Donald E Ingber

Harvard Medical School, Boston, Massachusetts, United States

Are you Donald E Ingber?

Claim your profile

Publications (434)2846.12 Total impact

  • [Show abstract] [Hide abstract] ABSTRACT: Studies on hematopoiesis currently rely on animal models because in vitro culture methods do not accurately recapitulate complex bone marrow physiology. We recently described a bone marrow-on-a-chip microfluidic device that enables the culture of living hematopoietic bone marrow and mimics radiation toxicity in vitro (Torisawa et al., Nature Methods 11, 663-669, 2014). In the present study, we used this microdevice to demonstrate continuous blood cell production in vitro and model bone marrow responses to potential radiation countermeasure drugs. The device maintained mouse hematopoietic stem and progenitor cells in normal proportions for at least 2 weeks in culture. Increases in the number of leukocytes and red blood cells into the microfluidic circulation also could be detected over time, and addition of erythropoietin (EPO) induced a significant increase in erythrocyte production. Exposure of the bone marrow chip to gamma radiation resulted in reduction of leukocyte production, and treatment of the chips with two potential therapeutics, granulocyte-colony stimulating factor (G-CSF) or bactericidal/permeability-increasing protein (BPI), induced significant increases in the number of hematopoietic stem cells and myeloid cells in the fluidic outflow. In contrast, BPI was not found to have any effect when analyzed using static marrow cultures, even though it has been previously shown to accelerate recovery from radiation-induced toxicity in vivo. These findings demonstrate the potential value of the bone marrow-on-a-chip for modeling blood cell production, monitoring responses to hematopoiesis-modulating drugs, and testing radiation countermeasures in vitro.
    No preview · Article · Mar 2016 · Tissue Engineering Part C Methods
  • Donald E. Ingber
    [Show abstract] [Hide abstract] ABSTRACT: While studies of cultured cells have led to new insights into biological control, greater understanding of human pathophysiology requires the development of experimental systems that permit analysis of intercellular communications and tissue-tissue interactions in a more relevant organ context. Human organs-on-chips offer a potentially powerful new approach to confront this long-standing problem.
    No preview · Article · Mar 2016 · Cell
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Neurovascular inflammation is a major contributor to many neurological disorders, but modeling these processes in vitro has proven to be difficult. Here, we microengineered a three-dimensional (3D) model of the human blood-brain barrier (BBB) within a microfluidic chip by creating a cylindrical collagen gel containing a central hollow lumen inside a microchannel, culturing primary human brain microvascular endothelial cells on the gel's inner surface, and flowing medium through the lumen. Studies were carried out with the engineered microvessel containing endothelium in the presence or absence of either primary human brain pericytes beneath the endothelium or primary human brain astrocytes within the surrounding collagen gel to explore the ability of this simplified model to identify distinct contributions of these supporting cells to the neuroinflammatory response. This human 3D BBB-on-a-chip exhibited barrier permeability similar to that observed in other in vitro BBB models created with non-human cells, and when stimulated with the inflammatory trigger, tumor necrosis factor-alpha (TNF-α), different secretion profiles for granulocyte colony-stimulating factor (G-CSF) and interleukin-6 (IL-6) were observed depending on the presence of astrocytes or pericytes. Importantly, the levels of these responses detected in the 3D BBB chip were significantly greater than when the same cells were co-cultured in static Transwell plates. Thus, as G-CSF and IL-6 have been reported to play important roles in neuroprotection and neuroactivation in vivo, this 3D BBB chip potentially offers a new method to study human neurovascular function and inflammation in vitro, and to identify physiological contributions of individual cell types.
