Takashi Sazuka

Nagoya University, Nagoya, Aichi, Japan

Are you Takashi Sazuka?

Claim your profile

Publications (43)155.84 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: The primary components of lignocellulosic biomass such as sorghum bagasse are cellulose, hemicellulose, and lignin. Each component can be utilized as a sustainable resource for producing biofuels and bio-based products. However, due to their complicated structures, fractionation of lignocellulosic biomass components is required. Organosolv pretreatment is an attractive method for this purpose. However, as organosolv pretreatment uses high concentrations of organic solvents (>50 %), decreasing the concentration necessary for fractionation would help reduce processing costs. In this study, we sought to identify organic solvents capable of efficiently fractionating sorghum bagasse components at low concentrations. Results: Five alcohols (ethanol, 1-propanol, 2-propanol, 1-butanol, and 1-pentanol) were used for organosolv pretreatment of sorghum bagasse at a concentration of 12.5 %. Sulfuric acid (1 %) was used as a catalyst. With 1-butanol and 1-pentanol, three fractions (black liquor, liquid fraction containing xylose, and cellulose-enriched solid fraction) were obtained after pretreatment. Two-dimensional nuclear magnetic resonance analysis revealed that the lignin aromatic components of raw sorghum bagasse were concentrated in the black liquor fraction, although the major lignin side-chain (β-O-4 linkage) was lost. Pretreatment with 1-butanol or 1-pentanol effectively removed p-coumarate, some guaiacyl, and syringyl. Compared with using no solvent, pretreatment with 1-butanol or 1-pentanol resulted in two-fold greater ethanol production from the solid fraction by Saccharomyces cerevisiae. Conclusions: Our results revealed that a low concentration (12.5 %) of a highly hydrophobic solvent such as 1-butanol or 1-pentanol can be used to separate the black liquor from the solid and liquid fractions. The efficient delignification and visible separation of the lignin-rich fraction possible with this method simplify the fractionation of sorghum bagasse.
    Full-text · Article · Dec 2016 · Biotechnology for Biofuels
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hybrid vigor (heterosis) has been used as a breeding technique for crop improvement to achieve enhanced biomass production, but the physiological mechanisms underlying heterosis remain poorly understood. In this study, to find a clue to the enhancement of biomass production by heterosis, we systemically evaluated the effect of heterosis on the growth rate and photosynthetic efficiency in sorghum hybrid [Sorghum bicolor (L.) Moench cv. Tentaka] and its parental lines (restorer line and maintainer line). The final biomass of Tentaka was 10–14 times greater than that of the parental lines grown in an experimental field, but the relative growth rate during the vegetative growth stage did not differ. Tentaka exhibited a relatively enlarged leaf area with lower leaf nitrogen content per leaf area (Narea). When the plants were grown hydroponically at different N levels, daily CO2 assimilation per leaf area (A) increased with Narea, and the ratio of A to Narea (N-use efficiency) was higher in the plants grown at low N levels but not different between Tentaka and the parental lines. The relationships between the CO2 assimilation rate, the amounts of photosynthetic enzymes, including ribulose-1,5-bisphosphate carboxylase/oxygenase, phosphoenolpyruvate carboxylase and pyruvate phosphate dikinase, Chl and Narea did not differ between Tentaka and the parental lines. Thus, Tentaka tended to exhibit enlargement of leaf area with lower N content, leading to a higher N-use efficiency for CO2 assimilation, but the photosynthetic properties did not differ. The greater biomass in Tentaka was mainly due to the prolonged vegetative growth period.
    No preview · Article · Oct 2015 · Plant and Cell Physiology
  • [Show abstract] [Hide abstract]
    ABSTRACT: The production of the bioplastic precursor 3-amino-4-hydroxybenzoic acid (3,4-AHBA) from sweet sorghum juice, which contains amino acids and the fermentable sugars sucrose, glucose and fructose, was assessed to address the limitations of producing bio-based chemicals from renewable feedstocks. Recombinant Corynebacterium glutamicum strain KT01 expressing griH and griI derived from Streptomyces griseus produced 3,4-AHBA from the sweet sorghum juice of cultivar SIL-05 at a final concentration (1.0gl(-1)) that was 5-fold higher than that from pure sucrose. Fractionation of sweet sorghum juice by nanofiltration (NF) membrane separation (molecular weight cut-off 150) revealed that the NF-concentrated fraction, which contained the highest concentrations of amino acids, increased 3,4-AHBA production, whereas the NF-filtrated fraction inhibited 3,4-AHBA biosynthesis. Amino acid supplementation experiments revealed that leucine specifically enhanced 3,4-AHBA production by strain KT01. Taken together, these results suggest that sweet sorghum juice is a potentially suitable feedstock for 3,4-AHBA production by recombinant C. glutamicum.
