Anders Arner

Karolinska Institutet, Сольна, Stockholm, Sweden

Are you Anders Arner?

Claim your profile

Publications (152)589.06 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Imaging of muscular structure with cellular or subcellular detail in whole-body animal models is of key importance for understanding muscular disease and assessing interventions. Classical histological methods for high-resolution imaging methods require excision, fixation and staining. Here we show that the three-dimensional muscular structure of unstained whole zebrafish can be imaged with sub-5 μm detail with X-ray phase-contrast tomography. Our method relies on a laboratory propagation-based phase-contrast system tailored for detection of low-contrast 4-6 μm subcellular myofibrils. The method is demonstrated on 20 days post fertilization zebrafish larvae and comparative histology confirms that we resolve individual myofibrils in the whole-body animal. X-ray imaging of healthy zebrafish show the expected structured muscle pattern while specimen with a dystrophin deficiency (sapje) displays an unstructured pattern, typical of Duchenne muscular dystrophy. The method opens up for whole-body imaging with sub-cellular detail also of other types of soft tissue and in different animal models.
    Preview · Article · Nov 2015 · Scientific Reports
  • Source
    Mei Li · Anders Arner
    [Show abstract] [Hide abstract]
    ABSTRACT: Muscular dystrophies are often caused by genetic alterations in the dystrophin-dystroglycan complex or its extracellular ligands. These structures are associated with the cell membrane and provide mechanical links between the cytoskeleton and the matrix. Mechanical stress is considered a pathological mechanism and muscle immobilization has been shown to be beneficial in some mouse models of muscular dystrophy. The zebrafish enables novel and less complex models to examine the effects of extended immobilization or muscle relaxation in vivo in different dystrophy models. We have examined effects of immobilization in larvae from two zebrafish strains with muscular dystrophy, the Sapje dystrophin-deficient and the Candyfloss laminin α2-chain-deficient strains. Larvae (4 days post fertilization, dpf) of both mutants have significantly lower active force in vitro, alterations in the muscle structure with gaps between muscle fibers and altered birefringence patterns compared to their normal siblings. Complete immobilization (18 hrs to 4 dpf) was achieved using a small molecular inhibitor of actin-myosin interaction (BTS, 50 μM). This treatment resulted in a significantly weaker active contraction at 4 dpf in both mutated larvae and normal siblings, most likely reflecting a general effect of immobilization on myofibrillogenesis. The immobilization also significantly reduced the structural damage in the mutated strains, showing that muscle activity is an important pathological mechanism. Following one-day washout of BTS, muscle tension partly recovered in the Candyfloss siblings and caused structural damage in these mutants, indicating activity-induced muscle recovery and damage, respectively.
    Preview · Article · Nov 2015 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nemaline myopathy is an inherited muscle disease that is mainly diagnosed by the presence of nemaline rods in muscle biopsies. Of the 9 genes associated with the disease, 5 encode for components of striated muscle sarcomeres. In a genetic zebrafish screen the mutant träge (trg) was isolated based on its reduction in muscle birefringence, indicating muscle damage. Myofibres in trg appeared disorganized and showed inhomogeneous cytoplasmic eosin staining alongside malformed nuclei. Linkage analysis of träge combined with sequencing identified a nonsense mutation in tropomodulin4 (tmod4), a regulator of thin filament length and stability. Accordingly, while actin monomers polymerise to form thin filaments in skeletal muscle of tmod4(trg) mutants, thin filaments often appeared dispersed throughout myofibres. Organised myofibrils with the typical striation rarely assemble, leading to severe muscle weakness, impaired locomotion, and early death. Myofibril of tmod4(trg) mutants often featured thin filaments of various lengths, widened Z-disks, undefined H-zones, and electron-dense aggregations of various shapes and sizes. Importantly, Gomori trichrome staining and the lattice pattern of the detected cytoplasmic rods together with the reactivity of rods with phalloidin and an antibody against actinin is reminiscent of nemaline rods found in nemaline myopathy, suggesting that misregulation of thin filament length causes cytoplasmic rod formation in tmod4(trg) mutants. While tropomodulin4 has not been associated with myopathy, the presented results make TMOD4 a novel candidate for unresolved nemaline myopathies and suggest the tmod4(trg) mutant as a valuable tool to study human muscle disorders.
