Thomas von Zglinicki

Newcastle University, Newcastle-on-Tyne, England, United Kingdom

Are you Thomas von Zglinicki?

Claim your profile

Publications (200)982.1 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell senescence is an important tumour suppressor mechanism and driver of ageing. Both functions are dependent on the development of the senescent phenotype, which involves an overproduction of pro-inflammatory and pro-oxidant signals. However, the exact mechanisms regulating these phenotypes remain poorly understood. Here, we show the critical role of mitochondria in cellular senescence. In multiple models of senescence, absence of mitochondria reduced a spectrum of senescence effectors and phenotypes while preserving ATP production via enhanced glycolysis. Global transcriptomic analysis by RNA sequencing revealed that a vast number of senescent-associated changes are dependent on mitochondria, particularly the pro-inflammatory phenotype. Mechanistically, we show that the ATM, Akt and mTORC1 phosphorylation cascade integrates signals from the DNA damage response (DDR) towards PGC-1β-dependent mitochondrial biogenesis, contributing to a ROS-mediated activation of the DDR and cell cycle arrest. Finally, we demonstrate that the reduction in mitochondrial content in vivo, by either mTORC1 inhibition or PGC-1β deletion, prevents senescence in the ageing mouse liver. Our results suggest that mitochondria are a candidate target for interventions to reduce the deleterious impact of senescence in ageing tissues.
    Full-text · Article · Feb 2016 · The EMBO Journal
  • Giulio Vistoli · Achim Treumann · Thomas von Zglinicki · Satomi Miwa
    [Show abstract] [Hide abstract]
    ABSTRACT: This data article contains the results of molecular dynamics (MD) simulations performed to assess the stability of the previously computed complex between the hCES1 structure and the Amplex Red (AR) substrate [1] and to compare the dynamic behavior of this complex with that of the corresponding hCES1-deacetylAR product. The study involves both standard molecular dynamics (MD) and steered (SMD) simulations to offer a quantitative comparison of the stability for the two complexes. With regard the standard MD runs, the data article graphically reports the r.m.s.d. profile of the ligand’s atoms as well as the dynamic behavior of key contacts involving the catalytic Ser221 residue. The SMD simulations provide a comparison of the pull forces required to undock the two ligands and reveal that Van der Waals and hydrophobic interactions play a key role in complex stabilization.
    No preview · Article · Jan 2016
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aging is associated with visceral adiposity, metabolic disorders, and chronic low-grade inflammation. 17α-estradiol (17α-E2), a naturally occurring enantiomer of 17β-estradiol (17β-E2), extends life span in male mice through unresolved mechanisms. We tested whether 17α-E2 could alleviate age-related metabolic dysfunction and inflammation. 17α-E2 reduced body mass, visceral adiposity, and ectopic lipid deposition without decreasing lean mass. These declines were associated with reductions in energy intake due to the activation of hypothalamic anorexigenic pathways and direct effects of 17α-E2 on nutrient-sensing pathways in visceral adipose tissue. 17α-E2 did not alter energy expenditure or excretion. Fasting glucose, insulin, and glycosylated hemoglobin were also reduced by 17α-E2, and hyperinsulinemic-euglycemic clamps revealed improvements in peripheral glucose disposal and hepatic glucose production. Inflammatory mediators in visceral adipose tissue and the circulation were reduced by 17α-E2. 17α-E2 increased AMPKα and reduced mTOR complex 1 activity in visceral adipose tissue but not in liver or quadriceps muscle, which is in contrast to the generalized systemic effects of caloric restriction. These beneficial phenotypic changes occurred in the absence of feminization or cardiac dysfunction, two commonly observed deleterious effects of exogenous estrogen administration. Thus, 17α-E2 holds potential as a novel therapeutic for alleviating age-related metabolic dysfunction through tissue-specific effects.
    Full-text · Article · Jan 2016 · The Journals of Gerontology Series A Biological Sciences and Medical Sciences
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although chronic infection with cytomegalovirus (CMV) is known to drive T lymphocytes toward a senescent phenotype, it remains controversial whether and how CMV can cause coronary heart disease (CHD). To explore whether CMV seropositivity or T-cell populations associated with immunosenescence were informative for adverse cardiovascular outcome in the very old, we prospectively analyzed peripheral blood samples from 751 octogenarians (38% males) from the Newcastle 85+ study for their power to predict survival during a 65-month follow-up (47.3% survival rate). CMV-seropositive participants showed a higher prevalence of CHD (37.7% vs. 26.7%, P = 0.030) compared to CMV-seronegative participants together with lower CD4/CD8 ratio (1.7 vs. 4.1, P < 0.0001) and higher frequencies of senescence-like CD4 memory cells (41.1% vs. 4.5%, P < 0.001) and senescence-like CD8 memory cells (TEMRA, 28.1% vs. 6.7%, P < 0.001). CMV seropositivity was also associated with increased six-year cardiovascular mortality (HR 1.75 [1.09-2.82], P = 0.021) or death from myocardial infarction and stroke (HR 1.89 [107-3.36], P = 0.029). Gender-adjusted multivariate Cox regression analysis revealed that low percentages of senescence-like CD4 T cells (HR 0.48 [0.32-0.72], P < 0.001) and near-senescent (CD27 negative) CD8 T cells (HR 0.60 [0.41-0.88], P = 0.029) reduced the risk of cardiovascular death. For senescence-like CD4, but not near-senescent CD8 T cells, these associations remained robust after additional adjustment for CMV status, comorbidities, and inflammation markers. We conclude that CMV seropositivity is linked to a higher incidence of CHD in octogenarians and that senescence in both the CD4 and CD8 T-cell compartments is a predictor of overall cardiovascular mortality as well as death from myocardial infarction and stroke.
    No preview · Article · Dec 2015 · Aging cell
  • Source
    Satomi Miwa · Achim Treumann · Amy Bell · Giulio Vistoli · Glyn Nelson · Sam Hay · Thomas von Zglinicki
    [Show abstract] [Hide abstract]
    ABSTRACT: Amplex Red is a fluorescent probe that is widely used to detect hydrogen peroxide (H2O2) in a reaction where it is oxidised to resorufin by horseradish peroxidase (HRP) as a catalyst. This assay is highly rated amongst other similar probes thanks to its superior sensitivity and stability. However, we report here that Amplex Red is readily converted to resorufin by a carboxylesterase without requiring H2O2, horseradish peroxidase or oxygen: this reaction is seen in various tissue samples such as liver and kidney as well as in cultured cells, causing a serious distortion of H2O2 measurements. The reaction can be inhibited by Phenylmethyl sulfonyl fluoride (PMSF) at concentrations which do not disturb mitochondrial function nor the ability of the Amplex Red-HRP system to detect H2O2.In vitro experiments and in silico docking simulations indicate that carboxylesterases 1 and 2 recognise Amplex Red with the same kinetics as carboxylesterase-containing mitochondria. We propose two different approaches to correct for this problem and re-evaluate the commonly performed experimental procedure for the detection of H2O2 release from isolated liver mitochondria. Our results call for a serious re-examination of previous data.
    Preview · Article · Nov 2015 · Free Radical Biology and Medicine
  • Source

