Tetsuo Noda

Japanese Foundation for Cancer Research, Edo, Tōkyō, Japan

Are you Tetsuo Noda?

Claim your profile

Publications (240)1606.71 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: B lymphocyte-induced maturation protein 1 (Blimp-1) encoded by Prdm1 is a master regulator of plasma cell differentiation. The transcription factor Bach2 represses Blimp-1 expression in B cells to stall terminal differentiation, by which it supports reactions such as class switch recombination of the antibody genes. We found that histone H3 and H4 around the Prdm1 intron 5 MARE were acetylated at higher levels in X63/0 plasma cells expressing Blimp-1 than in BAL17 mature B cells lacking its expression. Conversely, methylation of H3 lysine 9 was lower in X63/0 cells than BAL17 cells. Purification of Bach2 complex in BAL17 cells revealed its interaction with histone deacetylase 3 (HDAC3), nuclear co-repressors NCoR1 and NCoR2, transducin beta-like 1X-linked (Tbl1x), and RAP1 interacting factor homolog (Rif1). Chromatin immunoprecipitation confirmed the binding of Rif1 to the Prdm1 locus. Reduction of HDAC3 or NCoR1 expression by RNA interference in B cells resulted in an increased Prdm1 mRNA expression. Bach2 is suggested to cooperate with HDAC3-containing co-repressor complexes in B cells to regulate the stage-specific expression of Prdm1 by writing epigenetic modifications at the Prdm1 locus.
    Preview · Article · Jan 2016 · Journal of Biological Chemistry
  • Source

    Full-text · Dataset · Nov 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is an increasing need to use multivariate statistical methods for understanding biological functions, identifying the mechanisms of diseases, and exploring biomarkers. In addition to classical analyses such as hierarchical cluster analysis, principal component analysis, and partial least squares discriminant analysis, various multivariate strategies, including independent component analysis, non-negative matrix factorization, and multivariate curve resolution, have recently been proposed. However, determining the number of components is problematic. Despite the proposal of several different methods, no satisfactory approach has yet been reported. To resolve this problem, we implemented a new idea: classifying a component as "reliable" or "unreliable" based on the reproducibility of its appearance, regardless of the number of components in the calculation. Using the clustering method for classification, we applied this idea to multivariate curve resolution-alternating least squares (MCR-ALS). Comparisons between conventional and modified methods applied to proton nuclear magnetic resonance (1 H-NMR) spectral datasets derived from known standard mixtures and biological mixtures (urine and feces of mice) revealed that more plausible results are obtained by the modified method. In particular, clusters containing little information were detected with reliability. This strategy, named "cluster-aided MCR-ALS," will facilitate the attainment of more reliable results in the metabolomics datasets.
    Full-text · Article · Nov 2015 · Scientific Reports
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Mutations in GJB2, which encodes connexin 26 (Cx26), a cochlear gap junction protein, represent a major cause of pre-lingual, non-syndromic deafness. The degeneration of the organ of Corti observed in Cx26 mutant-associated deafness is thought to be a secondary pathology of hearing loss. Here we focused on abnormal development of the organ of Corti followed by degeneration including outer hair cell (OHC) loss. Methods: We investigated the crucial factors involved in late-onset degeneration and loss of OHC by ultrastructural observation, immunohistochemistry and protein analysis in our Cx26-deficient mice (Cx26f/fP0Cre). Results: In ultrastructural observations of Cx26f/fP0Cre mice, OHCs changed shape irregularly, and several folds or notches were observed in the plasma membrane. Furthermore, the mutant OHCs had a flat surface compared with the characteristic wavy surface structure of OHCs of normal mice. Protein analysis revealed an increased protein level of caveolin-2 (CAV2) in Cx26f/fP0Cre mouse cochlea. In immunohistochemistry, a remarkable accumulation of CAV2 was observed in Cx26f/fP0Cre mice. In particular, this accumulation of CAV2 was mainly observed around OHCs, and furthermore this accumulation was observed around the shrunken site of OHCs with an abnormal hourglass-like shape. Conclusions: The deformation of OHCs and the accumulation of CAV2 in the organ of Corti may play a crucial role in the progression of, or secondary OHC loss in, GJB2-associated deafness. Investigation of these molecular pathways, including those involving CAV2, may contribute to the elucidation of a new pathogenic mechanism of GJB2-associated deafness and identify effective targets for new therapies.
    Preview · Article · Oct 2015 · PLoS ONE