    Preview · Article · Oct 2014 · Disease Models and Mechanisms
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sapje zebrafish carry a mutation in the dystrophin gene, which results in a premature stop codon, and a severe muscle phenotype. They display several of the structural characteristics of Duchenne muscular dystrophy (DMD). Ataluren (PTC124) is proposed to cause readthrough of premature stop codons and has been introduced as a potential treatment of genetic disorders. Clinical trials in DMD have shown promise, although with complex dose dependency. We have established physiology techniques, enabling high resolution of contractile function in skeletal muscle of zebrafish larvae. We aimed to provide a mechanical analysis of sapje larval muscle and examine effects of ataluren. Homozygous 5 d postfertilization (dpf) sapje larvae exhibited structural defects with 50% decrease in active tension. Ataluren (0.1-1 μM, 3-5 dpf) improved contractile function (∼60% improvement of force at 0.5 μM) and dystrophin expression. Controls were not affected. Higher doses (5 μM, 35 μM) impaired contractile function, an effect also observed in controls, suggesting unspecific negative effects at high concentrations. In summary, Sapje larvae exhibit impaired contractile performance and provide a relevant DMD model for functional studies. Ataluren significantly improves skeletal muscle function in the sapje larvae, most likely reflecting an observed increase in dystrophin expression. The bell-shaped dose dependence in sapje resembles that previously reported in clinical DMD studies.-Li, M., Andersson-Lendahl, M., Sejersen, T., Arner, A. Muscle dysfunction and structural defects of dystrophin-null sapje mutant zebrafish larvae are rescued by ataluren treatment.
    Full-text · Article · Dec 2013 · The FASEB Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: The role of the small GTP-binding protein Rac1 in smooth muscle contraction was examined using small molecule inhibitors (EHT1864, NSC23766) and a novel smooth muscle specific, conditional, Rac1 knock-out mouse strain. EHT1864, which affects nucleotide binding and inhibits Rac1 activity, concentration-dependently inhibited the contractile responses induced by several different modes of activation (high-K(+), phenylephrine, carbachol and PKC activation by PDBu) in several different visceral (urinary bladder, ileum) and vascular (mesenteric artery, saphenous artery, aorta) smooth muscle tissues. This contractile inhibition was associated with inhibition of the Ca(2+) transient. Knock-out of Rac1 (with a 50% loss of Rac1 protein) lowered active stress in the urinary bladder and the saphenous artery consistent with a role of Rac1 in facilitating smooth muscle contraction. NSC23766, which blocks interaction between Rac1 and some guanine nucleotide exchange factors specifically inhibited the α1 receptor responses (phenylephrine) in vascular tissues and potentiated prostaglandin (PGF2α) and thromboxane (U46619) receptor responses. The latter potentiating effect occurred at lowered intracellular [Ca(2+)]. These results show that Rac1 activity is required for active contraction in smooth muscle, most likely via enabling an adequate Ca(2+)-transient. At the same time specific agonists recruit Rac1 signalling via upstream modulators resulting in either a potentiation of contraction via Ca(2+) mobilization (α1 receptor stimulation) or an attenuated contraction via inhibition of Ca(2+) sensitization (prostaglandin and thromboxane receptors).
    No preview · Article · Dec 2013 · The Journal of Physiology
  • [Show abstract] [Hide abstract]
    ABSTRACT: To examine the role of protein kinase C (PKC) and non-muscle myosin in regulation of wall tension in the hypertrophied urinary bladder. A partial urinary outflow obstruction was induced in the mouse. Tissue strips from sham operated controls and obstructed bladders were examined in vitro with quantitative gel electrophoresis, immunohistochemistry, and in vitro force recordings. Outlet obstruction (14-18 days) induced a significant growth of the bladder, 73 ± 6.13 mg compared to 19 ± 1 13 mg in sham operated controls. The hypertrophying bladder tissue had increased expression of non-muscle myosin B (SMemb) mainly localized to serosa and suburothelium. Direct activation of PKC with PDBu did not alter force in the control urinary bladder. In contrast, PDBu initiated a prominent and sustained contraction which had an increased sensitivity to the myosin type II inhibitor blebbistatin. PKC activates a significant contractile response in the wall of the hypertrophying urinary bladder, possibly supported by non-muscle myosin. This contractile component is not contributing to the physiological response to muscarinic stimulation, but might be separately regulated by other, yet unknown, mechanisms. Neurourol. Urodynam. 34:196-202, 2015. © 2013 Wiley Periodicals, Inc. © 2013 Wiley Periodicals, Inc.