    Preview · Article · Sep 2015 · International Journal of Epidemiology
  • Source

    Preview · Article · Sep 2015 · International Journal of Epidemiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To determine the most important drivers of successful ageing at extreme old age, we combined community-based prospective cohorts: Tokyo Oldest Old Survey on Total Health (TOOTH), Tokyo Centenarians Study (TCS) and Japanese Semi-Supercentenarians Study (JSS) comprising 1554 individuals including 684 centenarians and (semi-)supercentenarians, 167 pairs of centenarian offspring and spouses, and 536 community-living very old (85 to 99years). We combined z scores from multiple biomarkers to describe haematopoiesis, inflammation, lipid and glucose metabolism, liver function, renal function, and cellular senescence domains. In Cox proportional hazard models, inflammation predicted all-cause mortality with hazard ratios (95% CI) 1.89 (1.21 to 2.95) and 1.36 (1.05 to 1.78) in the very old and (semi-)supercentenarians, respectively. In linear forward stepwise models, inflammation predicted capability (10.8% variance explained) and cognition (8.6% variance explained) in (semi-)supercentenarians better than chronologic age or gender. The inflammation score was also lower in centenarian offspring compared to age-matched controls with δ (95% CI)=-0.795 (-1.436 to -0.154). Centenarians and their offspring were able to maintain long telomeres, but telomere length was not a predictor of successful ageing in centenarians and semi-supercentenarians. We conclude that inflammation is an important malleable driver of ageing up to extreme old age in humans.
    Full-text · Article · Jul 2015 · EBioMedicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The relationship between age-related frailty and the underlying processes that drive changes in health is currently unclear. Considered individually, most blood biomarkers show only weak relationships with frailty and ageing. Here, we examined whether a biomarker-based frailty index (FI-B) allowed examination of their collective effect in predicting mortality compared with individual biomarkers, a clinical deficits frailty index (FI-CD), and the Fried frailty phenotype. We analyzed baseline data and up to 7-year mortality in the Newcastle 85+ Study (n = 845; mean age 85.5). The FI-B combined 40 biomarkers of cellular ageing, inflammation, haematology, and immunosenescence. The Kaplan-Meier estimator was used to stratify participants into FI-B risk strata. Stability of the risk estimates for the FI-B was assessed using iterative, random subsampling of the 40 FI-B items. Predictive validity was tested using Cox proportional hazards analysis and discriminative ability by the area under receiver operating characteristic (ROC) curves. The mean FI-B was 0.35 (SD, 0.08), higher than the mean FI-CD (0.22; SD, 0.12); no participant had an FI-B score <0.12. Higher values of each FI were associated with higher mortality risk. In a sex-adjusted model, each one percent increase in the FI-B increased the hazard ratio by 5.4 % (HR, 1.05; CI, 1.04-1.06). The FI-B was more powerful for mortality prediction than any individual biomarker and was robust to biomarker substitution. The ROC analysis showed moderate discriminative ability for 7-year mortality (AUC for FI-CD = 0.71 and AUC for FI-B = 0.66). No individual biomarker's AUC exceeded 0.61. The AUC for combined FI-CD/FI-B was 0.75. Many biological processes are implicated in ageing. The systemic effects of these processes can be elucidated using the frailty index approach, which showed here that subclinical deficits increased the risk of death. In the future, blood biomarkers may indicate the nature of the underlying causal deficits leading to age-related frailty, thereby helping to expose targets for early preventative interventions.
    Full-text · Article · Jul 2015 · BMC Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs are non-coding RNAs with roles in many cellular processes. Tissue-specific miRNA profiles associated with senescence have been described for several cell and tissue types. We aimed to characterise miRNAs involved in core, rather than tissue-specific, senescence pathways by assessment of common miRNA expression differences in two different cell types, with follow-up of predicted targets in human peripheral blood. MicroRNAs were profiled in early and late passage primary lung and skin fibroblasts to identify commonly-deregulated miRNAs. Expression changes of their bioinformatically-predicted mRNA targets were then assessed in both cell types and in human peripheral blood from elderly participants in the InCHIANTI study. 57/178 and 26/492 microRNAs were altered in late passage skin and lung cells respectively. Three miRNAs (miR-92a, miR-15b and miR-125a-3p) were altered in both tissues. 14 mRNA targets of the common miRNAs were expressed in lung and skin fibroblasts, of which two demonstrated up-regulation in late passage skin and lung cells (LYST; p = 0.02 [skin] and 0.02 [lung] INMT; p = 0.03 [skin] and 0.04 [lung]). ZMPSTE24 and LHFPL2 demonstrated altered expression in late passage skin cells only (p = 0.01 and 0.05 respectively). LHFPL2 was also positively correlated with age in peripheral blood (p value = 6.6 × 10(-5)). We find that the majority of senescence-associated miRNAs demonstrate tissue-specific effects. However, miRNAs showing common effects across tissue types may represent those associated with core, rather than tissue-specific senescence processes.
    Full-text · Article · Feb 2015 · Biogerontology
  • Source

