Donald P Pizzo

University of California, San Diego, San Diego, California, United States

Are you Donald P Pizzo?

Claim your profile

Publications (34)172.57 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Adverse effects of obesity have been linked to inflammation in various tissues, but studies on placental inflammation and obesity have demonstrated conflicting findings. We sought to investigate the influence of pregravid obesity and fetal sex on placental histopathology while controlling for diabetes and hypertension.
    No preview · Article · Dec 2015 · Placenta

  • No preview · Article · Nov 2015 · Neuro-Oncology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Appropriate self-renewal and differentiation of trophoblast stem cells (TSCs) are key factors for proper placental development and function and, in turn, for appropriate in utero fetal growth. To identify novel TSC-specific genes, we performed genome-wide expression profiling of TSCs, embryonic stem cells, epiblast stem cells, and mouse embryo fibroblasts, derived from mice of the same genetic background. Our analysis revealed a high expression of Sox21 in TSCs compared with other cell types. Sox21 levels were high in undifferentiated TSCs and were dramatically reduced upon differentiation. In addition, modulation of Sox21 expression in TSCs affected lineage-specific differentiation, based on both marker analysis and functional assessment. Our results implicate Sox21 specifically in the promotion of spongiotrophoblast and giant cell differentiation and establish a new mechanism through which trophoblast sublineages are specified.
    No preview · Article · Oct 2015 · Journal of Biological Chemistry

  • No preview · Article · Oct 2015 · Molecular Cancer Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: In glioblastoma (GBM), the gene for epidermal growth factor receptor (EGFR) is frequently amplified. EGFR mutations also are common, including a truncation mutation that yields a constitutively active variant called EGFR variant (v)III. EGFRvIII-positive GBM progresses rapidly; however, the reason for this is not clear because the activity of EGFRvIII is attenuated compared with EGF-ligated wild-type EGFR. We hypothesized that EGFRvIII-expressing GBM cells selectively express other oncogenic receptors that support tumor progression. Methods: Mining of The Cancer Genome Atlas prompted us to test whether GBM cells in culture, which express EGFRvIII, selectively express vascular endothelial growth factor receptor (VEGFR)2. We also studied human GBM propagated as xenografts. We then applied multiple approaches to test the effects of VEGFR2 on GBM cell growth, apoptosis, and cellular senescence. Results: In human GBM, EGFR overexpression and EGFRvIII positivity were associated with increased VEGFR2 expression. In GBM cells in culture, EGFRvIII-initiated cell signaling increased expression of VEGFR2, which prevented cellular senescence and promoted cell cycle progression. The VEGFR-selective tyrosine kinase inhibitor cediranib decreased tumor DNA synthesis, increased staining for senescence-associated β-galactosidase, reduced retinoblastoma phosphorylation, and increased p27(Kip1), all markers of cellular senescence. Similar results were obtained when VEGFR2 was silenced. Conclusions: VEGFR2 expression by GBM cells supports cell cycle progression and prevents cellular senescence. Coexpression of VEGFR2 by GBM cells in which EGFR signaling is activated may contribute to the aggressive nature of these cells.
    Full-text · Article · Sep 2015 · Neuro-Oncology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The available evidence suggests that the lethality of glioblastoma is driven by small subpopulations of cells that self-renew and exhibit tumorigenicity. It remains unclear whether tumorigenicity exists as a static property of a few cells or as a dynamically acquired property. We used tumor-sphere and xenograft formation as assays for tumorigenicity and examined subclones isolated from established and primary glioblastoma lines. Our results indicate that glioblastoma tumorigenicity is largely deterministic, yet the property can be acquired spontaneously at low frequencies. Further, these dynamic transitions are governed by epigenetic reprogramming through the lysine-specific demethylase 1 (LSD1). LSD depletion increases trimethylation of histone 3 lysine 4 at the avian myelocytomatosis viral oncogene homolog (MYC) locus, which elevates MYC expression. MYC, in turn, regulates oligodendrocyte lineage transcription factor 2 (OLIG2), SRY (sex determining region Y)-box 2 (SOX2), and POU class 3 homeobox 2 (POU3F2), a core set of transcription factors required for reprogramming glioblastoma cells into stem-like states. Our model suggests epigenetic regulation of key transcription factors governs transitions between tumorigenic states and provides a framework for glioblastoma therapeutic development.
    Full-text · Article · Jul 2015 · Proceedings of the National Academy of Sciences

