repressed mRNAs and a partially overlapping set of protein constituents. However, despite these similarities, the data indicate that these RNP complexes are independently assembled and that this assembly is controlled by different signaling pathways. In particular, the cAMP-dependent protein kinase (PKA) was found to control P body formation under all conditions examined. In contrast, the assembly of stress granules was not affected by changes in either PKA or TORC1 signaling activity. Both of these RNP granules were also detected in stationary phase cells but each appears at a distinct time. P bodies were formed prior to stationary phase arrest and the data suggest that these foci are important for the long-term survival of these quiescent cells. Stress granules, on the other hand, were not assembled until after the cells had entered into the stationary phase of growth and their appearance could therefore serve as a specific marker for the entry into this quiescent state. In all, the results here provide a framework for understanding the assembly of these RNP complexes and suggest that these structures have distinct but important activities in quiescent cells.
    Full-text · Article · Oct 2012 · Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process);5,6 thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
    Full-text · Article · Apr 2012 · Autophagy
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
    Full-text · Article · Apr 2012 · Autophagy
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
    Full-text · Article · Apr 2012 · Autophagy
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
    Full-text · Article · Apr 2012 · Autophagy
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Kes1, and other oxysterol-binding protein superfamily members, are involved in membrane and lipid trafficking through trans-Golgi network (TGN) and endosomal systems. We demonstrate that Kes1 represents a sterol-regulated antagonist of TGN/endosomal phosphatidylinositol-4-phosphate signaling. This regulation modulates TOR activation by amino acids and dampens gene expression driven by Gcn4, the primary transcriptional activator of the general amino acid control regulon. Kes1-mediated repression of Gcn4 transcription factor activity is characterized by nonproductive Gcn4 binding to its target sequences, involves TGN/endosome-derived sphingolipid signaling, and requires activity of the cyclin-dependent kinase 8 (CDK8) module of the enigmatic "large Mediator" complex. These data describe a pathway by which Kes1 integrates lipid metabolism with TORC1 signaling and nitrogen sensing.
    Full-text · Article · Feb 2012 · Cell
  • Source
    Vidhya Ramachandran · Khyati H Shah · Paul K Herman
    [Show abstract] [Hide abstract]
    ABSTRACT: In response to stress, eukaryotic cells accumulate mRNAs and proteins at discrete sites, or foci, in the cytoplasm. However, the mechanisms regulating foci formation, and the biological function of the larger ribonucleoprotein (RNP) assemblies, remain poorly understood. Here, we show that the cAMP-dependent protein kinase (PKA) in Saccharomyces cerevisiae is a key regulator of the assembly of processing bodies (P bodies), an RNP complex implicated in mRNA processing and translation. The data suggest that PKA specifically inhibits the formation of the larger P body aggregates by directly phosphorylating Pat1, a conserved constituent of these foci that functions as a scaffold during the assembly process. Finally, we present evidence indicating that P body foci are required for the long-term survival of stationary phase cells. This work therefore highlights the general relevance of RNP foci in quiescent cells, and provides a framework for the study of the many RNP assemblies that form in eukaryotic cells.
    Full-text · Article · Sep 2011 · Molecular cell
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy is a conserved, degradative process that has been implicated in a number of human diseases and is a potential target for therapeutic intervention. It is therefore important that we develop a thorough understanding of the mechanisms regulating this trafficking pathway. The Atg1 protein kinase is a key element of this control as a number of signaling pathways target this enzyme and its associated protein partners. These studies have established that Atg1 activities are controlled, at least in part, by protein phosphorylation. To further this understanding, we used a combined mass spectrometry and molecular biology approach to identify and characterize additional sites of phosphorylation in the Saccharomyces cerevisiae Atg1. Fifteen candidate sites of phosphorylation were identified, including nine that had not been noted previously. Interestingly, our data suggest that the phosphorylation at one of these sites, Ser-34, is inhibitory for both Atg1 kinase activity and autophagy. This site is located within a glycine-rich loop that is highly conserved in protein kinases. Phosphorylation at this position in several cyclin-dependent kinases has also been shown to result in diminished enzymatic activity. In addition, these studies identified Ser-390 as the site of autophosphorylation responsible for the anomalous migration exhibited by Atg1 on SDS-polyacrylamide gels. Finally, a mutational analysis suggested that a number of the sites identified here are important for full autophagy activity in vivo. In all, these studies identified a number of potential sites of regulation within Atg1 and will serve as a framework for future work with this enzyme.