    Full-text · Article · Jan 2015 · Circulation Research
  • T. Von Zglinicki · G. Saretzki · J. Passos
    [Show abstract] [Hide abstract]
    ABSTRACT: Telomeres protect the ends of all linear chromosomes against DNA loss and faulty recombination. They shorten during replication and also in response to external stress and damage. Telomerase counteracts telomere shortening but has nontelomeric functions as well. Shortened or otherwise uncapped telomeres are recognized by the cell's DNA damage response machinery and induce apoptosis or cell senescence, thus contributing to functional decline during aging. In humans and many other animals, telomeres in somatic tissues shorten with age. Telomere length in such tissues is associated with aging but currently lacks the diagnostic precision needed for it to be a reliable biomarker. Telomeres and telomerase, however, are promising targets for interventions to limit tumor growth and possibly to slow down age-related functional decline.
    No preview · Article · Dec 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Statins are one of the most potent drugs in delaying age-related inflammatory changes in the arterial vessel wall, slowing down the progression of atherosclerosis. Statins have also been shown to abrogate telomere-attributed cardiovascular risk. The goal of our study was to explore a potential effect of atorvastatin on telomerase activity in peripheral blood mononuclear cells (PBMCs) and T-lymphocytes (T cells). Methods and Results Treatment with pharmacologically relevant concentrations (0.1-0.3 μM) of atorvastatin resulted in a 6-fold increase of telomerase activity (TA) (p<0.0001) in human and mouse PBMCs and CD4 T cells, translating into moderate proliferation of T lymphocytes. In contrast, high doses of atorvastatin (2 - 5 μM) or the addition of LDL cholesterol completely inhibited proliferation, thereby abrogating telomerase activity. The proliferative effect of atorvastatin was ablated by the absense of the catalytic subunit of telomerase, telomerase reverse transcriptase (TERT). Using transgenic GFP-mTert reporter mice, we observed a decrease in telomerase-positive lymphocytes from 30% to 15% during the first 5 months of age (p<0.01). This suggests that the decrease in immune cell turnover during normal development and maturation is mirrored by a reduction in telomerase activity in lymphocytes in-vivo. Conclusion Atorvastatin and cholesterol have opposing effects on telomerase in mononuclear cells and T-lymphocytes. Our study suggests a link between cholesterol metabolism and telomere-related cardiovascular risk.
    Full-text · Article · Oct 2014 · Atherosclerosis
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Telomere length is a putative biomarker of ageing, morbidity and mortality. Its application is hampered by lack of widely applicable reference ranges and uncertainty regarding the present limits of measurement reproducibility within and between laboratories. Methods: We instigated an international collaborative study of telomere length assessment: 10 different laboratories, employing 3 different techniques [Southern blotting, single telomere length analysis (STELA) and real-time quantitative PCR (qPCR)] performed two rounds of fully blinded measurements on 10 human DNA samples per round to enable unbiased assessment of intra- and inter-batch variation between laboratories and techniques. Results: Absolute results from different laboratories differed widely and could thus not be compared directly, but rankings of relative telomere lengths were highly correlated (correlation coefficients of 0.63-0.99). Intra-technique correlations were similar for Southern blotting and qPCR and were stronger than inter-technique ones. However, inter-laboratory coefficients of variation (CVs) averaged about 10% for Southern blotting and STELA and more than 20% for qPCR. This difference was compensated for by a higher dynamic range for the qPCR method as shown by equal variance after z-scoring. Technical variation per laboratory, measured as median of intra- and inter-batch CVs, ranged from 1.4% to 9.5%, with differences between laboratories only marginally significant (P = 0.06). Gel-based and PCR-based techniques were not different in accuracy. Conclusions: Intra- and inter-laboratory technical variation severely limits the usefulness of data pooling and excludes sharing of reference ranges between laboratories. We propose to establish a common set of physical telomere length standards to improve comparability of telomere length estimates between laboratories.