    No preview · Article · Sep 2015 · Bioresource Technology
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study aimed to optimize extracellular glutathione production by a Saccharomyces cerevisiae engineered strain and to concentrate the extracellular glutathione by membrane separation processes, including ultrafiltration (UF) and nanofiltration (NF). Synthetic defined (SD) medium containing 20 g L(-1) glucose was fermented for 48 h; the fermentation liquid was passed through an UF membrane to remove macromolecules. Glutathione in this permeate was concentrated for 48 h to 545.1 ± 33.6 mg L(-1) using the NF membrane; this was a significantly higher concentration than that obtained with yeast extract peptone dextrose (YPD) medium following 96 h NF concentration (217.9 ± 57.4 mg L(-1)). This higher glutathione concentration results from lower cellular growth in SD medium (final OD600 = 6.9 ± 0.1) than in YPD medium (final OD600 = 11.0 ± 0.6) and thus higher production of extracellular glutathione (16.0 ± 1.3 compared to 9.2 ± 2.1 mg L(-1) in YPD medium, respectively). Similar fermentation and membrane processing of sweet sorghum juice containing 20 g L(-1) total sugars provided 240.3 ± 60.6 mg L(-1) glutathione. Increased extracellular production of glutathione by this engineered strain in SD medium and subsequent UF permeation and NF concentration in shortend time may help realize industrial recovery of extracellular glutathione. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
    No preview · Article · Jun 2015 · Journal of Bioscience and Bioengineering
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dilute acid-pretreated sorghum bagasse, which was predominantly composed of glucan (59%) and xylose (7.2%), was used as a lignocellulosic feedstock for d-phenyllactic acid (PhLA) production by a recombinant Escherichia coli strain expressing phenylpyruvate reductase from Wickerhamia fluorescens. During fermentation with enzymatic hydrolysate of sorghum bagasse as a carbon source, the PhLA yield was reduced by 35% compared to filter paper hydrolysate, and metabolomics analysis revealed that NAD(P)H regeneration and intracellular levels of erythrose-4-phosphate and phosphoenolpyruvate for PhLA biosynthesis markedly reduced. Compared to separate hydrolysis and fermentation (SHF) with sorghum bagasse hydrolysate, simultaneous saccharification and fermentation (SSF) of sorghum bagasse under glucose limitation conditions yielded 4.8-fold more PhLA with less accumulation of eluted components, including p-coumaric acid and aldehydes, which inhibited PhLA fermentation. These results suggest that gradual enzymatic hydrolysis during SSF enhances PhLA production under glucose limitation and reduces the accumulation of fermentation inhibitors, collectively leading to increased PhLA yield. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Full-text · Article · Apr 2015 · Bioresource Technology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sequential batch fermentation from sweet sorghum juice concentrated by membrane separation (ultrafiltration permeation and nanofiltration concentration) to increase sugar contents, was investigated. Ethanol production at 5th batch fermentation by Saccharomyces cerevisiae BY4741 attained 113.7±3.1gL(-1) (89.1±2.2% of the theoretical ethanol yield) from 270.0±22.6gL(-1) sugars, corresponding to 98.7% of ethanol titer attained at the 1st batch fermentation. This titer was comparable to ethanol production of 115.8±0.6gL(-1) (87.1±2.7% of the theoretical ethanol yield) obtained at 5th batch fermentation with 3gL(-1) yeast extract and 6gL(-1) polypeptone. Increase of cell density in the concentrated sweet sorghum juice was observed during sequential batch fermentation, as indicated by increased OD600. Utilization of sweet sorghum juice as the sole source, membrane separation, and S. cerevisiae was a cost-effective process for high ethanol production. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Full-text · Article · Jul 2014 · Bioresource Technology
  • Source

    Full-text · Dataset · Jul 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Regulation of symmetrical cell growth in the culm is important for proper culm development. So far, the involvement of gibberellin (GA) in this process has not yet been demonstrated in sorghum. Here, we show that GA deficiency resulting from any loss-of-function mutation in four genes (SbCPS1, SbKS1, SbKO1, SbKAO1) involved in the early steps of GA biosynthesis, not only results in severe dwarfism but also in abnormal culm bending. Histological analysis of the bent culm revealed that the intrinsic bending was due to an uneven cell proliferation between the lower and upper sides of culm internodes. GA treatment alleviated the bending and dwarfism in mutants, whereas the GA biosynthesis inhibitor, uniconazole, induced such phenotypes in wild-type plants- both in a concentration-dependent manner, indicating an important role of GA in controlling erectness of the sorghum culm. Finally, we propose that because of the tight relationship between GA deficiency-induced dwarfism and culm bending in sorghum, GA-related mutations have unlikely been selected in the history of sorghum breeding, as could be inferred from previous QTL and association studies on sorghum plant height that did not pinpoint GA-related genes.