    Full-text · Article · Jul 2011 · Autophagy
  • Source
    Yuh-Ying Yeh · Khyati H Shah · Paul K Herman
    [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy pathways in eukaryotic cells mediate the turnover of a diverse set of cytoplasmic components, including damaged organelles and abnormal protein aggregates. Autophagy-mediated degradation is highly regulated, and defects in these pathways have been linked to a number of human disorders. The Atg1 protein kinase appears to be a key site of this control and is targeted by multiple signaling pathways to ensure the appropriate autophagic response to changing environmental conditions. Despite the importance of this kinase, relatively little is known about the molecular details of Atg1 activation. In this study we show that Atg13, an evolutionarily conserved regulator of Atg1, promotes the formation of a specific Atg1 self-interaction in the budding yeast, Saccharomyces cerevisiae. The appearance of this Atg1-Atg1 complex is correlated with the induction of autophagy, and conditions that disrupt this complex result in diminished levels of both autophagy and Atg1 kinase activity. Moreover, the addition of a heterologous dimerization domain to Atg1 resulted in elevated kinase activity both in vivo and in vitro. The formation of this complex appears to be an important prerequisite for the subsequent autophosphorylation of Thr-226 in the Atg1 activation loop. Previous work indicates that this modification is necessary and perhaps sufficient for Atg1 kinase activity. Interestingly, this Atg1 self-association does not require Atg17, suggesting that this second conserved regulator might activate Atg1 in a manner mechanistically distinct from that of Atg13. In all, this work suggests a model whereby this self-association stimulates the autophosphorylation of Atg1 within its activation loop.
    Full-text · Article · Jun 2011 · Journal of Biological Chemistry
  • Source
    Vidhya Ramachandran · Paul K Herman
    [Show abstract] [Hide abstract]
    ABSTRACT: Eukaryotic cells integrate information from multiple sources to respond appropriately to changes in the environment. Here, we examined the relationship between two signaling pathways in Saccharomyces cerevisiae that are essential for the coordination of cell growth with nutrient availability. These pathways involve the cAMP-dependent protein kinase (PKA) and Tor proteins, respectively. Although these pathways control a similar set of processes important for growth, it was not clear how their activities were integrated in vivo. The experiments here examined this coordination and, in particular, tested whether the PKA pathway was primarily a downstream effector of the TORC1 signaling complex. Using a number of reporters for the PKA pathway, we found that the inhibition of TORC1 did not result in diminished PKA signaling activity. To the contrary, decreased TORC1 signaling was generally associated with elevated levels of PKA activity. Similarly, TORC1 activity appeared to increase in response to lower levels of PKA signaling. Consistent with these observations, we found that diminished PKA signaling partially suppressed the growth defects associated with decreased TORC1 activity. In all, these data suggested that the PKA and TORC1 pathways were functioning in parallel to promote cell growth and that each pathway might restrain, either directly or indirectly, the activity of the other. The potential significance of this antagonism for the regulation of cell growth and overall fitness is discussed.
    Preview · Article · Nov 2010 · Genetics
  • Source
    Yuh-Ying Yeh · Kristie Wrasman · Paul K Herman
    [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy is an evolutionarily conserved degradative pathway that has been implicated in a number of physiological events important for human health. This process was originally identified as a response to nutrient deprivation and is thought to serve in a recycling capacity during periods of nutritional stress. Autophagy activity appears to be highly regulated and multiple signaling pathways are known to target a complex of proteins that contains the Atg1 protein kinase. The data here extend these observations and identify a particular phosphorylation event on Atg1 as a potential control point within the autophagy pathway in Saccharomyces cerevisiae. This phosphorylation occurs at a threonine residue, T226, within the Atg1 activation loop that is conserved in all Atg1 orthologs. Replacing this threonine with a nonphosphorylatable residue resulted in a loss of Atg1 protein kinase activity and a failure to induce autophagy. This phosphorylation required the presence of a functional Atg1 kinase domain and two known regulators of Atg1 activity, Atg13 and Atg17. Interestingly, the levels of this modification were found to increase dramatically upon exposure to conditions that induce autophagy. In addition, T226 phosphorylation was associated with an autophosphorylated form of Atg1 that was found specifically in cells undergoing the autophagy process. In all, these data suggest that autophosphorylation within the Atg1 activation loop may represent a point of regulatory control for this degradative process.