    No preview · Article · Sep 2014 · International Journal of Epidemiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cellular senescence, a state of irreversible cell cycle arrest, is thought to help protect an organism from cancer, yet also contributes to ageing. The changes which occur in senescence are controlled by networks of multiple signalling and feedback pathways at the cellular level, and the interplay between these is difficult to predict and understand. To unravel the intrinsic challenges of understanding such a highly networked system, we have taken a systems biology approach to cellular senescence. We report a detailed analysis of senescence signalling via DNA damage, insulin-TOR, FoxO3a transcription factors, oxidative stress response, mitochondrial regulation and mitophagy. We show in silico and in vitro that inhibition of reactive oxygen species can prevent loss of mitochondrial membrane potential, whilst inhibition of mTOR shows a partial rescue of mitochondrial mass changes during establishment of senescence. Dual inhibition of ROS and mTOR in vitro confirmed computational model predictions that it was possible to further reduce senescence-induced mitochondrial dysfunction and DNA double-strand breaks. However, these interventions were unable to abrogate the senescence-induced mitochondrial dysfunction completely, and we identified decreased mitochondrial fission as the potential driving force for increased mitochondrial mass via prevention of mitophagy. Dynamic sensitivity analysis of the model showed the network stabilised at a new late state of cellular senescence. This was characterised by poor network sensitivity, high signalling noise, low cellular energy, high inflammation and permanent cell cycle arrest suggesting an unsatisfactory outcome for treatments aiming to delay or reverse cellular senescence at late time points. Combinatorial targeted interventions are therefore possible for intervening in the cellular pathway to senescence, but in the cases identified here, are only capable of delaying senescence onset.
    Full-text · Article · Aug 2014 · PLoS Computational Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background and purposeStudies investigating the association between 25-hydroxyvitamin D [25(OH)D] and cognition in the very old (85+) are lacking.Methods Cross-sectional (baseline) and prospective data (up to 3 years follow-up) from 775 participants in the Newcastle 85+ Study were analysed for global (measured by the Standardized Mini-Mental State Examination) and attention-specific (measured by the attention battery of the Cognitive Drug Research test) cognitive performance in relation to season-specific 25(OH)D quartiles.ResultsThose in the lowest and highest season-specific 25(OH)D quartiles had an increased risk of impaired prevalent (1.66, 95% confidence interval 1.06–2.60, P = 0.03; 1.62, 95% confidence interval 1.02–2.59, P = 0.04, respectively) but not incident global cognitive functioning or decline in functioning compared with those in the middle quartiles adjusted for sociodemographic, health and lifestyle confounders. Random effects models showed that participants belonging to the lowest and highest 25(OH)D quartiles, compared with those in the middle quartiles, had overall slower (log-transformed) attention reaction times for Choice Reaction Time (lowest, β = 0.023, P = 0.01; highest, β = 0.021, P = 0.02), Digit Vigilance Task (lowest, β = 0.009, P = 0.05; highest, β = 0.01, P = 0.02) and Power of Attention (lowest, β = 0.017, P = 0.02; highest, β = 0.022, P = 0.002) and greater Reaction Time Variability (lowest, β = 0.021, P = 0.02; highest, β = 0.02, P = 0.03). The increased risk of worse global cognition and attention amongst those in the highest quartile was not observed in non-users of vitamin D supplements/medication.Conclusion Low and high season-specific 25(OH)D quartiles were associated with prevalent cognitive impairment and poorer overall performance in attention-specific tasks over 3 years in the very old, but not with global cognitive decline or incident impairment.
    Full-text · Article · Aug 2014 · European Journal of Neurology
  • Source
    Ioakim Spyridopoulos · Thomas von Zglinicki