    Full-text · Article · Jun 2014 · Scientific Reports
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thioredoxin (Trx) is a key player in redox homeostasis in various cells in which it modulates functions of target proteins by catalyzing thiol-disulfide exchange reaction. Target proteins of cytosolic Trx-h of higher plants were studied, particularly in the plasma membrane, because plant plasma membranes include various functionally important protein molecules such as transporters and signal receptors. Plasma membrane proteins from Arabidopsis thaliana cell cultures were screened using a Trx-h1-mutant-immobilized resin, and a total of 48 candidate proteins obtained. These included two calcium sensory proteins; a phosphoinositide specific phospholipase 2, and a calcium-dependent protein kinase 21 (AtCPK21). A redox-dependent change in AtCPK21 kinase activity was then demonstrated in vitro. Oxidation of AtCPK21 resulted in a decrease in kinase activity to 19% compared to the untreated one but Trx-h1 effectively restored the activity to 90%. An intramolecular disulfide bond Cys(97) -Cys(108) responsible for this redox modulation was then identified. In addition, endogenous AtCPK21 was shown to be oxidized in vivo when the culture cells were treated with H2 O2 . These results suggest that redox regulation of AtCPK21 by Trx-h in response to external stimuli is important for appropriate cellular responses. The relationship between the redox regulation system and Ca(2+) signalling pathways are discussed. This article is protected by copyright. All rights reserved.
    No preview · Article · Apr 2013 · FEBS Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: High-throughput technologies for determining DNA sequence variations have enabled new genomics-based breeding strategies, such as genomic selection. While genomics technologies are making rapid progress in throughput and cost efficiencies, technologies for measuring plant phenotypes, i.e., "phenotyping", remain inefficient. Phenotyping is now the most time-consuming and error-prone step in genomic-based breeding strategies. To measure plant phenotypes with high efficiency and accuracy, we are developing a high-throughput phenotyping system. The system consists of two main parts: The plant management system using radio-frequency identification device (RFID) tags and the data collection system connected to multiple measuring devices via Bluetooth. The first system enables us to link plants to data on the Internet and to keep records of cultivation management. The second system enables us to collect data measured by multiple devices via Bluetooth connections. With this system, we can aggregate various types of measurement data in an efficient and precise manner. High-throughput phenotyping systems lead to efficient and accurate data collection and will strongly support genomic breeding in crop plants.
    No preview · Article · Jan 2013
  • [Show abstract] [Hide abstract]
    ABSTRACT: Target leaf spot is one of the major sorghum diseases in southern Japan and caused by a necrotrophic fungus, Bipolaris sorghicola. Sorghum resistance to target leaf spot is controlled by a single recessive gene (ds1). A high-density genetic map of the ds1 locus was constructed with simple sequence repeat markers using progeny from crosses between a sensitive variety, bmr-6, and a resistant one, SIL-05, which allowed the ds1 gene to be genetically located within a 26-kb region on the short arm of sorghum chromosome 5. The sorghum genome annotation database for BTx623, for which the whole genome sequence was recently published, indicated a candidate gene from the Leucine-Rich Repeat Receptor Kinase family in this region. The candidate protein kinase gene was expressed in susceptible plants but was not expressed or was severely reduced in resistant plants. The expression patterns of ds1 gene and the phenotype of target leaf spot resistance were clearly correlated. Genomic sequences of this region in parental varieties showed a deletion in the promoter region of SIL-05 that could cause reduction of gene expression. We also found two ds1 alleles for resistant phenotypes with a stop codon in the coding region. The results shown here strongly suggest that the loss of function or suppression of the ds1 protein kinase gene leads to resistance to target leaf spot in sorghum.
