G L Fain

Jules Stein Eye Institute, Maryland, United States

Are you G L Fain?

Claim your profile

Publications (115)833.64 Total impact

  • Gordon L. Fain
    [Show abstract] [Hide abstract]
    ABSTRACT: A candidate gene approach has finally identified the 3,4-dehydrogenase that converts vitamin A1 into vitamin A2 to supply the chromophore for rhodopsin that freshwater vertebrates need for long-wavelength vision.
    No preview · Article · Dec 2015 · Current biology: CB
  • Jürgen Reingruber · David Holcman · Gordon L Fain
    [Show abstract] [Hide abstract]
    ABSTRACT: Rod photoreceptors are among the most sensitive light detectors in nature. They achieve their remarkable sensitivity across a wide variety of species through a number of essential adaptations: a specialized cellular geometry, a G-protein cascade with an unusually stable receptor molecule, a low-noise transduction mechanism, a nearly perfect effector enzyme, and highly evolved mechanisms of feedback control and receptor deactivation. Practically any change in protein expression, enzyme activity, or feedback control can be shown to impair photon detection, either by decreasing sensitivity or signal-to-noise ratio, or by reducing temporal resolution. Comparison of mammals to amphibians suggests that rod outer-segment morphology and the molecules and mechanism of transduction may have evolved together to optimize light sensitivity in darkness, which culminates in the extraordinary ability of these cells to respond to single photons at the ultimate limit of visual perception.
    No preview · Article · Sep 2015 · BioEssays
  • Source
    Ching-Kang Chen · Michael L Woodruff · Gordon L Fain
    [Show abstract] [Hide abstract]
    ABSTRACT: Light stimulates rhodopsin in a retinal rod to activate the G protein transducin, which binds to phosphodiesterase (PDE), relieving PDE inhibition and decreasing guanosine 3',5'-cyclic monophosphate (cGMP) concentration. The decrease in cGMP closes outer segment channels, producing the rod electrical response. Prolonged exposure to light decreases sensitivity and accelerates response kinetics in a process known as light adaptation, mediated at least in part by a decrease in outer segment Ca(2+). Recent evidence indicates that one of the mechanisms of adaptation in mammalian rods is down-regulation of PDE. To investigate the effect of light and a possible role of rhodopsin kinase (G protein-coupled receptor kinase 1 [GRK1]) and the GRK1-regulating protein recoverin on PDE modulation, we used transgenic mice with decreased expression of GTPase-accelerating proteins (GAPs) and, consequently, a less rapid decay of the light response. This slowed decay made the effects of genetic manipulation of GRK1 and recoverin easier to observe and interpret. We monitored the decay of the light response and of light-activated PDE by measuring the exponential response decay time (τREC) and the limiting time constant (τD), the latter of which directly reflects light-activated PDE decay under the conditions of our experiments. We found that, in GAP-underexpressing rods, steady background light decreased both τREC and τD, and the decrease in τD was nearly linear with the decrease in amplitude of the outer segment current. Background light had little effect on τREC or τD if the gene for recoverin was deleted. Moreover, in GAP-underexpressing rods, increased GRK1 expression or deletion of recoverin produced large and highly significant accelerations of τREC and τD. The simplest explanation of our results is that Ca(2+)-dependent regulation of GRK1 by recoverin modulates the decay of light-activated PDE, and that this modulation is responsible for acceleration of response decay and the increase in temporal resolution of rods in background light. © 2015 Chen et al.
    Preview · Article · Feb 2015 · The Journal of General Physiology
  • Ala Morshedian · Gordon L Fain
    [Show abstract] [Hide abstract]
    ABSTRACT: Most vertebrates have a duplex retina containing rods for dim light vision and cones for bright lights and color detection. Photoreceptors like cones are present in many invertebrate phyla as well as in chordata, and rods evolved from cones [1, 2], but the sequence of events is not well understood. Since duplex retinas are present in both agnatha and gnathostomata, which diverged more than 400 million years ago, some properties of ancestral rods may be inferred from a comparison of cells in these two groups. Lamprey have two kinds of photoreceptors, called "short" and "long" [3-9], which seem to be rods and cones; however, the outer segments of both have an identical cone-like morphology of stacks of lamellae without a continuous surrounding plasma membrane [3, 4, 6, 7]. This observation and other aspects of the cellular and molecular biology of the photoreceptors have convinced several investigators [2, 10-12] that "the features of 'true' rod transduction in jawed vertebrates, which permit the reliable detection of single photons of light, evolved after the separation of gnathostomes from lampreys" [12]. To test this hypothesis, we recorded from photoreceptors of the sea lamprey Petromyzon marinus and show that their rods have a single-photon sensitivity similar to that of rods in other vertebrates. Thus, photoreceptors with many of the features of rods emerged before the split between agnatha and gnathostomata, and a rod-like outer segment with cytosolic disks surrounded by a plasma membrane is not necessary for high-sensitivity visual detection. Copyright © 2015 Elsevier Ltd. All rights reserved.