    Full-text · Article · Mar 2016 · PLoS ONE
  • [Show abstract] [Hide abstract] ABSTRACT: Objective: Infusion of the heme-binding protein hemopexin has been proposed as a novel approach to decrease heme-induced inflammation in settings of red blood cell breakdown, but questions have been raised as to possible side effects related to protease activity and inhibition of chemotaxis. We evaluated protease activity and effects on chemotaxis of purified plasma hemopexin obtained from multiple sources as well as a novel recombinant fusion protein Fc-hemopexin. Methods: Amidolytic assay was performed to measure the protease activity of several plasma derived hemopexin and recombinant Fc-hemopexin. Hemopexin was added to the human monocyte culture in the presence of LPS, and also injected into mice intravenously 30 minutes before inducing neutrophil migration via intraperitoneal injection of thioglycolate. Control groups received the same amount of albumin. Results: Protease activity varied widely between hemopexins. Recombinant Fc-hemopexin bound heme, inhibited the synergy of heme with LPS on TNF production from monocytes, and had minor but detectable protease activity. There was no effect of any hemopexin preparation on chemotaxis, and purified hemopexin did not alter the migration of neutrophils into the peritoneal cavity of mice. Heme and LPS synergistically induced the release of LTB4 from human monocytes, and hemopexin blocked this release, as well as chemotaxis of neutrophils in response to activated monocyte supernatants. Conclusions: Hemopexin does not directly affect chemotaxis through protease activity, but may decrease heme-driven chemotaxis and secondary inflammation by attenuating the induction of chemoattractants from monocytes. This property could be beneficial in some settings to control potentially damaging inflammation induced by heme.
    No preview · Article · Jan 2016 · Molecular Medicine
  • Source
    Full-text · Dataset · Jan 2016
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Accurate assessment of blood haemostasis is essential for the management of patients who use extracorporeal devices, receive anticoagulation therapy or experience coagulopathies. However, current monitoring devices do not measure effects of haemodynamic forces that contribute significantly to platelet function and thrombus formation. Here we describe a microfluidic device that mimics a network of stenosed arteriolar vessels, permitting evaluation of blood clotting within small sample volumes under pathophysiological flow. By applying a clotting time analysis based on a phenomenological mathematical model of thrombus formation, coagulation and platelet function can be accurately measured in vitro in patient blood samples. When the device is integrated into an extracorporeal circuit in pig endotoxemia or heparin therapy models, it produces real-time readouts of alterations in coagulation ex vivo that are more reliable than standard clotting assays. Thus, this disposable device may be useful for personalized diagnostics and for real-time surveillance of antithrombotic therapy in clinic.
    Full-text · Article · Jan 2016 · Nature Communications
  • Source
    Full-text · Article · Jan 2016
  • Basma Hashmi · Tadanori Mammoto · Donald E. Ingber
    [Show abstract] [Hide abstract] ABSTRACT: Due to rising demands and increasing shortages in organ transplantation, tissue engineers continue to actively investigate methods that could potentially induce organ regeneration in the future. Most engineering approaches attempt to recreate lost organs by using scaffolds that mimic the structure of the adult organ. However, tooth organ formation in the embryo results from complex interactions between adjacent epithelial and mesenchymal cells that produce whole teeth through sequential induction steps and progressive remodeling of increasing complex three-dimensional tissue structures. Using the tooth as a model and blueprint for regenerative organ engineering, this chapter reviews the key role that epithelial-mesenchymal interactions, associated mesenchymal condensation, and mechanical forces play in odontogenesis in the embryo. We also discuss dental engineering strategies currently under development that are inspired by this induction mechanism, which employ extracellular matrix proteins and mechanically active polymer scaffolds to induce tooth formation in vitro and in vivo.