    No preview · Article · Mar 2011 · Theoretical and Applied Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Indole-3-acetic acid (IAA) plays a critical role in many aspects of plant growth and development; however, complete pathways of biosynthesis, localization and many aspects of functions of IAA in rice remain unclear. Here, we report the analysis of a rice tryptophan- (Trp-) and IAA-deficient mutant, tryptophan deficient dwarf1 (tdd1), which is embryonic lethal because of a failure to develop most organs during embryogenesis. Regenerated tdd1 plants showed pleiotropic phenotypes: dwarfing, narrow leaves, short roots and abnormal flowers. TDD1 encodes a protein homologous to anthranilate synthase beta-subunit, which catalyses the first step of the Trp biosynthesis pathway and functions upstream of Trp-dependent IAA biosynthesis. TDD1-uidA and DR5-uidA expression overlapped at many sites in WT plants but was lacking in tdd1, indicating that TDD1 is involved in auxin biosynthesis. Both Trp and IAA levels in flowers and embryos were much lower in tdd1 than in wild type (WT). Trp feeding completely rescued the mutant phenotypes and moderate expression of OsYUCCA1, which encodes a key enzyme in Trp-dependent IAA biosynthesis, also rescued plant height and root length, indicating that the abnormal phenotypes of tdd1 are caused predominantly by Trp and IAA deficiency. In tdd1 embryos, the expression patterns of OSH1 and OsSCR, which mark the presumptive apical region and the L2 layer, respectively, are identical to those in WT, suggesting a possibility either that different IAA levels are required for basic pattern formation than for organ formation or that an orthologous gene compensates for TDD1 deficiency during pattern formation.
    Full-text · Article · Jul 2009 · The Plant Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although indole-3-acetic acid (IAA), the predominant auxin in plants, plays a critical role in various plant growth and developmental processes, its biosynthesis and regulation have not been clearly elucidated. To investigate the molecular mechanisms of IAA synthesis in rice (Oryza sativa), we identified seven YUCCA-like genes (named OsYUCCA1-7) in the rice genome. Plants overexpressing OsYUCCA1 exhibited increased IAA levels and characteristic auxin overproduction phenotypes, whereas plants expressing antisense OsYUCCA1 cDNA displayed defects that are similar to those of rice auxin-insensitive mutants. OsYUCCA1 was expressed in almost all of the organs tested, but its expression was restricted to discrete areas, including the tips of leaves, roots, and vascular tissues, where it overlapped with expression of a beta-glucuronidase reporter gene controlled by the auxin-responsive DR5 promoter. These observations are consistent with an important role for the rice enzyme OsYUCCA1 in IAA biosynthesis via the tryptophan-dependent pathway.
    Preview · Article · Apr 2007 · Plant physiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SPINDLY (SPY) encodes an O-linked N-acetylglucosamine transferase that is considered to be a negative regulator of gibberellin (GA) signaling through an unknown mechanism. To understand the function of SPY in GA signaling in rice, we isolated a rice SPINDLY homolog (OsSPY) and produced knockdown transgenic plants in which OsSPY expression was reduced by introducing its antisense or RNAi construct. In knockdown plants, the enhanced elongation of lower internodes was correlated with decreased levels of OsSPY expression, similar to the spindly phenotype of Arabidopsis spy mutants, suggesting that OsSPY also functions as a negative factor in GA signaling in rice. The suppressive function of OsSPY in GA signaling was supported by the findings that the dwarfism was partially rescued and OsGA20ox2 (GA20 oxidase) expression was reduced in GA-deficient and GA-insensitive mutants by the knockdown of OsSPY function. The suppression of OsSPY function in a GA-insensitive mutant, gid2, also caused an increase in the phosphorylation of a rice DELLA protein, SLR1, but did not change the amount of SLR1. This indicates that the function of OsSPY in GA signaling is not via changes in the amount or stability of SLR1, but probably involves control of the suppressive function of SLR1. In addition to the GA-related phenotypes, OsSPY antisense and RNAi plants showed increased lamina joint bending, which is a brassinosteroid-related phenotype, indicating that OsSPY may play roles both in GA signaling and in the brassinosteroid pathway.