  • No preview · Article · Aug 2015 · Cancer Research
  • Ryoji Yao · Tetsuo Noda

    No preview · Article · Aug 2015 · Cancer Research
  • Source
    Ryoji Yao · Seiichi Mori · Tetsuo Noda
    [Show abstract] [Hide abstract]
    ABSTRACT: To integrate and discuss the cutting-edge science and revolutionized therapeutics of cancer in Japan and the United States, JCA (Japanese Cancer Association)-AACR (American Association for Cancer Research) Joint Symposia were held on 25th (Symposium 2) and 26th (Symposium 1) in September 2014 as a part of the 73rd Annual Meeting of the Japanese Cancer Association at Pacifico Yokohama in Yokohama, Japan. The symposia focused on mouse genetics and human genomics in cancer research. Eight prominent scientists from JCA and AACR discussed their own research in the symposia. They provided substantial fruitful information not only for identification of novel target molecules and pathways in cancer therapeutics but also for direct translation of cancer genomics into clinics. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.
    Preview · Article · Apr 2015 · Cancer Science
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hearing loss is the most widespread sensory disorder, with an incidence of congenital genetic deafness of 1 in 1,600 children. For many ethnic populations, the most prevalent form of genetic deafness is caused by recessive mutations in the gene gap junction protein, beta 2, 26kDa (GJB2), which is also known as connexin 26 (Cx26). Despite this knowledge, existing treatment strategies do not completely recover speech perception. Here we used a gene delivery system to rescue hearing in a mouse model of Gjb2 deletion. Mice lacking Cx26 are characterized by profound deafness from birth and improper development of cochlear cells. Cochlear delivery of Gjb2 using an adeno-associated virus (AAV) significantly improved the auditory responses and development of the cochlear structure. Using gene replacement to restore hearing in a new mouse model of Gjb2-related deafness may lead to the development of therapies for human hereditary deafness. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
    No preview · Article · Mar 2015 · Human Molecular Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypertension induces structural remodelling of arteries, which leads to arteriosclerosis and end-organ damage. Hyperplasia of vascular smooth muscle cells (VSMCs) and infiltration of immune cells are the hallmark of hypertensive arterial remodelling. However, the precise molecular mechanisms of arterial remodelling remain elusive. We have recently reported that complement C1q activates β-catenin signalling independent of Wnts. Here, we show a critical role of complement C1-induced activation of β-catenin signalling in hypertensive arterial remodelling. Activation of β-catenin and proliferation of VSMCs were observed after blood-pressure elevation, which were prevented by genetic and chemical inhibition of β-catenin signalling. Macrophage depletion and C1qa gene deletion attenuated the hypertension-induced β-catenin signalling, proliferation of VSMCs and pathological arterial remodelling. Our findings unveil the link between complement C1 and arterial remodelling and suggest that C1-induced activation of β-catenin signalling becomes a novel therapeutic target to prevent arteriosclerosis in patients with hypertension.
    Full-text · Article · Feb 2015 · Nature Communications
  • Source