    No preview · Chapter · Dec 2015
  • [Show abstract] [Hide abstract] ABSTRACT: Here we describe the development of a human lung 'small airway-on-a-chip' containing a differentiated, mucociliary bronchiolar epithelium and an underlying microvascular endothelium that experiences fluid flow, which allows for analysis of organ-level lung pathophysiology in vitro. Exposure of the epithelium to interleukin-13 (IL-13) reconstituted the goblet cell hyperplasia, cytokine hypersecretion and decreased ciliary function of asthmatics. Small airway chips lined with epithelial cells from individuals with chronic obstructive pulmonary disease recapitulated features of the disease such as selective cytokine hypersecretion, increased neutrophil recruitment and clinical exacerbation by exposure to viral and bacterial infections. With this robust in vitro method for modeling human lung inflammatory disorders, it is possible to detect synergistic effects of lung endothelium and epithelium on cytokine secretion, identify new biomarkers of disease exacerbation and measure responses to anti-inflammatory compounds that inhibit cytokine-induced recruitment of circulating neutrophils under flow.
    No preview · Article · Dec 2015 · Nature Methods
  • Source
    Hyun Jung Kim · Hu Li · James J. Collins · Donald E. Ingber
    [Show abstract] [Hide abstract] ABSTRACT: A human gut-on-a-chip microdevice was used to coculture multiple commensal microbes in contact with living human intestinal epithelial cells for more than a week in vitro and to analyze how gut microbiome, inflammatory cells, and peristalsis-associated mechanical deformations independently contribute to intestinal bacterial overgrowth and inflammation. This in vitro model replicated results from past animal and human studies, including demonstration that probiotic and antibiotic therapies can suppress villus injury induced by pathogenic bacteria. By ceasing peristalsis-like motions while maintaining luminal flow, lack of epithelial deformation was shown to trigger bacterial overgrowth similar to that observed in patients with ileus and inflammatory bowel disease. Analysis of intestinal inflammation on-chip revealed that immune cells and lipopolysaccharide endotoxin together stimulate epithelial cells to produce four proinflammatory cytokines (IL-8, IL-6, IL-1β, and TNF-α) that are necessary and sufficient to induce villus injury and compromise intestinal barrier function. Thus, this human gut-on-a-chip can be used to analyze contributions of microbiome to intestinal pathophysiology and dissect disease mechanisms in a controlled manner that is not possible using existing in vitro systems or animal models.
    Preview · Article · Dec 2015 · Proceedings of the National Academy of Sciences
  • [Show abstract] [Hide abstract] ABSTRACT: Background and purpose: The goal of this study is to combine temporary endovascular bypass (TEB) with a novel shear-activated nanotherapeutic (SA-NT) that releases recombinant tissue-type plasminogen activator (r-tPA) when exposed to high levels of hemodynamic stress and to determine if this approach can be used to concentrate r-tPA at occlusion sites based on high shear stresses created by stent placement. Methods: A rabbit model of carotid vessel occlusion was used to test the hypothesis that SA-NT treatment coupled with TEB provides high recanalization rates while reducing vascular injury. We evaluated angiographic recanalization with TEB alone, intra-arterial delivery of soluble r-tPA alone, or TEB combined with 2 doses of intra-arterial infusion of either the SA-NT or soluble r-tPA. Vascular injury was compared against stent-retriever thrombectomy. Results: Shear-targeted delivery of r-tPA using the SA-NT resulted in the highest rate of complete recanalization when compared with controls (P=0.0011). SA-NT (20 mg) had a higher likelihood of obtaining complete recanalization as compared with TEB alone (odds ratio 65.019, 95% confidence interval 1.77, >1000; P=0.0231), intra-arterial r-tPA alone (odds ratio 65.019, 95% confidence interval 1.77, >1000; P=0.0231), or TEB with soluble r-tPA (2 mg; odds ratio 18.78, 95% confidence interval 1.28, 275.05; P=0.0322). Histological analysis showed circumferential loss of endothelium restricted to the area where the TEB was deployed; however, there was significantly less vascular injury using a TEB as compared with stent-retriever procedure (odds ratio 12.97, 95% confidence interval 8.01, 21.02; P<0.0001). Conclusions: A novel intra-arterial, nanoparticle-based thrombolytic therapy combined with TEB achieves high rates of complete recanalization. Moreover, this approach reduces vascular trauma as compared with stent-retriever thrombectomy.