    Full-text · Article · Dec 2006 · The Plant Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since auxin was first isolated and characterized as a plant hormone, the underlying molecular mechanism of auxin signaling has been elucidated primarily in dicot plants represented by Arabidopsis. In monocot plants, the molecular mechanism of auxin signaling has remained unclear, despite various physiological experiments. To understand the function and mechanism of auxin signaling in rice (Oryza sativa), we focused on the IAA gene, a well-studied gene in Arabidopsis that serves as a negative regulator of auxin signaling. We found 24 IAA gene family members in the rice genome. OsIAA3 is one of these family members whose expression is rapidly increased in response to auxin. We produced transgenic rice harboring mOsIAA3-GR, which can overproduce mutant OsIAA3 protein containing an amino acid change in domain II to cause a gain-of-function phenotype, by treatment with dexamethasone. The transgenic rice was insensitive to auxin and gravitropic stimuli, and exhibited short leaf blades, reduced crown root formation, and abnormal leaf formation. These results suggest that, in rice, auxin is important for development and its signaling is mediated by IAA genes.
    Full-text · Article · May 2006 · The Plant Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: That plant dwarfism is caused by hormonal defects related to gibberellin and brassinosteroid has been well documented. Other contributing elements, however, have not been elucidated. Here, we report on one of the most severe dwarf mutants of rice, dwarf bamboo shoot 1 (dbs1). Most mutant plants died within 1 month after sowing, but a few (5.2%) survived and grew. Vacuolation enlarged cells in the leaf primordia and seminal root before abortion, which disrupted the organized cell files in these organs. Relative to the severe defects in shoot and root growth, the overall structure of the dbs1 embryo was almost normal. Similarly, initiation and organogenesis of the leaf primordia at the shoot apical meristem and those of the lateral root primordia at the root elongation zone occurred normally. These observations suggest that DBS1 is involved in the growth and development of organs but not in organ initiation or organogenesis. Positional cloning of DBS1 revealed that it encoded a NACK-type kinesin-like protein (OsNACK), homologous to the essential components of a mitogen-activated protein kinase cascade during plant cytokinesis. A BLAST search indicated that DBS1 was the only gene encoding the OsNACK-type protein in the rice genome, and the dbs1 mutant produced only small amounts of the translatable DBS1 mRNA. Thus, we conclude that the dbs1 mutation causes a severe defect in DBS1 function but does not completely shut it down. We discuss the leaky phenotype of dbs1 under the restricted functioning of OsNACK.
    No preview · Article · Jan 2006 · Plant and Cell Physiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Molecular genetic studies of plant dwarf mutants have indicated that gibberellin (GA) and brassinosteroid (BR) are two major factors that determine plant height; dwarf mutants that are caused by other defects are relatively rare, especially in monocot species. Here, we report a rice (Oryza sativa) dwarf mutant, dwarf and gladius leaf 1 (dgl1), which exhibits only minimal response to GA and BR. In addition to the dwarf phenotype, dgl1 produces leaves with abnormally rounded tip regions. Positional cloning of DGL1 revealed that it encodes a 60-kD microtubule-severing katanin-like protein. The protein was found to be important in cell elongation and division, based on the observed cell phenotypes. GA biosynthetic genes are up-regulated in dgl1, but the expression of BR biosynthetic genes is not enhanced. The enhanced expression of GA biosynthetic genes in dgl1 is not caused by inappropriate GA signaling because the expression of these genes was repressed by GA3 treatment, and degradation of the rice DELLA protein SLR1 was triggered by GA3 in this mutant. Instead, aberrant microtubule organization caused by the loss of the microtubule-severing function of DGL1 may result in enhanced expression of GA biosynthetic genes in that enhanced expression was also observed in a BR-deficient mutant with aberrant microtubule organization. These results suggest that the function of DGL1 is important for cell and organ elongation in rice, and aberrant DGL1-mediated microtubule organization causes up-regulation of gibberellin biosynthetic genes independently of gibberellin signaling.