    No preview · Article · Nov 2013 · Neurourology and Urodynamics
  • [Show abstract] [Hide abstract]
    ABSTRACT: Amyloid precursor protein (APP), a transmembrane glycoprotein, has been a focus of study for its vital role in Alzheimer's disease. However, its physiological function in the central nervous system is still not well-known. Therefore, we report the role of zebrafish APP homologue, appb, during development. The appb Morpholionos were microinjected in one cell stage. Knockdown of appb, results in the slightly reduced body length and undulation of the notochord. At the same time, it causes abnormal swimming behaviors with increased spontaneous coiling and startle durations. Moreover, reduction in appb, causes defects in motor neurons formation and axonal patterning in spinal cord and changes density of pre- and post-synapses in the neuromuscular junctions. Collectively, our study provides an evidence of the vital role of appb in locomotion through control on axonal outgrowth in motor neurons and synapse patterning in neuromuscular junctions. We believe that this study may provide si gnificant information for APP function and its role in neurodegenerative diseases.
    No preview · Conference Paper · Oct 2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Thyroid hormone is a major regulator of thermogenesis, acting both in peripheral organs and on central autonomic pathways. Mice heterozygous for a point mutation in thyroid hormone receptor α1 display increased thermogenesis as a consequence of high sympathetic brown fat stimulation. Surprisingly, despite the hypermetabolism, their body temperature is not elevated. Here we show, using isolated tail arteries, that defective thyroid hormone receptor α1 signaling impairs acetylcholine-mediated vascular relaxation as well as phenylephrine-induced vasoconstriction. Using infrared thermography on conscious animals, we demonstrate that these defects severely interfere with appropriate peripheral heat conservation and dissipation, which in turn leads to compensatory alterations in brown fat activity. Consequently, when the vasoconstrictive defect in mice heterozygous for a point mutation in thyroid hormone receptor α1 was reversed with the selective α1-adrenergic agonist midodrine, the inappropriate heat loss over their tail surface was reduced, normalizing brown fat activity and energy expenditure. Our analyses demonstrate that thyroid hormone plays a key role in vascular heat conservation and dissipation processes, adding a unique aspect to its well-documented functions in thermoregulation. The data thus facilitate understanding of temperature hypersensitivity in patients with thyroid disorders. Moreover, the previously unrecognized connection between cardiovascular regulation and metabolic activity revealed in this study challenges the interpretation of several experimental paradigms and questions some of the currently derived hypotheses on the role of thyroid hormone in thermogenesis.
    Full-text · Article · Sep 2013 · Proceedings of the National Academy of Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The amyloid precursor protein (APP) is a transmembrane protein mostly recognized for its association with Alzheimer's disease. The physiological function of APP is still not completely understood, much because of the redundancy between genes in the APP family. In this study we have used zebrafish to study the physiological function of the zebrafish APP homologue, appb, during development. We show that appb is expressed in post-mitotic neurons in the spinal cord. Knockdown of appb by 50-60% results in a behavioral phenotype with increased spontaneous coiling and prolonged touch-induced activity. The spinal cord motor neurons in these embryos show defective formation and axonal outgrowth patterning. Reduction in Appb also results in patterning defects and changed density of pre- and post-synapses in the neuromuscular junctions. Together, our data show that development of functional locomotion in zebrafish depends on a critical role of Appb in the patterning of motor neurons and neuromuscular junctions.