    No preview · Article · Oct 2015 · Stroke
  • [Show abstract] [Hide abstract] ABSTRACT: The effectiveness of stem cell therapies has been hampered by cell death and limited control over fate. These problems can be partially circumvented by using macroporous biomaterials that improve the survival of transplanted stem cells and provide molecular cues to direct cell phenotype. Stem cell behaviour can also be controlled in vitro by manipulating the elasticity of both porous and non-porous materials, yet translation to therapeutic processes in vivo remains elusive. Here, by developing injectable, void-forming hydrogels that decouple pore formation from elasticity, we show that mesenchymal stem cell (MSC) osteogenesis in vitro, and cell deployment in vitro and in vivo, can be controlled by modifying, respectively, the hydrogel's elastic modulus or its chemistry. When the hydrogels were used to transplant MSCs, the hydrogel's elasticity regulated bone regeneration, with optimal bone formation at 60 kPa. Our findings show that biophysical cues can be harnessed to direct therapeutic stem cell behaviours in situ.
    No preview · Article · Sep 2015 · Nature Materials
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Magnetic nanoparticles have been employed to capture pathogens for many biological applications; however, optimal particle sizes have been determined empirically in specific capturing protocols. Here, a theoretical model that simulates capture of bacteria is described and used to calculate bacterial collision frequencies and magnetophoretic properties for a range of particle sizes. The model predicts that particles with a diameter of 460 nm should produce optimal separation of bacteria in buffer flowing at 1 L h−1. Validating the predictive power of the model, Staphylococcus aureus is separated from buffer and blood flowing through magnetic capture devices using six different sizes of magnetic particles. Experimental magnetic separation in buffer conditions confirms that particles with a diameter closest to the predicted optimal particle size provide the most effective capture. Modeling the capturing process in plasma and blood by introducing empirical constants (ce), which integrate the interfering effects of biological components on the binding kinetics of magnetic beads to bacteria, smaller beads with 50 nm diameters are predicted that exhibit maximum magnetic separation of bacteria from blood and experimentally validated this trend. The predictive power of the model suggests its utility for the future design of magnetic separation for diagnostic and therapeutic applications.
    Preview · Article · Sep 2015 · Small
  • [Show abstract] [Hide abstract] ABSTRACT: Here we describe development of an extracorporeal hemoadsorption device for sepsis therapy that employs commercially available polysulfone or polyethersulfone hollow fiber filters similar to those used clinically for hemodialysis, covalently coated with a genetically engineered form of the human opsonin Mannose Binding Lectin linked to an Fc domain (FcMBL) that can cleanse a broad range of pathogens and endotoxin from flowing blood without having to first determine their identity. When tested with human whole blood in vitro, the FcMBL hemoadsorption filter (FcMBL-HF) produced efficient (90-99%) removal of Gram negative (Escherichia coli) and positive (Staphylococcus aureus) bacteria, fungi (Candida albicans) and lipopolysaccharide (LPS)-endotoxin. When tested in rats, extracorporeal therapy with the FcMBL-HF device reduced circulating pathogen and endotoxin levels by more than 99%, and prevented pathogen engraftment and inflammatory cell recruitment in the spleen, lung, liver and kidney when compared to controls. Studies in rats revealed that treatment with bacteriocidal antibiotics resulted in a major increase in the release of microbial fragments or 'pathogen-associated molecular patterns' (PAMPs) in vivo, and that these PAMPs were efficiently removed from blood within 2 h using the FcMBL-HF; in contrast, they remained at high levels in animals treated with antibiotics alone. Importantly, cleansing of PAMPs from the blood of antibiotic-treated animals with the FcMBL-hemoadsorbent device resulted in reduced organ pathogen and endotoxin loads, suppressed inflammatory responses, and resulted in more stable vital signs compared to treatment with antibiotics alone. As PAMPs trigger the cytokine cascades that lead to development of systemic inflammatory response syndrome and contribute to septic shock and death, co-administration of FcMBL-hemoadsorption with antibiotics could offer a more effective approach to sepsis therapy.