  • No preview · Article · Jan 2015 · Cancer Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: EGFR is the most common genetically altered oncogene in glioblastoma (GBM), but small molecule EGFR tyrosine kinase inhibitors (TKIs) have failed to yield durable clinical benefit. Here we show that in two novel model systems of acquired resistance to EGFR TKIs, elevated expression of urokinase plasminogen activator (uPA) drives signaling through the MAPK pathway, which results in suppression of the pro-apoptotic BCL2-family member protein BIM (BCL2L11). In patient-derived GBM cells and genetic GBM models uPA is shown to suppress BIM levels through ERK1/2 phosphorylation, which can be reversed by siRNA mediated knockdown of uPA. TKI-resistant GBMs are re-sensitized to EGFR TKIs by pharmacological inhibition of MEK or a BH3 mimetic drug to replace BIM function. A link between the uPA-uPAR-ERK1/2 pathway and BIM has not been previously demonstrated in GBM, and involvement of this signaling axis in resistance provides rationale for a new strategy to target EGFR TKI-resistant GBM. Copyright © 2014, American Association for Cancer Research.
    Full-text · Article · Nov 2014 · Cancer Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies indicated that intracerebroventricular administration of nerve growth factor (NGF) leads to massive Schwann cell hyperplasia surrounding the medulla oblongata and spinal cord. This study was designed to characterize the proliferation of peripheral glial cells, that is, Schwann and satellite cells, in the trigeminal ganglia and dorsal root ganglia (DRG) of adult rats during two weeks of NGF infusion using bromodeoxyuridine (BrdU) to label dividing cells. The trigeminal ganglia as well as the cervical and lumbar DRG were analyzed. Along the entire neuraxis a small number of dividing cells were observed within these regions under physiological condition. NGF infusion has dramatically increased the generation of new cells in the neuronal soma and axonal compartments of sensory ganglia and along the dorsal root and the dorsal root entry zone. Quantification of BrdU positive cells within sensory ganglia revealed a 2.3- to 3-fold increase in glial cells compared to controls with a similar response to NGF for the different peripheral ganglia examined. Immunofluorescent labeling with S100 β revealed that Schwann and satellite cells underwent mitosis after NGF administration. These data indicate that intracerebroventricular NGF infusion significantly induces gliogenesis in trigeminal ganglia and the spinal sensory ganglia and along the dorsal root entry zone as well as the dorsal root.
    Full-text · Article · Mar 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Expanded hexanucleotide repeats in the chromosome 9 open reading frame 72 (C9orf72) gene are the most common genetic cause of ALS and frontotemporal degeneration (FTD). Here, we identify nuclear RNA foci containing the hexanucleotide expansion (GGGGCC) in patient cells, including white blood cells, fibroblasts, glia, and multiple neuronal cell types (spinal motor, cortical, hippocampal, and cerebellar neurons). RNA foci are not present in sporadic ALS, familial ALS/FTD caused by other mutations (SOD1, TDP-43, or tau), Parkinson disease, or nonneurological controls. Antisense oligonucleotides (ASOs) are identified that reduce GGGGCC-containing nuclear foci without altering overall C9orf72 RNA levels. By contrast, siRNAs fail to reduce nuclear RNA foci despite marked reduction in overall C9orf72 RNAs. Sustained ASO-mediated lowering of C9orf72 RNAs throughout the CNS of mice is demonstrated to be well tolerated, producing no behavioral or pathological features characteristic of ALS/FTD and only limited RNA expression alterations. Genome-wide RNA profiling identifies an RNA signature in fibroblasts from patients with C9orf72 expansion. ASOs targeting sense strand repeat-containing RNAs do not correct this signature, a failure that may be explained, at least in part, by discovery of abundant RNA foci with C9orf72 repeats transcribed in the antisense (GGCCCC) direction, which are not affected by sense strand-targeting ASOs. Taken together, these findings support a therapeutic approach by ASO administration to reduce hexanucleotide repeat-containing RNAs and raise the potential importance of targeting expanded RNAs transcribed in both directions.