    Full-text · Article · Jul 2014 · BMJ Clinical Research

  • No preview · Conference Paper · Jul 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Telomere attrition has been associated with age-related diseases, although causality is unclear and controversial; low-grade systemic inflammation (inflammaging) has also been implicated in age-related pathogenesis. Unpicking the relationship between aging, telomere length (TL), and inflammaging is hence essential to the understanding of aging and management of age-related diseases. This longitudinal study explored whether telomere attrition is a cause or consequence of aging and whether inflammaging explains some of the associations between TL and one marker of aging, grip strength. We studied 253 Hertfordshire Ageing Study participants at baseline and 10-year follow-up (mean age at baseline 67.1 years). Participants completed a health questionnaire and had blood samples collected for immune–endocrine and telomere analysis at both time points. Physical aging was characterized at follow-up using grip strength. Faster telomere attrition was associated with lower grip strength at follow-up (β = 0.98, p = 0.035). This association was completely attenuated when adjusted for inflammaging burden (p = 0.86) over the same period. Similarly, greater inflammaging burden was associated with lower grip strength at follow-up (e.g., interleukin [IL]-1β: β = −2.18, p = 0.001). However, these associations were maintained when adjusted for telomere attrition (IL-1β, p = 0.006). We present evidence that inflammaging may be driving telomere attrition and in part explains the associations that have previously been reported between TL and grip strength. Thus, biomarkers of physical aging, such as inflammaging, may require greater exploration. Further work is now indicated.
    Full-text · Article · Jul 2014 · Calcified Tissue International
  • Satomi Miwa · Thomas von Zglinicki

    No preview · Article · Jul 2014

Publication Stats

12k Citations
982.10 Total Impact Points

Institutions

  • 2000-2015
    • Newcastle University
      • Institute for Ageing and Health
      Newcastle-on-Tyne, England, United Kingdom
  • 2006
    • The Newcastle upon Tyne Hospitals NHS Foundation Trust
      Newcastle-on-Tyne, England, United Kingdom
  • 2005
    • University of Newcastle
      Newcastle, New South Wales, Australia
  • 2000-2001
    • University of Southern California
      • Division of Molecular and Computational Biology
      Los Ángeles, California, United States
  • 1991-2000
    • Charité Universitätsmedizin Berlin
      • Institute of Pathology
      Berlín, Berlin, Germany
  • 1986-2000
    • Humboldt-Universität zu Berlin
      • • Department of Psychology
      • • Department of Chemistry
      Berlín, Berlin, Germany
  • 1993
    • Karolinska Institutet
      Сольна, Stockholm, Sweden