    Full-text · Article · Sep 2005 · Plant physiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A large number of proteins in the tonoplast, including pumps, carriers, ion channels and receptors support the various functions of the plant vacuole. To date, few proteins involved in these activities have been identified at the molecular level. In this study, proteomic analysis was used to identify new tonoplast proteins. A primary requirement of any organelle analysis by proteomics is that the purity of the isolated organelle needs to be high. Using suspension-cultured Arabidopsis cells (Arabidopsis Col-0 cell suspension), a method was developed for the isolation of intact highly purified vacuoles. No plasma membrane proteins were detected in Western blots of the isolated vacuole fraction, and only a few proteins from the Golgi and endoplasmic reticulum. The proteomic analysis of the purified tonoplast involved fractionation of the proteins by SDS-PAGE and analysis by LC-MS/MS. Using this approach, it was possible to identify 163 proteins. These included well-characterized tonoplast proteins such as V-type H+ -ATPases and V-type H+ -PPases, and others with functions reasonably expected to be related to the tonoplast. There were also a number of proteins for which a function has not yet been deduced.
    Full-text · Article · Jul 2004 · Plant and Cell Physiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A proteomic approach was developed for the identification of membrane-bound proteins of Arabidopsis thaliana. A subcellular fraction enriched in vacuolar membranes was prepared from 4-week-old plants and was washed with various agents to remove peripheral membrane proteins and contaminating soluble proteins. The remaining membrane-bound proteins were then subjected to proteomic analysis. Given that these proteins were resolved poorly by standard two-dimensional gel electrophoresis, we subjected them instead to SDS-polyacrylamide gel electrophoresis and to protein digestion within gel slices with lysylendopeptidase. The resulting peptides were separated by reverse-phase high-performance liquid chromatography and subjected to Edman sequencing. From the 163 peptide peaks analyzed, 69 peptide sequences were obtained, 64 of which were informative. The proteins corresponding to these peptide sequences were identified as belonging to 42 families, including two subfamilies, by comparison with the protein sequences predicted from annotation of the A. thaliana genome. A total of 34 proteins was identified definitively with protein-specific peptide sequences. Transmembrane proteins detected in the membrane fraction included transporters, channels, receptors, and unknown molecules, whereas the remaining proteins, categorized as membrane-anchored proteins, included small GTPases, GTPase binding proteins, heat shock protein 70-like proteins, ribosomal proteins, and unknown proteins. These membrane-anchored proteins are likely attached to membranes by hydrophobic anchor molecules or through tight association with other membrane-bound proteins. This proteomic approach has thus proved effective for the identification of membrane-bound proteins.
    Full-text · Article · May 2004 · DNA Research
  • [Show abstract] [Hide abstract]
    ABSTRACT: We examined the role of SigC (Sll0184), a sigma factor of RNA polymerase (RNAP), in a unicellular cyanobacterium, Synechocystis sp. strain PCC 6803. On the inactivation of sigC, which is an Escherichia coli rpoD homolog, cells were viable but had a low survival rate in the stationary phase of growth under normal physiological conditions, indicating that SigC is a group 2 type sigma factor. In analyses of transcript and protein levels using the sigC knockout strain, it was found that expression of glnB, a nitrogen key regulatory gene, is controlled by SigC in the stationary phase. Primer extension revealed that the glnB nitrogen promoter (P2) was specifically recognized by SigC in the stationary phase under conditions of nitrogen starvation. In vitro studies with purified enzymes indicated effective transcription, on supercoiled DNA templates, from P2 by SigC-RNAP with NtcA which is an activator for nitrogen gene transcription. DNase I footprinting also indicated binding and related sites of NtcA and/or RNAP with SigC on the nitrogen promoter. The unique promoter architecture and the mechanism of transcription by RNAP with SigC are also discussed.
    No preview · Article · Apr 2004 · Bioscience Biotechnology and Biochemistry

Publication Stats

2k Citations
155.84 Total Impact Points

Institutions

  • 1994-2015
    • Nagoya University
      • Graduate School of Bio-Agricultural Sciences
      Nagoya, Aichi, Japan
  • 1994-2004
    • Kazusa DNA Research Institute
      Kizarazu, Chiba, Japan
  • 1992
    • Tsukuba Medical Center Hospital
      Tsukuba, Ibaraki, Japan
    • University of Tsukuba
      • Institute of Biological Sciences
      Tsukuba, Ibaraki, Japan