Ruy M Ribeiro

Los Alamos National Laboratory, Лос-Аламос, California, United States

Are you Ruy M Ribeiro?

Claim your profile

Publications (171)705.31 Total impact

  • Source
    Full-text · Dataset · Apr 2016
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Increased chronic immune activation and inflammation are hallmarks of HIV/SIV infection and are highly correlated with progression to AIDS and development of non-AIDS comorbidities, such as hypercoagulability and cardiovascular disease. Intestinal dysfunction resulting in microbial translocation has been proposed as a lead cause of systemic immune activation and hypercoagulability in HIV/SIV infection. Our goal was to assess the biological and clinical impact of a therapeutic strategy designed to reduce microbial translocation through reduction of the microbial content of the intestine (Rifaximin-RFX) and of gut inflammation (Sulfasalazine-SFZ). RFX is an intraluminal antibiotic that was successfully used in patients with hepatic encephalopathy. SFZ is an antiinflammatory drug successfully used in patients with mild to moderate inflammatory bowel disease. Both these clinical conditions are associated with increased microbial translocation, similar to HIV-infected patients. Treatment was administered for 90 days to five acutely SIV-infected pigtailed macaques (PTMs) starting at the time of infection; seven untreated SIVsab-infected PTMs were used as controls. RFX+SFZ were also administered for 90 days to three chronically SIVsab-infected PTMs. RFX+SFZ administration during acute SIVsab infection of PTMs resulted in: significantly lower microbial translocation, lower systemic immune activation, lower viral replication, better preservation of mucosal CD4+ T cells and significantly lower levels of hypercoagulation biomarkers. This effect was clear during the first 40 days of treatment and was lost during the last stages of treatment. Administration of RFX+SFZ to chronically SIVsab-infected PTMs had no discernible effect on infection. Our data thus indicate that early RFX+SFZ administration transiently improves the natural history of acute and postacute SIV infection, but has no effect during chronic infection.
    Full-text · Article · Jan 2016 · PLoS Pathogens
  • [Show abstract] [Hide abstract] ABSTRACT: Background: We analyzed the early kinetics with integrase inhibitor treatment to gain new insights into viral dynamics. Methodology: We analyzed data from 39 HIV-1 infected, treatment-naive, participants: 28 treated with raltegravir (RAL; multiple doses) monotherapy for 9 days, and 11 with RAL 400 mg twice daily and emtricitabine (200 mg daily)/tenofovir disoproxil fumarate (300 mg daily). Plasma HIV-1 RNA was measured frequently; the data was fitted using a mathematical model of viral dynamics distinguishing between infected cells with unintegrated HIV DNA and productively infected cells. Parameters were estimated using mixed-effect models. Results: RAL treatment led to a biphasic viral decline with a rapid first phase (1a) lasting approximately 5 days followed by a slower phase (1b). Phase 1a is attributed to the rapid elimination of productively infected cells. Phase 1b reflects the loss of infected cells with nonintegrated provirus due to cell loss and integration of HIV DNA. The half-lives of productively infected cells and of infected cells that had completed reverse transcription but had not yet integrated HIV DNA were approximately 19 h and between 3.6 and 5.8 days, respectively. The effectiveness of RAL in preventing proviral integration was 94% and 99.7%, for the combination therapy and monotherapy groups, respectively. Conclusion: We found that the first phase of viral decay with RAL therapy was composed of two subphases corresponding to the half-lives of infected cells with integrated proviruses and with unintegrated HIV-DNA.
    No preview · Article · Nov 2015 · AIDS
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Importance: Despite the recent development of highly effective, interferon-sparing anti-hepatitis C virus (HCV) drugs, the global burden of this pathogen remains immense. Control or eradication of HCV will likely require the broad application of antiviral drugs and the development of an effective vaccine, which could be facilitated by a precise molecular identification of transmitted/founder (T/F) viral genomes and their progeny. We used single genome sequencing to show that inferred HCV T/F sequences in recipients were identical to viral sequences in their respective donors and that viral genomes generally evolved early in infection according to a simple model of random sequence evolution. Altogether, the findings validate T/F genome inferences and illustrate how T/F sequence identification can illuminate studies of HCV transmission, immunopathogenesis, drug resistance development and vaccine protection, including sieving effects on breakthrough virus strains.