    Full-text · Article · Jul 2013 · Developmental Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Skeletal muscle was examined in zebrafish larvae in order to address questions related to the function of the intermediate filament protein desmin and its role in the pathogenesis of human desminopathy. A novel approach including mechanical and structural studies of 4-6-d-old larvae was applied. Morpholino antisense oligonucleotides were used to knock down desmin. Expression was assessed using messenger RNA and protein analyses. Histology and synchrotron light-based small angle x-ray diffraction were applied. Functional properties were analyzed with in vivo studies of swimming behavior and with in vitro mechanical examinations of muscle. The two desmin genes normally expressed in zebrafish could be knocked down by ∼50%. This resulted in a phenotype with disorganized muscles with altered attachments to the myosepta. The knockdown larvae were smaller and had diminished swimming activity. Active tension was lowered and muscles were less vulnerable to acute stretch-induced injury. X-ray diffraction revealed wider interfilament spacing. In conclusion, desmin intermediate filaments are required for normal active force generation and affect vulnerability during eccentric work. This is related to the role of desmin in anchoring sarcomeres for optimal force transmission. The results also show that a partial lack of desmin, without protein aggregates, is sufficient to cause muscle pathology resembling that in human desminopathy.
    Full-text · Article · Mar 2013 · The Journal of General Physiology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thyroid hormone is well known for its profound direct effects on cardiovascular function and metabolism. Recent evidence, however, suggests that the hormone also regulates these systems indirectly through the central nervous system. While some of the molecular mechanisms underlying the hormone's central control of metabolism have been identified, its actions in the central cardiovascular control have remained enigmatic. Here, we describe a previously unknown population of parvalbuminergic neurons in the anterior hypothalamus that requires thyroid hormone receptor signaling for proper development. Specific stereotaxic ablation of these cells in the mouse resulted in hypertension and temperature-dependent tachycardia, indicating a role in the central autonomic control of blood pressure and heart rate. Moreover, the neurons exhibited intrinsic temperature sensitivity in patch-clamping experiments, providing a new connection between cardiovascular function and core temperature. Thus, the data identify what we believe to be a novel hypothalamic cell population potentially important for understanding hypertension and indicate developmental hypothyroidism as an epigenetic risk factor for cardiovascular disorders. Furthermore, the findings may be beneficial for treatment of the recently identified patients that have a mutation in thyroid hormone receptor α1.
    No preview · Article · Dec 2012 · The Journal of clinical investigation
  • Benjamin Davis · Awahan Rahman · Anders Arner
    [Show abstract] [Hide abstract]
    ABSTRACT: Adenosine monophosphate activated kinase (AMPK), a regulator of cellular metabolism, has been shown to relax arterial smooth muscle via endothelium-dependent and independent mechanisms. We have examined the role of AMPK in different smooth muscles using the activating compound, 5-amino-4-imidazolecarboxamide riboside-1-β-d-ribofuranoside (AICAR). Isolated preparations of mouse aorta, saphenous artery, ileum and urinary bladder were compared. AICAR produced a reversible dose-dependent relaxation in aortic rings pre-incubated with AICAR and activated with phenylephrine. Less prominent relaxation was noted in the other tissues. This difference in sensitivity to AICAR was not due to differences in the expression levels of AMPK α1 mRNA. In the aorta, AICAR had a greater effect on contractions induced by phenylephrine, compared to high-K(+) induced contractions. Contractions of the aorta in response to the protein kinase C activator PDBu were prominently inhibited by AICAR. The AICAR relaxation observed in the aorta was not prevented by the NOS inhibitor L-NAME, Indomethacin or endothelium removal. Nitric oxide (NO) mediated relaxations in aortic preparations induced by acetylcholine or sodium nitroprusside (SNP) were attenuated by AICAR. In conclusion, AMPK induced relaxation of smooth muscle is tissue-dependent and most prominent in large elastic arteries. The smooth muscle relaxation is NO-independent and occurs downstream of PKC activation and is associated with attenuated relaxant responses to NO.