    No preview · Article · Feb 2015 · Current Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous experiments have shown that the insulin receptor (IR) is expressed in mammalian rods and contributes to the protection of photoreceptors during bright-light exposure. The role of the insulin receptor in the production of the light response is however unknown. We have used suction-electrode recording to examine the responses of rods after conditionally knocking down the insulin receptor. Our results show that these IR knock-down rods have an accelerated decay of the light response and a small decrease in sensitivity by comparison to littermate WT rods. Our results indicate that the insulin receptor may have some role in controlling the rate of rod response decay, but they exclude a major role of the insulin receptor pathway in phototransduction.
    Preview · Article · Jan 2015 · Scientific Reports
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous experiments have indicated that growth factor receptor-bound protein 14 (Grb14) may modulate rod photoreceptor cGMP-gated channels by decreasing channel affinity for cGMP; however, the function of Grb14 in rod physiology is not known. In this study, we examined the role of Grb14 by recording electrical responses from rods in which the gene for the Grb14 protein had been deleted. Suction-electrode recordings from single mouse rods showed that responses of dark-adapted Grb14−/− mice to brief flashes decayed more rapidly than strain-controlled wild type (WT) rods, with decreased values of both integration time and the exponential time course of decay (τREC). This result is consistent with an increase in channel affinity for cGMP produced by deletion of Grb14. However, Grb14−/− mouse rods also showed little change in dark current and a large and significant decrease in the limiting time constant τD, which are not consistent with an effect on channel affinity but seem rather to indicate modulation of the rate of inactivation of cyclic nucleotide phosphodiesterase 6 (PDE6). Grb14 has been reported to translocate from the inner to the outer segment in bright light, but we saw effects on response time course even in dark-adapted rods, although the effects were somewhat greater after rods had been adapted by exposure to bleaching illumination. Our results indicate that the mechanism of Grb14 action may be more complex than previously realized.
    Preview · Article · Nov 2013 · Journal of Biological Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amphibian and mammalian rods can both detect single photons of light even though they differ greatly in physical dimensions, mammalian rods being much smaller in diameter than amphibian rods. To understand the changes in physiology and biochemistry required by such large differences in outer segment geometry, we developed a computational approach, taking into account the spatial organization of the outer segment divided into compartments, together with molecular dynamics simulations of the signaling cascade. We generated simulations of the single-photon response together with intrinsic background fluctuations in toad and mouse rods. Combining this computational approach with electrophysiological data from mouse rods, we determined key biochemical parameters. On average around one phosphodiesterase (PDE) molecule is spontaneously active per mouse compartment, similar to the value for toad, which is unexpected due to the much smaller diameter in mouse. A larger number of spontaneously active PDEs decreases dark noise, thereby improving detection of single photons; it also increases cGMP turnover, which accelerates the decay of the light response. These constraints explain the higher PDE density in mammalian compared with amphibian rods that compensates for the much smaller diameter of mammalian disks. We further find that the rate of cGMP hydrolysis by light-activated PDE is diffusion limited, which is not the case for spontaneously activated PDE. As a consequence, in the small outer segment of a mouse rod only a few activated PDEs are sufficient to generate a signal that overcomes noise, which permits a shorter lifetime of activated rhodopsin and greater temporal resolution.