    Full-text · Article · Oct 2013 · Proceedings of the National Academy of Sciences
  • [Show abstract] [Hide abstract]
    ABSTRACT: The placenta is a transient organ that is necessary for proper fetal development. Its main functional component is the trophoblast, which is derived from extra-embryonic ectoderm. Little is known about early trophoblast differentiation in the human embryo, owing to lack of a proper in vitro model system. Human embryonic stem cells (hESCs) differentiate into functional trophoblast following BMP4 treatment in the presence of feeder-conditioned media; however, this model has not been widely accepted, in part owing to a lack of proof for a trophoblast progenitor population. We have previously shown that p63, a member of the p53 family of nuclear proteins, is expressed in proliferative cytotrophoblast (CTB), precursors to terminally differentiated syncytiotrophoblast (STB) in chorionic villi and extravillous trophoblast (EVT) at the implantation site. Here, we show that BMP4-treated hESCs differentiate into bona fide CTB by direct comparison with primary human placental tissues and isolated CTB through gene expression profiling. We show that, in primary CTB, p63 levels are reduced as cells differentiate into STB, and that forced expression of p63 maintains cyclin B1 and inhibits STB differentiation. We also establish that, similar to in vivo events, hESC differentiation into trophoblast is characterized by a p63(+)/KRT7(+) CTB stem cell state, followed by formation of functional KLF4(+) STB and HLA-G(+) EVT. Finally, we illustrate that downregulation of p63 by shRNA inhibits differentiation of hESCs into functional trophoblast. Taken together, our results establish that BMP4-treated hESCs are an excellent model of human trophoblast differentiation, closely mimicking the in vivo progression from p63(+) CTB stem cells to terminally differentiated trophoblast subtypes.
    No preview · Article · Sep 2013 · Development
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recruitment of monocytes into sites of inflammation is essential in the immune response. In cancer, recruited monocytes promote invasion, metastasis, and possibly angiogenesis. LDL receptor-related protein (LRP1) is an endocytic and cell-signaling receptor that regulates cell migration. In this study, we isografted PanO2 pancreatic carcinoma cells into mice in which LRP1 is deleted in myeloid lineage cells. Recruitment of monocytes into orthotopic and subcutaneous tumors was significantly increased in these mice, compared with control mice. LRP1-deficient bone marrow-derived macrophages (BMDMs) expressed higher levels of multiple chemokines, including, most prominently, macrophage inflammatory protein-1α/CCL3, which is known to amplify inflammation. Increased levels of CCL3 were detected in LRP1-deficient tumor-associated macrophages (TAMs), isolated from PanO2 tumors, and in RAW 264.7 macrophage-like cells in which LRP1 was silenced. LRP1-deficient BMDMs migrated more rapidly than LRP1-expressing cells in vitro. The difference in migration was reversed by CCL3-neutralizing antibody, by CCR5-neutralizing antibody, and by inhibiting NFκB with JSH-23. Inhibiting NFκB reversed the increase in CCL3 expression associated with LRP1 gene-silencing in RAW 264.7 cells. Tumors formed in mice with LRP1-deficient myeloid cells demonstrated increased angiogenesis. Although VEGF mRNA expression was not increased in LRP1-deficient TAMs, at the single-cell level, the increase in TAM density in tumors with LRP1-deficient myeloid cells may have allowed these TAMs to contribute an increased amount of VEGF to the tumor microenvironment. Our results demonstrate that macrophage density in tumors is correlated with cancer angiogenesis in a novel model system. Myeloid cell LRP1 may be an important regulator of cancer progression.