    No preview · Article · Aug 2012 · European journal of pharmacology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stem cell transplantation (SCT) is a curative treatment for malignant and non malignant diseases. However, transplantation-related complications including cardiovascular disease deteriorate the clinical outcome and quality of life. We have investigated the acute effects of conditioning regimen on the pharmacology, physiology and structure of large elastic arteries and small resistance-sized arteries in a SCT mouse model. Mesenteric resistance arteries and aorta were dissected from Balb/c mice conditioned with busulphan (Bu) and cyclophosphamide (Cy). In vitro isometric force development and pharmacology, in combination with RT-PCR, Western blotting and electron microscopy were used to study vascular properties. Compared with controls, mesenteric resistance arteries from the Bu-Cy group had larger internal circumference, showed enhanced endothelium mediated relaxation and increased expression of endothelial nitric oxide synthase (eNOS). Bu-Cy treated animals had lower mean blood pressure and signs of endothelial injury. Aortas of treated animals had a higher reactivity to noradrenaline. We conclude that short-term consequences of Bu-Cy treatment divergently affect large and small arteries of the cardiovascular system. The increased noradrenaline reactivity of large elastic arteries was not associated with increased blood pressure at rest. Instead, Bu-Cy treatment lowered blood pressure via augmented microvascular endothelial dependent relaxation, increased expression of vascular eNOS and remodeling toward a larger lumen. The changes in the properties of resistance arteries can be associated with direct effects of the compounds on vascular wall or possibly indirectly induced via altered translational activity associated with the reduced hematocrit and shear stress. This study contributes to understanding the mechanisms that underlie the early effects of conditioning regimen on resistance arteries and may help in designing further investigations to understand the late effects on vascular system.
    Full-text · Article · Jan 2012 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: The main function of smooth muscle is to maintain/regulate the size of different hollow organs through contraction and relaxation. The magnitude of the active force during contraction is dependent on the number of attached cross-bridges, which can be linked to the overlap between the thin and thick filaments. The relevance of filament overlap and the active cross-bridges in smooth muscle is investigated through a mechanical model founded on Hill's three-element model. The mechanical model describes a sarcomere-equivalent contractile unit supported by structural observations with a distinct filament overlap and a realistic framework for the filament sliding behavior based on force-velocity experiments. The mechanical model is coupled to the four-state latch-model by Hai and Murphy to capture the electromechanical activation from intracellular calcium concentration to load-bearing cross-bridges. The model is fitted to isometric experiments performed on the pig carotid media and on isotonic quick-release experiments found in the literature. The proposed coupled mechanochemical model with the description of the filament overlap, which has a significant influence on the results, is able to predict isometric experimental data performed at different muscle lengths. The relevance of the filament overlap and the load-bearing cross-bridges is investigated through the model by simulating additional scenarios that has been documented in the literature.
    No preview · Article · Nov 2011 · Journal of Theoretical Biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: 4-Nonylphenol (4-NP), an estrogen mimicking compound is produced by biodegradation of alkylethoxylates. It is well established that 4-NP can affect the development of aquatic animals by disrupting the endocrine signals. Here we show for the first time in zebrafish that 4-NP does not only target the neuroendocrine system but also the notochord and the muscle. The notochord malformation was first evident as distortions at 24hourspostfertilization (hpf) which within 24h appeared as kinks and herniations. The notochord phenotype was accompanied by reduced motility and impaired swimming behavior. Whole-mount in situ hybridization using chordamesoderm markers and electron microscopic analysis showed failure in the notochord differentiation and disruption of the perinotochordal basement membrane. Late larval stages of 4-NP treated embryos displayed abnormal mineralization, vertebral curvature, fusion of vertebral bodies and abnormal extension of haemal arches. The muscle structure and the maximal active force in isolated muscle preparations were similar between 4-NP exposed and of control embryos, suggesting that 4-NP did not induce major changes in striated muscle function. However, repeated electrical stimulation (>40Hz) of the 4-NP exposed larvae revealed an impaired relaxation between stimuli, possibly reflecting an alteration in the relaxant mechanisms (e.g. in cellular Ca(2+) removal) which could explain the abnormal swimming pattern exhibited by 4-NP exposed larvae. Additionally, we demonstrate that the expression levels of the stress hormone, corticotropin releasing hormonewere elevated in the brain following 4-NP treatment. We also observed a significant decrease in the transcript levels of luteinizing hormone b at early larval stages. Collectively, our results show that 4-NP is able to disrupt the notochord morphogenesis, muscle function and the neuroendocrine system. These data suggest that 4-NP enduringly affects the embryonic development in zebrafish and that this compound might exert these deleterious effects through diverse signaling pathways.