    Full-text · Article · Oct 2015 · Journal of Virology
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Control of virus replication in HIV-1 infection is critical to delaying disease progression. While cellular immune responses are a key determinant of control, relatively little is known about the contribution of the infecting virus to this process. To gain insight into this interplay between virus and host in viral control, we conducted a detailed analysis of two heterosexual HIV-1 subtype A transmission pairs in which female recipients sharing three HLA class I alleles exhibited contrasting clinical outcomes: R880F controlled virus replication while R463F experienced high viral loads and rapid disease progression. Near full-length single genome amplification defined the infecting transmitted/founder (T/F) virus proteome and subsequent sequence evolution over the first year of infection for both acutely infected recipients. T/F virus replicative capacities were compared in vitro, while the development of the earliest cellular immune response was defined using autologous virus sequence-based peptides. The R880F T/F virus replicated significantly slower in vitro than that transmitted to R463F. While neutralizing antibody responses were similar in both subjects, during acute infection R880F mounted a broad T cell response, the most dominant components of which targeted epitopes from which escape was limited. In contrast, the primary HIV-specific T cell response in R463F was focused on just two epitopes, one of which rapidly escaped. This comprehensive study highlights both the importance of the contribution of the lower replication capacity of the transmitted/founder virus and an associated induction of a broad primary HIV-specific T cell response, which was not undermined by rapid epitope escape, to long-term viral control in HIV-1 infection. It underscores the importance of the earliest CD8 T cell response targeting regions of the virus proteome that cannot mutate without a high fitness cost, further emphasizing the need for vaccines that elicit a breadth of T cell responses to conserved viral epitopes.
    Full-text · Article · Jan 2015 · PLoS Pathogens
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Chronic liver infection by hepatitis C virus (HCV) is a major public health concern. Despite partly successful treatment options, several aspects of intrahepatic HCV infection dynamics are still poorly understood, including the preferred mode of viral propagation, as well as the proportion of infected hepatocytes. Answers to these questions have important implications for the development of therapeutic interventions. In this study, we present methods to analyze the spatial distribution of infected hepatocytes obtained by single cell laser capture microdissection from liver biopsy samples of patients chronically infected with HCV. By characterizing the internal structure of clusters of infected cells, we are able to evaluate hypotheses about intrahepatic infection dynamics. We found that individual clusters on biopsy samples range in size from [Formula: see text] infected cells. In addition, the HCV RNA content in a cluster declines from the cell that presumably founded the cluster to cells at the maximal cluster extension. These observations support the idea that HCV infection in the liver is seeded randomly (e.g. from the blood) and then spreads locally. Assuming that the amount of intracellular HCV RNA is a proxy for how long a cell has been infected, we estimate based on models of intracellular HCV RNA replication and accumulation that cells in clusters have been infected on average for less than a week. Further, we do not find a relationship between the cluster size and the estimated cluster expansion time. Our method represents a novel approach to make inferences about infection dynamics in solid tissues from static spatial data.
    Full-text · Article · Nov 2014 · PLoS Computational Biology
  • Source
    Stanca M Ciupe · Ruy M Ribeiro · Alan S Perelson