    No preview · Article · Jul 2015 · Biomaterials
  • Source
    Full-text · Dataset · Jul 2015
  • Amy Brock · Silva Krause · Donald E Ingber
    [Show abstract] [Hide abstract] ABSTRACT: Differentiation therapies that induce malignant cells to stop growing and revert to normal tissue-specific differentiated cell types are successful in the treatment of a few specific haematological tumours. However, this approach has not been widely applied to solid tumours because their developmental origins are less well understood. Recent advances suggest that understanding tumour cell plasticity and how intrinsic factors (such as genetic noise and microenvironmental signals, including physical cues from the extracellular matrix) govern cell state switches will help in the development of clinically relevant differentiation therapies for solid cancers.
    No preview · Article · Jul 2015 · Nature Reviews Cancer
  • [Show abstract] [Hide abstract] ABSTRACT: Angiogenesis, the growth of new blood vessels, plays a key role in organ development, homeostasis, and regeneration and cooperation of multiple angiogenic factors, rather than a single factor, is required for physiological angiogenesis. Recently, we have reported that soluble platelet-rich plasma (PRP) extract, which contains abundant angiopoietin-1 and multiple other angiogenic factors, stimulates angiogenesis and maintains vascular integrity in vitro and in vivo. In this report, we have demonstrated that mouse PRP extract increases phosphorylation levels of the Wnt co-receptor low-density lipoprotein receptor-related protein 5 (LRP5), and thereby activates angiogenic factor receptor Tie2 in endothelial cells (ECs) and accelerates EC sprouting and lung epithelial cell budding in vitro. PRP extract also increases phosphorylation levels of Tie2 in the mouse lungs and accelerates compensatory lung growth and recovery of exercise capacity after unilateral pneumonectomy in mice, while soluble Tie2 receptor or Lrp5 knockdown attenuates the effects of PRP extract. Since human PRP extract is generated from autologous peripheral blood and can be stored at -80 °C, our findings may lead to the development of novel therapeutic interventions for various angiogenesis-related lung diseases and the improvement of the strategies for lung regeneration.
    No preview · Article · Jun 2015 · American Journal of Respiratory Cell and Molecular Biology
  • Source
    Justin Werfel · Donald E. Ingber · Yaneer Bar-Yam
    [Show abstract] [Hide abstract] ABSTRACT: Standard evolutionary theories of aging and mortality, implicitly based on assumptions of spatial averaging, hold that natural selection cannot favor shorter lifespan without direct compensating benefit to individual reproductive success. Here we show that both theory and phenomenology are consistent with programmed death. Spatial evolutionary models show that self-limited lifespan robustly results in long-term benefit to a lineage; longer-lived variants may have a reproductive advantage for many generations, but shorter lifespan ultimately confers long-term reproductive advantage through environmental feedback acting on much longer time scales. Numerous model variations produce the same qualitative result, demonstrating insensitivity to detailed assumptions; the key conditions under which self-limited lifespan is favored are spatial extent and locally exhaustible resources. Numerous empirical observations can parsimoniously be explained in terms of long-term selective advantage for intrinsic mortality. Classically anomalous empirical data on natural lifespans and intrinsic mortality, including observations of longer lifespan associated with increased predation, and evidence of programmed death in both unicellular and multicellular organisms, are consistent with specific model predictions. The generic nature of the spatial model conditions under which intrinsic mortality is favored suggests a firm theoretical basis for the idea that evolution can quite generally select for shorter lifespan directly.