    No preview · Article · Nov 2011 · Neurotoxicology and Teratology
  • [Show abstract] [Hide abstract]
    ABSTRACT: To study muscarinic/purinergic receptor activation and Rho-kinase/protein kinase C (PKC) signalling during smooth muscle contraction in normal and hypertrophic mouse urinary bladders. Partial urinary outflow obstruction was induced in adult female (10-12 weeks) C57Bl/6 mice and comparisons were made with sham-operated controls. Bladder preparations were examined in vitro. Expression of signalling proteins was examined using Western blot analysis. Obstructed bladders increased more than threefold in weight and were found to have enhanced muscarinic and attenuated purinergic components during nerve-induced contractions. The contractile response to carbachol was shifted towards lower concentrations of carbachol for the peak response and had a markedly enhanced sustained component. The amplitude of the α,β-methylene ATP-induced responses was lowered. Rho-kinase inhibitor Y27632 (10 µM) inhibited peak and sustained contractile responses to carbachol in control bladders (peak by 38%; plateau 57%) and obstructed bladders (peak 37% plateau 47%). PKC inhibitor GF109203X (1 µM) inhibited carbachol contractions in controls (peak by 29%; plateau 29%) and obstructed bladders (peak 17%; plateau 12%). Inhibition by a similar extent was observed after nerve stimulation. Sensitivity to Ca(2+) in high-K(+) depolarized intact tissues increased in obstructed bladders. This increased receptor-independent Ca(2+)-sensitivity was abolished by Y27632. Tissue contents of the myosin-binding phosphatase subunit MYPT-1 and catalytic phosphatase subunit PP1β, were decreased and the contents of RhoGDI, RhoA and CPI-17 increased. A decrease in the Rho-kinase isoform ROCK-1 was observed. Based on these results, one can speculate that Rho-kinase inhibition would preferentially target the pathological phasic activity in the urinary bladder rather than inhibit the physiological receptor-mediated bladder emptying.
    No preview · Article · Aug 2011 · BJU International
  • [Show abstract] [Hide abstract]
    ABSTRACT: Different mouse strains display different degrees of inflammation-induced airway hyperresponsiveness in vivo. It is not known whether these variations are attributable to distinct properties of the airway smooth muscle. Therefore, tracheal ring segments from C57BL/6 and BALB/c mice were exposed to three different pro-inflammatory stimuli for 4 days while maintained under tissue-culture conditions: tumour necrosis factor α (100 ng/ml), the Toll-like receptor (TLR) 3 agonist polyI:C (10 μg/ml), and the TLR4 agonist LPS (10 μg/ml). The contractile responses to carbachol, 5-hydroxytryptamine (5-HT) and bradykinin were assessed after culture. In addition, gene expression of TLR1-TLR9, pivotal inflammatory signal transduction proteins (jun-kinase, p38 and p65) and critical negative regulators of inflammation (A20, Itch, Tax1bp1 and RNF11) were studied in tracheal smooth muscle strips, fresh and following treatment for 4 days with LPS, from both strains. No differences between the strains were detected regarding the response of freshly isolated preparations to carbachol, 5-HT and bradykinin. After stimulation with pro-inflammatory mediators, contractions in response to 5-HT and bradykinin, but not to carbachol, were up-regulated. This up-regulation was markedly larger in BALB/c than in C57BL/6 segments and depended on the type of inflammatory stimulus. Expression of the genes investigated did not differ between the two strains. These findings indicate that strain differences in airway hyperresponsiveness can be linked to differences in the responsiveness of airway smooth muscle to pro-inflammatory mediators per se. The differences do not appear to be due to differential expression of TLR or common inflammatory transduction and repressor proteins.