    Full-text · Article · Nov 2013 · Proceedings of the National Academy of Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Light isomerizes 11-cis-retinal in a retinal rod and produces an active form of rhodopsin (Rh*) that binds to the G-protein transducin and activates the phototransduction cascade. Rh* is turned off by phosphorylation by rhodopsin kinase [G-protein-coupled receptor kinase 1 (GRK1)] and subsequent binding of arrestin. To evaluate the role of GRK1 in rod light response decay, we have generated the transgenic mouse RKS561L in which GRK1, which is normally present at only 2-3% of rhodopsin, is overexpressed by ∼12-fold. Overexpression of GRK1 increases the rate of Rh* phosphorylation and reduces the exponential decay constant of the response (τ(REC)) and the limiting time constant (τ(D)) both by ∼30%; these decreases are highly significant. Similar decreases are produced in Rv(-/-) rods, in which the GRK1-binding protein recoverin has been genetically deleted. These changes in response decay are produced by acceleration of light-activated phosphodiesterase (PDE*) decay rather than Rh* decay, because light-activated PDE* decay remains rate limiting for response decay in both RKS561L and Rv(-/-) rods. A model incorporating an effect of GRK1 on light-activated PDE* decay rate can satisfactorily account for the changes in response amplitude and waveform. Modulation of response decay in background light is nearly eliminated by deletion of recoverin. Our experiments indicate that rhodopsin kinase and recoverin, in addition to their well-known role in regulating the turning off of Rh*, can also modulate the decay of light-activated PDE*, and the effects of these proteins on light-activated PDE* decay may be responsible for the quickening of response recovery in background light.
    Full-text · Article · Nov 2012 · The Journal of Neuroscience : The Official Journal of the Society for Neuroscience
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Caveolin-1 (Cav-1), an integral component of caveolar membrane domains, is expressed in several retinal cell types, including photoreceptors, retinal vascular endothelial cells, Müller glia, and retinal pigment epithelium (RPE) cells. Recent evidence links Cav-1 to ocular diseases, including autoimmune uveitis, diabetic retinopathy, and primary open angle glaucoma, but its role in normal vision is largely undetermined. In this report, we show that ablation of Cav-1 results in reduced inner and outer retinal function as measured, in vivo, by electroretinography and manganese-enhanced MRI. Somewhat surprisingly, dark current and light sensitivity were normal in individual rods (recorded with suction electrode methods) from Cav-1 knock-out (KO) mice. Although photoreceptor function was largely normal, in vitro, the apparent K(+) affinity of the RPE-expressed α1-Na(+)/K(+)-ATPase was decreased in Cav-1 KO mice. Cav-1 KO retinas also displayed unusually tight adhesion with the RPE, which could be resolved by brief treatment with hyperosmotic medium, suggesting alterations in outer retinal fluid homeostasis. Collectively, these findings demonstrate that reduced retinal function resulting from Cav-1 ablation is not photoreceptor-intrinsic but rather involves impaired subretinal and/or RPE ion/fluid homeostasis.
    Full-text · Article · Mar 2012 · Journal of Biological Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: When a substantial fraction of rhodopsin in a rod photoreceptor is exposed to bright light, the rod is desensitized by a process known as bleaching adaptation. Experiments on isolated photoreceptors in amphibians have revealed many of the features of bleaching adaptation, but such experiments have not so far been possible in mammals. We now describe a method for making microspectrophotometric measurements of pigment concentration and suction-electrode recording of electrical responses over a wide range of bleaching exposures from isolated mouse rods or pieces of mouse retina. We show that if pigment is bleached at a low rate in the presence of bovine serum albumin (BSA), and intermediate photoproducts are allowed to decay, mouse rods are stably desensitized; subsequent treatment with exogenous 11-cis retinal results in pigment regeneration and substantial recovery of sensitivity to the dark-adapted value. Stably bleached wild-type (WT) rods show a decrease in circulating current and acceleration of the time course of decay, much as in steady background light; similar effects are seen in guanylyl cyclase-activating protein knockout (GCAPs(-/-)) rods, indicating that regulation of guanylyl cyclase is not necessary for at least a part of the adaptation produced by bleaching. Our experiments demonstrate that in mammalian rods, as in amphibian rods, steady-state desensitization after bleaching is produced by two components: (1) a reduction in the probability of photon absorption produced by a decrease in rhodopsin concentration; and (2) an equivalent background light whose intensity is proportional to the fraction of bleached pigment, and which adapts the rod like real background light. These two mechanisms together fully account for the ‘log-linear' relationship in mammalian retina between sensitivity and per cent bleach, which can be measured in the steady state following exposure to bright light. Our methods will now make possible an examination of bleaching adaptation and pigment regeneration in mouse animal lines with mutations or other alterations in the proteins of transduction.