    Preview · Article · May 2010 · Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Macroautophagy (hereafter autophagy) is a conserved membrane trafficking pathway responsible for the turnover of cytosolic protein and organelles during periods of nutrient deprivation. This pathway is also linked to a number of processes important for human health, including tumor suppression, innate immunity and the clearance of protein aggregates. As a result, there is tremendous interest in autophagy as a potential point of therapeutic intervention in a variety of pathological states. To achieve this goal, it is imperative that we develop a thorough understanding of the normal regulation of this process in eukaryotic cells. The Tor protein kinases clearly constitute a key element of this control as Tor activity inhibits this degradative process in all organisms examined, from yeast to man. Here, we discuss recent work indicating that the cAMP-dependent protein kinase (PKA) also plays a critical role in controlling autophagy in the budding yeast, Saccharomyces cerevisiae. A model describing how PKA activity might influence this degradative process, and how this control might be integrated with that of the Tor pathway, is presented.
    Full-text · Article · Feb 2010 · Autophagy
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Macroautophagy (or autophagy) is a conserved degradative pathway that has been implicated in a number of biological processes, including organismal aging, innate immunity, and the progression of human cancers. This pathway was initially identified as a cellular response to nutrient deprivation and is essential for cell survival during these periods of starvation. Autophagy is highly regulated and is under the control of a number of signaling pathways, including the Tor pathway, that coordinate cell growth with nutrient availability. These pathways appear to target a complex of proteins that contains the Atg1 protein kinase. The data here show that autophagy in Saccharomyces cerevisiae is also controlled by the cAMP-dependent protein kinase (PKA) pathway. Elevated levels of PKA activity inhibited autophagy and inactivation of the PKA pathway was sufficient to induce a robust autophagy response. We show that in addition to Atg1, PKA directly phosphorylates Atg13, a conserved regulator of Atg1 kinase activity. This phosphorylation regulates Atg13 localization to the preautophagosomal structure, the nucleation site from which autophagy pathway transport intermediates are formed. Atg13 is also phosphorylated in a Tor-dependent manner, but these modifications appear to occur at positions distinct from the PKA phosphorylation sites identified here. In all, our data indicate that the PKA and Tor pathways function independently to control autophagy in S. cerevisiae, and that the Atg1/Atg13 kinase complex is a key site of signal integration within this degradative pathway.
    Full-text · Article · Oct 2009 · Proceedings of the National Academy of Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein kinases are important mediators of signal transduction in eukaryotic cells, and identifying the substrates of these enzymes is essential for a complete understanding of most signaling networks. In this report, novel substrate-binding variants of the cAMP-dependent protein kinase (PKA) were used to identify substrate domains required for efficient phosphorylation in vivo. Most wild-type protein kinases, including PKA, interact only transiently with their substrates. The substrate domains identified were distal to the sites of phosphorylation and were found to interact with a C-terminal region of PKA that was itself removed from the active site. Only a small set of PKA alterations resulted in a stable association with substrates, and the identified residues were clustered together within the hydrophobic core of this enzyme. Interestingly, these residues stretched from the active site of the enzyme to the C-terminal substrate-binding domain identified here. This spatial organization is conserved among the entire eukaryotic protein kinase family, and alteration of these residues in a second, unrelated protein kinase also resulted in a stable association with substrates. In all, this study identified distal sites in PKA substrates that are important for recognition by this enzyme and suggests that the interaction of these domains with PKA might influence specific aspects of substrate binding and/or release.
    Preview · Article · May 2009 · Genetics
  • Source
    Stephen J Deminoff · Paul K Herman
    [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy is essential for normal development and the response to a variety of stress conditions, including nutrient deprivation. The Atg1 serine/threonine-specific protein kinase appears to be a key regulator of many forms of autophagy that occur in eukaryotic cells. Therefore, to fully understand the regulation of autophagy, it is essential that we identify the signaling pathways regulating Atg1 and the physiologically-relevant targets of Atg1 kinase activity. Although some progress has been made on the former question, no Atg1 substrates important for autophagy have yet been identified. In this review, we discuss four different experimental strategies that should facilitate the search for Atg1 substrates.
    Preview · Article · Nov 2007 · Autophagy

Publication Stats

3k Citations
295.17 Total Impact Points

Institutions

  • 1997-2014
    • The Ohio State University
      • Department of Molecular Genetics
      Columbus, Ohio, United States
  • 2012
    • University of Michigan
      • Life Sciences Institute
      Ann Arbor, MI, United States
  • 2004
    • Molecular and Cellular Biology Program
      Seattle, Washington, United States