    Full-text · Dataset · Feb 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Wnt/β-catenin signalling regulates numerous developmental and homeostatic processes. Ctnnb1 (also known as β-catenin) is the only protein that transmits signals from various Wnt ligands to downstream genes. In this study, we report that our newly established mouse strain, which harbours a Cys429 to Ser missense mutation in the β-catenin gene, exhibited specific organ defects in contrast to mice with broadly functioning Wnt/β-catenin signalling. Both homozygous mutant males and females produced normal gametes but were infertile because of abnormal seminal vesicle and vaginal morphogenesis. An ins-TOPGAL transgenic reporter spatiotemporally sustained Wnt/β-catenin signalling during the corresponding organogenesis. Therefore, β-catenin(C429S) should provide new insights into β-catenin as a universal component of Wnt/β-catenin signal transduction.
    Full-text · Article · Nov 2014 · Scientific Reports
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective: Abdominal aortic aneurysm (AAA) is considered a chronic inflammatory disease; however, the molecular basis underlying the sterile inflammatory response involved in the process of AAA remains unclear. We previously showed that the inflammasome, which regulates the caspase-1-dependent interleukin-1β production, mediates the sterile cardiovascular inflammatory responses. Therefore, we hypothesized that the inflammasome is a key mediator of initial inflammation in AAA formation. Approach and results: Apoptosis-associated speck-like protein containing a caspase recruitment domain is highly expressed in adventitial macrophages in human and murine AAA tissues. Using an established mouse model of AAA induced by continuous infusion of angiotensin II in Apoe(-/-) mice, NLR family pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein containing a caspase recruitment domain, and caspase-1 deficiency in Apoe(-/-) mice were shown to decrease the incidence, maximal diameter, and severity of AAA along with adventitial fibrosis and inflammatory responses significantly, such as inflammatory cell infiltration and cytokine expression in the vessel wall. NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain, and caspase-1 deficiency in Apoe(-/-) mice also reduced elastic lamina degradation and metalloproteinase activation in the early phase of AAA formation. Furthermore, angiotensin II stimulated generation of mitochondria-derived reactive oxygen species in the adventitial macrophages, and this mitochondria-derived reactive oxygen species generation was inhibited by NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain, and caspase-1 deficiency. In vitro experiments revealed that angiotensin II stimulated the NLRP3 inflammasome activation and subsequent interleukin-1β release in macrophages, and this activation was mediated through an angiotensin type I receptor/mitochondria-derived reactive oxygen species-dependent pathway. Conclusions: Our results demonstrate the importance of the NLRP3 inflammasome in the initial inflammatory responses in AAA formation, indicating its potential as a novel therapeutic target for preventing AAA progression.
    No preview · Article · Nov 2014 · Arteriosclerosis Thrombosis and Vascular Biology