    Full-text · Article · Apr 2013 · Cancer Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic pancreatitis is an inflammatory disease that causes progressive destruction of pancreatic acinar cells and, ultimately, loss of pancreatic function. We investigated the role of IκB kinase α (IKKα) in pancreatic homeostasis. Pancreas-specific ablation of IKKα (IkkαΔpan) caused spontaneous and progressive acinar cell vacuolization and death, interstitial fibrosis, inflammation, and circulatory release of pancreatic enzymes, clinical signs resembling those of human chronic pancreatitis. Loss of pancreatic IKKα causes defective autophagic protein degradation, leading to accumulation of p62-mediated protein aggregates and enhanced oxidative and ER stress in acinar cells, but none of these effects is related to NF-κB. Pancreas-specific p62 ablation prevented ER and oxidative stresses and attenuated pancreatitis in IkkαΔpan mice, suggesting that cellular stress induced by p62 aggregates promotes development of pancreatitis. Importantly, downregulation of IKKα and accumulation of p62 aggregates were also observed in chronic human pancreatitis. Our studies demonstrate that IKKα, which may control autophagic protein degradation through its interaction with ATG16L2, plays a critical role in maintaining pancreatic acinar cell homeostasis, whose dysregulation promotes pancreatitis through p62 aggregate accumulation.
    Full-text · Article · Apr 2013 · The Journal of clinical investigation
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Breast cancer and melanoma cells commonly metastasize to the brain using homing mechanisms that are poorly understood. Cancer patients with brain metastases display poor prognosis and survival due to the lack of effective therapeutics and treatment strategies. Recent work using intravital microscopy and preclinical animal models indicates that metastatic cells colonize the brain specifically in close contact with the existing brain vasculature. However, it is not known how contact with the vascular niche promotes microtumor formation. Here, we investigate the role of connexins in mediating early events in brain colonization using transparent zebrafish and chicken embryo models of brain metastasis. We provide evidence that breast cancer and melanoma cells utilize connexin gap junction proteins (Cx43, Cx26) to initiate brain metastatic lesion formation in association with the vasculature. RNAi depletion of connexins or pharmacological blocking of connexin-mediated cell-cell communication with carbenoxolone inhibited brain colonization by blocking tumor cell extravasation and blood vessel co-option. Activation of the metastatic gene twist in breast cancer cells increased Cx43 protein expression and gap junction communication leading to increased extravasation, blood vessel co-option, and brain colonization. Conversely, inhibiting twist activity reduced Cx43-mediated gap junction coupling and brain colonization. Database analyses of patient histories revealed increased expression of connexins 26 and 43 in primary melanoma and breast cancer tumors, respectively, which correlated with increased cancer recurrence and metastasis. Together our data indicate that connexins 43 and 26 mediate cancer cell metastasis to the brain and suggests that connexins might be exploited therapeutically to benefit cancer patients with metastatic disease.
    Full-text · Article · Jan 2013 · Journal of Cell Science
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Agmatine, an endogenous metabolite of arginine, selectively suppresses growth in cells with high proliferative kinetics, such as transformed cells, through depletion of intracellular polyamine levels. In the present study, we depleted intracellular polyamine content with agmatine to determine if attrition by cell death contributes to the growth-suppressive effects. We did not observe an increase in necrosis, DNA fragmentation, or chromatin condensation in Ha-Ras-transformed NIH-3T3 cells administered agmatine. In response to Ca(2+)-induced oxidative stress in kidney mitochondrial preparations, agmatine demonstrated attributes of a free radical scavenger by protecting against the oxidation of sulfhydryl groups and decreasing hydrogen peroxide content. The functional outcome was a protective effect against Ca(2+)-induced mitochondrial swelling and mitochondrial membrane potential collapse. We also observed decreased expression of proapoptotic Bcl-2 family members and of execution caspase-3, implying antiapoptotic potential. Indeed, we found that apoptosis induced by camptothecin or 5-fluorourocil was attenuated in cells administered agmatine. Agmatine may offer an alternative to the ornithine decarboxylase inhibitor difluoromethyl ornithine for depletion of intracellular polyamine content while avoiding the complications of increasing polyamine import and reducing the intracellular free radical scavenger capacity of polyamines. Depletion of intracellular polyamine content with agmatine suppressed cell growth, yet its antioxidant capacity afforded protection from mitochondrial insult and resistance to cellular apoptosis. These results could explain the beneficial outcomes observed with agmatine in models of injury and disease.