    [Show abstract] [Hide abstract] ABSTRACT: Hepatitis B is a DNA virus that infects liver cells and can cause both acute and chronic disease. It is believed that both viral and host factors are responsible for determining whether the infection is cleared or becomes chronic. Here we investigate the mechanism of protection by developing a mathematical model of the antibody response following hepatitis B virus (HBV) infection. We fitted the model to data from seven infected adults identified during acute infection and determined the ability of the virus to escape neutralization through overproduction of non-infectious subviral particles, which have HBs proteins on their surface, but do not contain nucleocapsid protein and viral nucleic acids. We showed that viral clearance can be achieved for high anti-HBV antibody levels, as in vaccinated individuals, when: (1) the rate of synthesis of hepatitis B subviral particles is slow; (2) the rate of synthesis of hepatitis B subviral particles is high but either anti-HBV antibody production is fast, the antibody affinity is high, or the levels of pre-existent HBV-specific antibody at the time of infection are high, as could be attained by vaccination. We further showed that viral clearance can be achieved for low equilibrium anti-HBV antibody levels, as in unvaccinated individuals, when a strong cellular immune response controls early infection.
    Preview · Article · Jul 2014 · PLoS Computational Biology
  • [Show abstract] [Hide abstract] ABSTRACT: Damage to the intestinal mucosa results in the translocation of microbes from the intestinal lumen into the circulation. Microbial translocation has been proposed to trigger immune activation, inflammation, and coagulopathy, all of which are key factors that drive HIV disease progression and non-HIV comorbidities; however, direct proof of a causal link is still lacking. Here, we have demonstrated that treatment of acutely SIV-infected pigtailed macaques with the drug sevelamer, which binds microbial lipopolysaccharide in the gut, dramatically reduces immune activation and inflammation and slightly reduces viral replication. Furthermore, sevelamer administration reduced coagulation biomarkers, confirming the contribution of microbial translocation in the development of cardiovascular comorbidities in SIV-infected nonhuman primates. Together, our data suggest that early control of microbial translocation may improve the outcome of HIV infection and limit noninfectious comorbidities associated with AIDS.
    No preview · Article · May 2014 · Journal of Clinical Investigation
  • Source
    Marta Caridade · Luis Graca · Ruy M Ribeiro
    [Show abstract] [Hide abstract] ABSTRACT: To maintain immunological balance the organism has to be tolerant to self while remaining competent to mount an effective immune response against third-party antigens. An important mechanism of this immune regulation involves the action of regulatory T-cell (Tregs). In this mini-review, we discuss some of the known and proposed mechanisms by which Tregs exert their influence in the context of immune regulation, and the contribution of mathematical modeling for these mechanistic studies. These models explore the mechanisms of action of regulatory T cells, and include hypotheses of multiple signals, delivered through simultaneous antigen-presenting cell (APC) conjugation; interaction of feedback loops between APC, Tregs, and effector cells; or production of specific cytokines that act on effector cells. As the field matures, and competing models are winnowed out, it is likely that we will be able to quantify how tolerance-inducing strategies, such as CD4-blockade, affect T-cell dynamics and what mechanisms explain the observed behavior of T-cell based tolerance.
    Full-text · Article · Nov 2013 · Frontiers in Immunology
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Non-depleting anti-CD4 monoclonal antibodies (MAbs) induce long-term dominant tolerance mediated by regulatory T cells in several animal models of transplantation, allergy and autoimmunity. However, despite many studies on tolerance induction following CD4 blockade, the consequences of this intervention on T-cell kinetics are still unknown. Mathematical models have been useful to understand lymphocyte dynamics, estimating rates of proliferation and cell death following an intervention. Using the same strategy, we found that CD4(+) T cells activated in vitro in the presence of non-depleting anti-CD4 MAbs are prevented from undergoing optimal proliferation and show a higher frequency of apoptosis. Although the changes are small, during the course of a proliferative response, they lead to very distinct final levels of cell numbers. The importance of these mechanisms, predicted by the mathematical model, was validated by showing that lck-driven Bcl-xL transgenic mice, bearing T cells resistant to apoptosis, fail to become tolerant to skin grafts following CD4-blockade. Our data show that, in addition to induction of regulatory T cells, CD4 blockade has a marked effect in the effector T-cell pool by the combined action of hindering proliferation while favoring apoptosis. It is, therefore, the combination of all those mechanisms that leads to stable tolerance.Immunology and Cell Biology advance online publication, 22 October 2013; doi:10.1038/icb.2013.63.