  • No preview · Article · Oct 2014 · Cancer Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Brn4, which encodes a POU transcription factor, is the gene responsible for DFN3, an X chromosome-linked, non-syndromic type of hearing loss. Brn4-deficient mice have a low endocochlear potential (EP), hearing loss, and ultrastructural alterations in spiral ligament fibrocytes, however the molecular pathology through which Brn4 deficiency causes low EP is still unclear. Mutations in the Gjb2 and Gjb6 genes encoding the gap junction proteins connexin26 (Cx26) and connexin30 (Cx30) genes, respectively, which encode gap junction proteins and are expressed in cochlear fibrocytes and non-sensory epithelial cells (i.e., cochlear supporting cells) to maintain the proper EP, are responsible for hereditary sensorineural deafness. It has been hypothesized that the gap junction in the cochlea provides an intercellular passage by which K+ is transported to maintain the EP at the high level necessary for sensory hair cell excitation. Here we analyzed the formation of gap junction plaques in cochlear supporting cells of Brn4-deficient mice at different stages by confocal microscopy and three-dimensional graphic reconstructions. Gap junctions from control mice, which are composed mainly of Cx26 and Cx30, formed linear plaques along the cell-cell junction sites with adjacent cells. These plaques formed pentagonal or hexagonal outlines of the normal inner sulcus cells and border cells. Gap junction plaques in Brn4-deficient mice did not, however, show the normal linear structure but instead formed small spots around the cell-cell junction sites. Gap junction lengths were significantly shorter, and the level of Cx26 and Cx30 was significantly reduced in Brn4-deficient mice compared with littermate controls. Thus the Brn4 mutation affected the assembly and localization of gap junction proteins at the cell borders of cochlear supporting cells, suggesting that Brn4 substantially contributes to cochlear gap junction properties to maintain the proper EP in cochleae, similar to connexin-related deafness.
    Preview · Article · Sep 2014 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Despite the increasing commercial use of nanoparticles, little is known about their effects on placental inflammation and pregnancy complications. In this study, nanosilica (NS) particles upregulated the inflammasome component nucleotide-binding oligomerization domain-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) and induced placental inflammation and reactive oxygen species (ROS) generation, resulting in pregnancy complications. Furthermore, NS-induced pregnancy complications were markedly improved in Nlrp3(-/-) mice but not in component apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC)-deficient (Asc(-/-)) mice, indicating the independence of NLRP3 inflammasomes. Pregnancy complications in Nlrp3(-/-) and Asc(-/-) mice phenotypes were dependent on the balance between interleukin (IL)-1α and IL-10. NS-induced pregnancy complications were completely prevented by either inhibition of ROS generation or forced expression of IL-10. Our findings provide important information about NS-induced placental inflammation and pregnancy complications and the novel pathophysiological roles of NLRP3 and ASC in pregnancy.
    No preview · Article · Sep 2014 · Nanotoxicology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epithelial-mesenchymal transition (EMT) is a reversible and dynamic process hypothesized to be co-opted by carcinoma during invasion and metastasis. Yet, there is still no quantitative measure to assess the interplay between EMT and cancer progression. Here, we derived a method for universal EMT scoring from cancer-specific transcriptomic EMT signatures of ovarian, breast, bladder, lung, colorectal and gastric cancers. We show that EMT scoring exhibits good correlation with previously published, cancer-specific EMT signatures. This universal and quantitative EMT scoring was used to establish an EMT spectrum across various cancers, with good correlation noted between cell lines and tumours. We show correlations between EMT and poorer disease-free survival in ovarian and colorectal, but not breast, carcinomas, despite previous notions. Importantly, we found distinct responses between epithelial- and mesenchymal-like ovarian cancers to therapeutic regimes administered with or without paclitaxel in vivo and demonstrated that mesenchymal-like tumours do not always show resistance to chemotherapy. EMT scoring is thus a promising, versatile tool for the objective and systematic investigation of EMT roles and dynamics in cancer progression, treatment response and survival.
    Full-text · Article · Sep 2014 · EMBO Molecular Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutant mouse models are indispensable tools for clarifying gene functions and elucidating the pathogenic mechanisms of human diseases. Here, we describe novel cancer models bearing point mutations in the retinoblastoma gene (Rb1) generated by N-ethyl-N-nitrosourea mutagenesis. Two mutations in splice sites reduced Rb1 expression and led to a tumor spectrum and incidence similar to those observed in the conventional Rb1 knockout mice. The missense mutant, Rb1D326V/+, developed pituitary tumors, but thyroid tumors were completely suppressed. Immunohistochemical analyses of thyroid tissue revealed that E2F1, but not E2F2/3, was selectively inactivated, indicating that the mutant Rb protein (pRb) suppressed thyroid tumors by inactivating E2F1. Interestingly, Rb1D326V/+ mice developed pituitary tumors that originated from the intermediate lobe of the pituitary, despite selective inactivation of E2F1. Furthermore, in the anterior lobe of the pituitary, other E2Fs were also inactivated. These observations show that pRb mediates the inactivation of E2F function, and its contribution to tumorigenesis is highly dependent on the cell-type. Finally, we showed that, by using a reconstitution assay of synthesized proteins, the D326V missense pRb bound to E2F1 but failed to interact with E2F2/3. These results reveal the effect of the pRb N-terminal domain on E2F function and the impact of the protein on tumorigenesis. Thus, this mutant mouse model can be used to investigate human Rb family bearing mutations at the N-terminal region.This article is protected by copyright. All rights reserved.
    Full-text · Article · Aug 2014 · Cancer Science
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Voltage-dependent block of the NMDA receptor by Mg2+ is thought to be central to the unique involvement of this receptor in higher brain functions. However, the in vivo role of the Mg2+ block in the mammalian brain has not yet been investigated, because brain-wide loss of the Mg2+ block causes perinatal lethality. In this study, we used a brain-region specific knock-in mouse expressing an NMDA receptor that is defective for the Mg2+ block in order to test its role in neural information processing. Results We devised a method to induce a single amino acid substitution (N595Q) in the GluN2A subunit of the NMDA receptor, specifically in the hippocampal dentate gyrus in mice. This mutation reduced the Mg2+ block at the medial perforant path–granule cell synapse and facilitated synaptic potentiation induced by high-frequency stimulation. The mutants had more stable hippocampal place fields in the CA1 than the controls did, and place representation showed lower sensitivity to visual differences. In addition, behavioral tests revealed that the mutants had a spatial working memory deficit. Conclusions These results suggest that the Mg2+ block in the dentate gyrus regulates hippocampal spatial information processing by attenuating activity-dependent synaptic potentiation in the dentate gyrus.
    Full-text · Article · Jun 2014 · Molecular Brain
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hyperactivation of the mammalian target of rapamycin complex 1 (mTORC1) in β cells is usually found as a consequence of increased metabolic load. Although it has essential roles in β cell compensatory mechanisms, mTORC1 negatively regulates autophagy. Using a mouse model with β cell specific deletion of Tsc2 (βTsc2(-/-)) and consequently mTORC1 hyperactivation, we focused on the role that chronic mTORC1 hyperactivation might be having on β cell failure. mTORC1 hyperactivation drove an early increase in β cell mass which lately declined, triggering hyperglycemia. Apoptosis and endoplasmic reticulum stress markers were found in islets of older βTsc2(-/-), as well as accumulation of p62/SQSTM1 and impaired autophagic response. Mitochondrial mass was increased on β cells of βTsc2(-/-) mice, but mitophagy was also impaired under these circumstances. Here we provide the evidence of β cell autophagy impairment as a link between mTORC1 hyperactivation and mitochondrial dysfunction, probably contributing to β cell failure.
    Full-text · Article · Apr 2014 · Diabetes
  • [Show abstract] [Hide abstract]
    ABSTRACT: While T-cell responses are directly modulated by Toll-like receptor (TLR) ligands, the mechanism and physiological function of nucleic acids (NAs)-mediated T cell costimulation remains unclear. Here we show that unlike in innate cells, T-cell costimulation is induced even by non-CpG DNA and by self-DNA, which is released from dead cells and complexes with antimicrobial peptides or histones. Such NA complexes are internalized by T cells and induce costimulatory responses independently of known NA sensors, including TLRs, RIG-I-like receptors (RLRs), inflammasomes and STING-dependent cytosolic DNA sensors. Such NA-mediated costimulation crucially induces Th2 differentiation by suppressing T-bet expression, followed by the induction of GATA-3 and Th2 cytokines. These findings unveil the function of NA sensing by T cells to trigger and amplify allergic inflammation.
    No preview · Article · Apr 2014 · Nature Communications