    Full-text · Article · Apr 2009 · AJP Cell Physiology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Exogenously provided NGF enhances cognitive performance in impaired rodents and humans and is currently a promising compound for the treatment of dementia. To investigate whether NGF-dependent cognitive improvement may be due in part to increased hippocampal neurogenesis, adult and aged male rats were treated with NGF or vehicle intracerebroventricularly for 6 or 20 days followed by evaluation of cholinergic parameters and hippocampal neurogenesis. We show that NGF increases hippocampal cholinergic activity as rapidly as 3 days after initiation of treatment. NGF treatment for 6 days did not affect proliferation of progenitor cells in the dentate gyrus granule cell layer (GCL). However, continuous NGF infusion enhanced survival of new neurons in the GCL of young adult, but not aged rats. Taken together, these findings suggest that NGF, likely mediated through increased cholinergic tone, promotes neurogenesis in the adult hippocampus, which may relate to the nootropic action of NGF.
    No preview · Article · May 2007 · Neurobiology of Disease
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: High fat diets and obesity pose serious health problems, such as type II diabetes and cardiovascular disease. Impaired cognitive function is also associated with high fat intake. In this study, we show that just 4 weeks of feeding a diet rich in fat ad libitum decreased hippocampal neurogenesis in male, but not female, rats. There was no obesity, but male rats fed a diet rich in fat exhibited elevated serum corticosterone levels compared with those fed standard rat chow. These data indicate that high dietary fat intake can disrupt hippocampal neurogenesis, probably through an increase in serum corticosterone levels, and that males are more susceptible than females.
    Full-text · Article · Jan 2007 · European Journal of Neurology
  • Helena Frielingsdorf · Leon J Thal · Donald P Pizzo
    [Show abstract] [Hide abstract]
    ABSTRACT: The objective of the present study was to determine whether a systematic optimization of Morris water maze (mwm) testing parameters could reveal a significant role of the septohippocampal cholinergic system in spatial working memory. Young adult rats were lesioned using 192 IgG-saporin infused bilaterally into the medial septum. Lesions were near complete as measured by choline acetyltransferase (ChAT) activity and immunohistochemistry. Behavioral testing was performed in three phases. In the first, lesioned and unlesioned rats were trained in the mwm focusing on working memory, which was tested using novel platform locations daily. In the second phase, the optimal locations were retested with increasing intertrial intervals (ITI). In the third phase, intracerebroventricular infusions of nerve growth factor (NGF) were employed to enhance cholinergic activity of the unlesioned rats and potentially further separate group performance. Neither the standard or increased ITI resulted in a consistent significant difference in spatial working memory between groups. In addition, NGF treatment also failed to induce a significant difference in behavioral performance. In conclusion, impairments in working memory as assessed by the mwm could not be revealed despite a greater than 90% loss of hippocampal ChAT and the use of optimal testing parameters and NGF treatment.