    Full-text · Article · Oct 2013 · Immunology and Cell Biology
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: We assessed the role of myeloid dendritic cells (mDCs) in the outcome of SIV infection by comparing and contrasting their frequency, mobilization, phenotype, cytokine production and apoptosis in pathogenic (pigtailed macaques, PTMs), nonpathogenic (African green monkeys, AGMs) and controlled (rhesus macaques, RMs) SIVagmSab infection. Through the identification of recently replicating cells, we demonstrated that mDC mobilization from the bone marrow occurred in all species postinfection, being most prominent in RMs. Circulating mDCs were depleted with disease progression in PTMs, recovered to baseline values after the viral peak in AGMs, and significantly increased at the time of virus control in RMs. Rapid disease progression in PTMs was associated with low baseline levels and incomplete recovery of circulating mDCs during chronic infection. mDC recruitment to the intestine occurred in all pathogenic scenarios, but loss of mucosal mDCs was associated only with progressive infection. Sustained mDC immune activation occurred throughout infection in PTMs and was associated with increased bystander apoptosis in blood and intestine. Conversely, mDC activation occurred only during acute infection in nonprogressive and controlled infections. Postinfection, circulating mDCs rapidly became unresponsive to TLR7/8 stimulation in all species. Yet, stimulation with LPS, a bacterial product translocated in circulation only in SIV-infected PTMs, induced mDC hyperactivation, apoptosis and excessive production of proinflammatory cytokines. After infection, spontaneous production of proinflammatory cytokines by mucosal mDCs increased only in progressor PTMs. We thus propose that mDCs promote tolerance to SIV in the biological systems that lack intestinal dysfunction. In progressive infections, mDC loss and excessive activation of residual mDCs by SIV and additional stimuli, such as translocated microbial products, enhance generalized immune activation and inflammation. Our results thus provide a mechanistic basis for the role of mDCs in the pathogenesis of AIDS and elucidate the causes of mDC loss during progressive HIV/SIV infections.
    Full-text · Article · Oct 2013 · PLoS Pathogens
  • No preview · Article · Oct 2013 · Journal of Medical Primatology
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Hepatitis C virus (HCV) predominantly infects hepatocytes, but many hepatocytes are not infected; studies have shown that HCV antigens cluster within the liver. We investigated spatial distribution and determinants of HCV replication in human liver samples. We analyzed liver samples from 4 patients with chronic HCV infection (genotype 1, Metavir scores 0-1) to estimate the proportion of infected hepatocytes and amount of HCV viral RNA (vRNA) per cell. Single-cell laser capture microdissection was used to capture approximately >1000 hepatocytes in grids, to preserve geometric relationships. HCV vRNA and IFITM3 mRNA (the transcript of an interferon-stimulated gene) were measured in the same hepatocytes by quantitative PCR and assembled to identify areas of high and low HCV replication. Patients' serum levels of HCV RNA ranged from 6.87 to 7.40 log10 IU/mL; the proportion of HCV-infected hepatocytes per person ranged from 21% to 45% and the level of vRNA ranged from 1 to 50 IU/hepatocyte. Infection was not random; we identified clustering of HCV-positive hepatocytes using infected-neighbor analysis (P<.0005) and distance to the k(th) nearest neighbor compared with random distributions, obtained by bootstrap simulations (P<0.02). Hepatocytes that expressed IFITM3 did not appear to cluster and were largely HCV-negative. We used single-cell laser capture and high-resolution analysis to show that in human liver, HCV infects hepatocytes in non-random clusters, whereas expression of antiviral molecules is scattered among hepatocytes. These findings show that quantitative single-cell RNA measurements can be used to estimate the abundance of HCV vRNA per infected human hepatocyte, and are consistent with cell-cell propagation of infection in the absence of clustered IFITM3.
    Full-text · Article · Aug 2013 · Gastroenterology
  • Source
    Alan S Perelson · Ruy M Ribeiro