    Preview · Article · Mar 2012 · The Journal of Physiology
  • Source
    Gordon L Fain
    [Show abstract] [Hide abstract]
    ABSTRACT: All sensory receptors adapt. As the mean level of light or sound or odor is altered, the sensitivity of the receptor is adjusted to permit the cell to function over as wide a range of ambient stimulation as possible. In a rod photoreceptor, adaptation to maintained background light produces a decrease (or "sag") in the response to the prolonged illumination, as well as an acceleration in response decay time and a Weber-Fechner-like decrease in sensitivity. Earlier work on salamander indicated that adaptation is controlled by the intracellular concentration of Ca(2+). Three Ca(2+)-dependent mechanisms were subsequently identified, namely, regulation of guanylyl cyclase, modulation of activated rhodopsin lifetime, and alteration of channel opening probability, with the contribution of the cyclase thought to be the most important. Later experiments on mouse that exploit the powerful techniques of molecular genetics have shown that cyclase does indeed play a significant role in mammalian rods, but that much of adaptation remains even when regulation of cyclase and both of the other proposed pathways have been genetically deleted. The identity of the missing mechanism or mechanisms is unclear, but recent speculation has focused on direct modulation of spontaneous and light-activated phosphodiesterase.
    Preview · Article · Sep 2011 · Molecular Neurobiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The light-dependent decrease in cyclic guanosine monophosphate (cGMP) in the rod outer segment is produced by a phosphodiesterase (PDE6), consisting of catalytic α and β subunits and two inhibitory γ subunits. The molecular mechanism of PDE6γ regulation of the catalytic subunits is uncertain. To study this mechanism in vivo, we introduced a modified Pde6g gene for PDE6γ into a line of Pde6g(tm1)/Pde6g(tm1) mice that do not express PDE6γ. The resulting ILE86TER mice have a PDE6γ that lacks the two final carboxyl-terminal Ile(86) and Ile(87) residues, a mutation previously shown in vitro to reduce inhibition by PDE6γ. ILE86TER rods showed a decreased sensitivity and rate of activation, probably the result of a decreased level of expression of PDE6 in ILE86TER rods. More importantly, they showed a decreased rate of decay of the photoresponse, consistent with decreased inhibition of PDE6 α and β by PDE6γ. Furthermore, ILE86TER rods had a higher rate of spontaneous activation of PDE6 than WT rods. Circulating current in ILE86TER rods that also lacked both guanylyl cyclase activating proteins (GCAPs) could be increased several fold by perfusion with 100μM of the PDE6 inhibitor 3-isobutyl-1-methylxanthine (IBMX), consistent with a higher rate of dark PDE6 activity in the mutant photoreceptors. In contrast, IBMX had little effect on the circulating current of WT rods, unlike previous results from amphibians. Our results show for the first time that the Ile(86) and Ile(87) residues are necessary for normal inhibition of PDE6 catalytic activity in vivo, and that increased basal activity of PDE can be partially compensated by GCAP-dependent regulation of guanylyl cyclase.
    Full-text · Article · Sep 2011 · Cellular Signalling
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vertebrate photoreceptors are thought to adapt to light by a change in Ca(2+), which is postulated to mediate modulation of (1) excited rhodopsin (Rh*) by Ca(2+)-dependent binding of recoverin, (2) guanylyl cyclase activity via Ca(2+)-dependent GCAP proteins, and (3) cyclic nucleotide-gated channels by binding of Ca(2+)-calmodulin. Previous experiments genetically deleted recoverin and the GCAPs and showed that significant regulation of sensitivity survives removal of (1) and (2). We genetically deleted the channel Ca(2+)-calmodulin binding site in the mouse Mus musculus and found that removal of (3) alters response waveform, but removal of (3) or of (2) and (3) together still leaves much of adaptation intact. These experiments demonstrate that an important additional mechanism is required, which other experiments indicate may be regulation of phosphodiesterase 6 (PDE6). We therefore constructed a kinetic model in which light produces a Ca(2+)-mediated decrease in PDE6 decay rate, with the novel feature that both spontaneously activated and light-activated PDE6 are modulated. This model, together with Ca(2+)-dependent acceleration of guanylyl cyclase, can successfully account for changes in sensitivity and response waveform in background light.