    Preview · Article · Jun 2015
  • Justin Werfel · Donald E. Ingber · Yaneer Bar-Yam
    [Show abstract] [Hide abstract] ABSTRACT: Standard evolutionary theories of aging and mortality, implicitly based on mean-field assumptions, hold that programed mortality is untenable, as it opposes direct individual benefit. We show that in spatial models with local reproduction, programed deaths instead robustly result in long-term benefit to a lineage, by reducing local environmental resource depletion via spatiotemporal patterns causing feedback over many generations. Results are robust to model variations, implying that direct selection for shorter life span may be quite widespread in nature.
    No preview · Article · Jun 2015 · Physical Review Letters
  • [Show abstract] [Hide abstract] ABSTRACT: Tumor vessels are characterized by abnormal morphology and hyperpermeability that together cause inefficient delivery of chemotherapeutic agents. Although vascular endothelial growth factor has been established as a critical regulator of tumor angiogenesis, the role of mechanical signaling in the regulation of tumor vasculature or tumor endothelial cell (TEC) function is not known. Here we show that the mechanosensitive ion channel transient receptor potential vanilloid 4 (TRPV4) regulates tumor angiogenesis and tumor vessel maturation via modulation of TEC mechanosensitivity. We found that TECs exhibit reduced TRPV4 expression and function, which is correlated with aberrant mechanosensitivity towards extracellular matrix stiffness, increased migration and abnormal angiogenesis by TEC. Further, syngeneic tumor experiments revealed that the absence of TRPV4 induced increased vascular density, vessel diameter and reduced pericyte coverage resulting in enhanced tumor growth in TRPV4 knockout mice. Importantly, overexpression or pharmacological activation of TRPV4 restored aberrant TEC mechanosensitivity, migration and normalized abnormal angiogenesis in vitro by modulating Rho activity. Finally, a small molecule activator of TRPV4, GSK1016790A, in combination with anticancer drug cisplatin, significantly reduced tumor growth in wild-type mice by inducing vessel maturation. Our findings demonstrate TRPV4 channels to be critical regulators of tumor angiogenesis and represent a novel target for anti-angiogenic and vascular normalization therapies.Oncogene advance online publication, 13 April 2015; doi:10.1038/onc.2015.83.
    No preview · Article · Apr 2015 · Oncogene

Publication Stats

56k Citations
2,846.12 Total Impact Points


  • 1986-2013
    • Harvard Medical School
      • • Department of Surgery
      • • Department of Biological Chemistry and Molecular Pharmacology
      • • Department of Pathology
      • • Department of Medicine
      Boston, Massachusetts, United States
  • 1991-2012
    • Harvard University
      • • School of Engineering and Applied Sciences
      • • Department of Chemistry and Chemical Biology
      Cambridge, Massachusetts, United States
  • 1987-2010
    • Boston Children's Hospital
      • Department of Pathology
      Boston, Massachusetts, United States
  • 2009
    • University of Michigan
      Ann Arbor, Michigan, United States
    • University of Illinois, Urbana-Champaign
      • Department of Mechanical Science and Engineering
      Urbana, IL, United States
  • 2007
    • Children's Hospital of Richmond
      Ричмонд, Virginia, United States
    • Columbia University
      • Department of Biomedical Engineering
      New York, New York, United States
  • 1993-2004
    • Massachusetts Institute of Technology
      • • Department of Mechanical Engineering
      • • Department of Chemical Engineering
      Cambridge, MA, United States
  • 2000
    • Carnegie Mellon University
      • Department of Materials Science and Engineering
      Pittsburgh, PA, United States
  • 1999
    • Johns Hopkins University
      • Department of Biomedical Engineering
      Baltimore, MD, United States
    • Boston University
      Boston, Massachusetts, United States
  • 1991-1996
    • Brigham and Women's Hospital
      • Department of Pathology
      Boston, MA, United States
  • 1990
    • Wolfson Childrens Hospital
      Jacksonville, Florida, United States
  • 1985
    • Yale University
      • Department of Cell Biology
      New Haven, Connecticut, United States
  • 1984
    • Yale-New Haven Hospital
      New Haven, Connecticut, United States