    No preview · Article · Apr 2006 · Behavioural Brain Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Regulatable gene therapy systems provide a method to alter neurotransmitter levels in vivo. We developed a rodent fibroblast cell line expressing the choline acetyltransferase (ChAT) cDNA that is silenced by doxycycline (DOX) administration. The ability of the cell line to improve cognition was tested by grafting after cholinergic lesions. Ibotenic acid was injected bilaterally into the nucleus basalis of rats, which were distributed into three groups. One group received no treatment, while the second group received cortical transplants (Graft). The third group received identical grafts but was treated with DOX to turn off ChAT expression (Graft/DOX). An unlesioned group served as control. Water maze acquisition was significantly better in the Graft group compared to the Graft/DOX group, an effect also seen in the retention and spatial probe trials. However, cognitive enhancement was restricted to spatial tasks, as inhibitory avoidance or open-field activity measures were unchanged. Molecular and biochemical analyses confirmed that DOX regulated transgene transcription and ACh levels. This study demonstrates that regulatable gene therapy has therapeutic value for single-gene disorders and also provides a mechanism to deliver small molecules in a spatiotemporal pattern to delineate the role of these compounds in discrete behavioral tasks.
    Preview · Article · Feb 2006 · Molecular Therapy
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A relatively early and substantial loss of basal forebrain cholinergic neurons is a constant feature of Alzheimer's disease (AD). However, the mechanisms that contribute to the selective vulnerability of these neurons are not fully delineated. In the present series of experiments, we determined the possible contribution of apoptotic processes and other pathologic cascades to the degeneration of the cholinergic neurons of the nucleus basalis of Meynert (NBM) in AD. In contrast to neurons in the frontal cortex which showed prominent DNA fragmentation as detected by the TUNEL method, no DNA fragmentation was observed within the NBM in any of the AD or normal brains. Similarly, immunoreactivity for the apoptotic signals Fas, Fas-ligand, Bax, Bcl-x, caspase-8, caspase-9 and caspase-3 was absent from the NBM of AD and control brains. In contrast, a substantial subpopulation of cholinergic neurons within the NBM in AD displayed prominent immunoreactivity for the apoptotic signal Fas-associated death domain (FADD) in the form of tangles. FADD immunoreactivity was also present in dystrophic neurites. FADD-positive tangle-like structures were localized in neurons which contained immunoreactivity for the cholinergic marker choline acetyltransferase (ChAT) and the low affinity neurotrophin receptor p75NTR. While many of the NBM cholinergic neurons in control brains contained immunoreactivity for the calcium binding protein calbindin-D28K (CB), the NBM neurons in AD displayed a substantial loss of CB immunoreactivity. Importantly, most of FADD-immunoreactive cholinergic neurons were devoid of CB immunoreactivity, and, conversely, most CB-positive cholinergic neurons had no FADD immunoreactivity. FADD immunoreactivity within the basal forebrain was colocalized with phosphorylated tau immunoreactive tangles and dystrophic neurites. In contrast, FADD immunoreactivity did not appear to be related to the primarily diffuse amyloid-beta deposits intermingled between cholinergic neurons in AD NBM. Finally, many CD68-positive microglia were observed surrounding the NBM cholinergic neurons in AD. In conclusion, the findings of the present study indicate that, while the FADD apoptotic signaling pathway may be triggered within the basal forebrain cholinergic neurons in AD, the apoptotic cascade is most likely aborted as no DNA fragmentation was detected and the executioner caspase-3 was not up-regulated within these neurons. The findings also suggest possible relationships between loss of CB, FADD expression and phosphorylation of tau within the basal forebrain cholinergic neurons in AD.
    Preview · Article · Nov 2005 · Experimental Neurology

Publication Stats

971 Citations
172.57 Total Impact Points

Institutions

  • 1999-2015
    • University of California, San Diego
      • • Department of Neurosciences
      • • Department of Medicine
      San Diego, California, United States
  • 1992-1996
    • University of Texas Medical Branch at Galveston
      • • Division of Neurosurgery
      • • Department of Neuroscience and Cell Biology
      Galveston, Texas, United States