Publication Stats

15k Citations
1,606.71 Total Impact Points


  • 2000-2015
    • Japanese Foundation for Cancer Research
      Edo, Tōkyō, Japan
    • RIKEN
      • Laboratory for Developmental Neurobiology
      Вако, Saitama, Japan
    • Vanderbilt University
      Нашвилл, Michigan, United States
  • 2011
    • Jichi Medical University
      • Center for Molecular Medicine
      Totigi, Tochigi, Japan
    • Kobe University
      • Department of Internal Medicine
      Kōbe, Hyōgo, Japan
  • 2010
    • Marine BioResource Centre
      Nowanuggur, Gujarat, India
  • 2009
    • Hyogo College of Medicine
      • Department of Microbiology
      Nishinomiya, Hyōgo, Japan
  • 2000-2007
    • Tohoku University
      • • Institute of Development, Aging and Cancer
      • • Department of Medical Genetics
      • • Division of Cell Biology
      Sendai-shi, Miyagi, Japan
  • 2004
    • Japan Research Institute
      Edo, Tokyo, Japan
  • 2002
    • Cardiff University
      Cardiff, Wales, United Kingdom
    • Tokyo Medical and Dental University
      • Department of Pharmacology and Neurobiology
      Edo, Tōkyō, Japan
    • Tokyo Metropolitan Institute of Gerontology
      Edo, Tōkyō, Japan
  • 2001
    • Tokyo Metropolitan Institute
      Edo, Tōkyō, Japan
  • 1997-2001
    • Kyoto University
      • Department of Cell Biology
      Kioto, Kyōto, Japan
  • 1998
    • Nagoya University
      • Division of General Medicine
      Nagoya-shi, Aichi-ken, Japan
  • 1997-1998
    • The University of Tokyo
      • Faculty & Graduate School of Medicine
      Tōkyō, Japan