    [Show abstract] [Hide abstract] ABSTRACT: The new field of viral dynamics, based on within-host modeling of viral infections, began with models of human immunodeficiency virus (HIV), but now includes many viral infections. Here we review developments in HIV modeling, emphasizing quantitative findings about HIV biology uncovered by studying acute infection, the response to drug therapy and the rate of generation of HIV variants that escape immune responses. We show how modeling has revealed many dynamical features of HIV infection and how it may provide insight into the ultimate cure for this infection.
    Preview · Article · Aug 2013 · BMC Biology
  • Source
    Dataset: Text S1
    [Show abstract] [Hide abstract] ABSTRACT: Analysis of the coinfection model dynamics and individual parameters through a Bayesian ensemble analysis and a sensitivity analysis. (PDF)
    Preview · Dataset · Mar 2013
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Secondary bacterial infections are a leading cause of illness and death during epidemic and pandemic influenza. Experimental studies suggest a lethal synergism between influenza and certain bacteria, particularly Streptococcus pneumoniae, but the precise processes involved are unclear. To address the mechanisms and determine the influences of pathogen dose and strain on disease, we infected groups of mice with either the H1N1 subtype influenza A virus A/Puerto Rico/8/34 (PR8) or a version expressing the 1918 PB1-F2 protein (PR8-PB1-F2(1918)), followed seven days later with one of two S. pneumoniae strains, type 2 D39 or type 3 A66.1. We determined that, following bacterial infection, viral titers initially rebound and then decline slowly. Bacterial titers rapidly rise to high levels and remain elevated. We used a kinetic model to explore the coupled interactions and study the dominant controlling mechanisms. We hypothesize that viral titers rebound in the presence of bacteria due to enhanced viral release from infected cells, and that bacterial titers increase due to alveolar macrophage impairment. Dynamics are affected by initial bacterial dose but not by the expression of the influenza 1918 PB1-F2 protein. Our model provides a framework to investigate pathogen interaction during coinfections and to uncover dynamical differences based on inoculum size and strain.
    Full-text · Article · Mar 2013 · PLoS Pathogens
  • [Show abstract] [Hide abstract] ABSTRACT: Systems immunology is an emerging paradigm that aims at a more systematic and quantitative understanding of the immune system. Two major approaches have been utilized to date in this field: unbiased data-driven modeling to comprehensively identify molecular and cellular components of a system and their interactions; and hypothesis-based quantitative modeling to understand the operating principles of a system by extracting a minimal set of variables and rules underlying them. In this review, we describe applications of the two approaches to the study of viral infections and autoimmune diseases in humans, and discuss possible ways by which these two approaches can synergize when applied to human immunology.
    No preview · Article · Jan 2013 · Seminars in Immunology
  • Source
    Dataset: Figure S11
    [Show abstract] [Hide abstract] ABSTRACT: Amino acid alignment of the HCV Env coding region of acute subject 10003. The H77 reference sequence is shown at the top. Nonrandom concentrations of nonsynonymous mutations are evident. (PDF)
    Full-text · Dataset · Aug 2012
  • Source
    Dataset: Table S2
    [Show abstract] [Hide abstract] ABSTRACT: Estimates of numbers of T/F viruses in acute HCV infection using empirical and model based methods. (DOC)
    Full-text · Dataset · Aug 2012
  • Source
    Dataset: Figure S3
    [Show abstract] [Hide abstract] ABSTRACT: HCV diversity in acute subject 10024. 5′ quarter 1 genomesequences are color coded in blue, green and black in chronological order to reflect sampling time points in Figure 1 and are represented in a ML tree and Highlighter plot. Sequences show evidence of productive clinical infection by at least 6 T/F viruses. Bootstrap values are indicated and represent 100 repetitions. The horizontal scale bar indicates genetic distance. (PDF)
    Full-text · Dataset · Aug 2012

Publication Stats

5k Citations
705.31 Total Impact Points

Institutions

  • 2015
    • Los Alamos National Laboratory
      Лос-Аламос, California, United States
  • 2006
    • Weill Cornell Medical College
      • Center for the Study of Hepatitis C
      New York City, New York, United States
  • 2004
    • Columbia University
      New York, New York, United States
    • University of New South Wales
      Kensington, New South Wales, Australia
    • University of Oxford
      Oxford, England, United Kingdom