    No preview · Article · Aug 2011 · Pulmonary Pharmacology & Therapeutics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To elucidate the mechanism by which local delivery of 3-morpholino-sydnonimine (SIN-1) affects intimal hyperplasia after percutaneous transluminal coronary angioplasty (PTCA). Porcine coronary arteries were treated with PTCA and immediately afterwards locally treated for 5 minutes, with a selective cytosolic guanylate cyclase inhibitor, 1 H-(1,2,4)oxadiazole(4,3-alpha)quinoxaline-1-one (ODQ) + SIN-1 or only SIN-1 using a drug delivery-balloon. Arteries were angiographically depicted, morphologically evaluated and analyzed after one and eight weeks for actin, myosin and intermediate filaments (IF) and nitric oxide synthase (NOS) contents. Luminal diameter after PCI in arteries treated with SIN-1 alone and corrected for age-growth was significantly larger as compared to ODQ + SIN-1 or to controls (p < 0.01). IF/actin ratio after one week in SIN-1 treated segments was not different compared to untreated segments, but was significantly reduced compared to ODQ + SIN-1 treated vessels (p < 0.05). Expression of endothelial NADPH diaphorase activity was significantly lower in untreated segments and in SIN-1 treated segments compared to controls and SIN-1 + ODQ treated arteries (p < 0.01). Restenosis index (p < 0.01) and intimal hyperplasia (p < 0.01) were significantly reduced while the residual lumen was increased (p < 0.01) in SIN-1 segments compared to controls and ODQ + SIN-1 treated vessels. After PTCA local delivery of high concentrations of the NO donor SIN-1 for 5 minutes inhibited injury induced neointimal hyperplasia. This favorable effect was abolished by inhibition of guanylyl cyclase indicating mediation of a cyclic guanosine 3',5'-monophosphate (cGMP)-dependent pathway. The momentary events at the time of injury play crucial role in the ensuring development of intimal hyperplasia.
    Full-text · Article · Jun 2011 · BMC Cardiovascular Disorders
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To determine the normal function of the Coxsackievirus and Adenovirus Receptor (CAR), a protein found in tight junctions and other intercellular complexes, we constructed a mouse line in which the CAR gene could be disrupted at any chosen time point in a broad spectrum of cell types and tissues. All knockouts examined displayed a dilated intestinal tract and atrophy of the exocrine pancreas with appearance of tubular complexes characteristic of acinar-to-ductal metaplasia. The mice also exhibited a complete atrio-ventricular block and abnormal thymopoiesis. These results demonstrate that CAR exerts important functions in the physiology of several organs in vivo.
    Full-text · Article · Jun 2011 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Urodele amphibians, like the newt, are the "champions of regeneration" as they are able to regenerate many body parts and tissues. Previous experiments, however, have suggested that the newt heart has only a limited regeneration capacity, similar to the human heart. Using a novel, reproducible ventricular resection model, we show for the first time that adult newt hearts can fully regenerate without any evidence of scarring. This process is governed by increased proliferation and the up-regulation of cardiac transcription factors normally expressed during developmental cardiogenesis. Furthermore, we are able to identify cells within the newly regenerated regions of the myocardium that express the LIM-homeodomain protein Islet1 and GATA4, transcription factors found in cardiac progenitors. Information acquired from using the newt as a model organism may help to shed light on the regeneration deficits demonstrated in damaged human hearts.
    Full-text · Article · Mar 2011 · Developmental Biology

Publication Stats

4k Citations
589.06 Total Impact Points


  • 2006-2015
    • Karolinska Institutet
      • Department of Physiology and Pharmacology
      Сольна, Stockholm, Sweden
  • 2013
    • Stockholm University
      Tukholma, Stockholm, Sweden
  • 1976-2009
    • Lund University
      • • Department of Experimental Medical Science
      • • Department of Cardiology
      • • Department of Urology
      • • Department of Biophysical Chemistry
      Lund, Skåne, Sweden
  • 2008
    • Pierre and Marie Curie University - Paris 6
      • Unité de recherche : Physiologie, Physiopathologie et. Vieillissement (UMR 7079)
      Lutetia Parisorum, Île-de-France, France
  • 1987-1993
    • Universität Heidelberg
      • Institute of Pathology (Mannheim)
      Heidelburg, Baden-Württemberg, Germany
    • University of Western Australia
      • School of Anatomy, Physiology and Human Biology
      Perth City, Western Australia, Australia