    Preview · Article · Dec 2010 · The Journal of Neuroscience : The Official Journal of the Society for Neuroscience
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cone vision is less sensitive than rod vision. Much of this difference can be attributed to the photoreceptors themselves, but the reason why the cones are less sensitive is still unknown. Recent recordings indicate that one important factor may be a difference in the rate of activation of cone transduction; that is, the rising phase of the cone response per bleached rhodopsin molecule (Rh*) has a smaller slope than the rising phase of the rod response per Rh*, perhaps because some step between Rh* and activation of the phosphodiesterase 6 (PDE6) effector molecule occurs with less gain. Since rods and cones have different G-protein alpha subunits, and since this subunit (Talpha) plays a key role both in the interaction of G-protein with Rh* and the activation of PDE6, we investigated the mechanism of the amplification difference by expressing cone Talpha in rod Talpha-knockout rods to produce so-called GNAT2C mice. We show that rods in GNAT2C mice have decreased sensitivity and a rate of activation half that of wild-type (WT) mouse rods. Furthermore, GNAT2C responses recover more rapidly than WT responses with kinetic parameters resembling those of native mouse cones. Our results show for the first time that part of the difference in sensitivity and response kinetics between rods and cones may be the result of a difference in the G-protein alpha subunit. They also indicate more generally that the molecular nature of G-protein alpha may play an important role in the kinetics of G-protein cascades for metabotropic receptors throughout the body.
    Full-text · Article · Sep 2010 · The Journal of Physiology
  • G. L. FAIN
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Callimachus' Hymns were written in the tradition of the rhapsodic Homeric Hymns and make constant, though usually oblique and often amusing, reference to these archaic poems. This allusion is particularly extensive in the Hymn to Artemis, the only Callimachus Hymn to proceed like most longer Homeric Hymns, with brief introduction and prolonged narration. Then, just as the poem seems to end, it begins anew, not once but over and over again. The middle of the poem is clearly based on the Homeric Hymn to Apollo, which also begins anew at the Delian/Pythian transition. The correspondences are so great that Callimachus must have had this poem in much the form we do. The choice of the Apollo Hymn as model reflects the theme of sibling rivalry that pervades the Artemis Hymn: even in her own poem, Artemis can't escape the influence of her brother.
    No preview · Article · Mar 2010 · Bulletin of the Institute of Classical Studies
  • Source
    Gordon L Fain · R Roger Hardie · Simon B Laughlin
    [Show abstract] [Hide abstract]
    ABSTRACT: Photoreceptors in metazoans can be grouped into two classes, with their photoreceptive membrane derived either from cilia or microvilli. Both classes use some form of the visual pigment protein opsin, which together with 11-cis retinaldehyde absorbs light and activates a G-protein cascade, resulting in the opening or closing of ion channels. Considerable attention has recently been given to the molecular evolution of the opsins and other photoreceptor proteins; much is also known about transduction in the various photoreceptor types. Here we combine this knowledge in an attempt to understand why certain photoreceptors might have conferred particular selective advantages during evolution. We suggest that microvillar photoreceptors became predominant in most invertebrate species because of their single-photon sensitivity, high temporal resolution, and large dynamic range, and that rods and a duplex retina provided primitive chordates and vertebrates with similar sensitivity and dynamic range, but with a smaller expenditure of ATP.
    Full-text · Article · Feb 2010 · Current biology: CB
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Ca(2+)-binding protein recoverin is thought to regulate rhodopsin kinase and to modulate the lifetime of the photoexcited state of rhodopsin (Rh*), the visual pigment of vertebrate rods. Recoverin has been postulated to inhibit the kinase in darkness, when Ca(2+) is high, and to be released from the disk membrane in light when Ca(2+) is low, accelerating rhodopsin phosphorylation and shortening the lifetime of Rh*. This proposal has remained controversial, in part because the normally rapid turnoff of Rh* has made Rh* modulation difficult to study in an intact rod. To circumvent this problem, we have made mice that underexpress rhodopsin kinase so that Rh* turnoff is rate limiting for the decay of the rod light response. We show that background light speeds the decay of Rh* turnoff, and that this no longer occurs in mice that have had recoverin knocked out. This is the first demonstration in an intact rod that light accelerates Rh* inactivation and that the Ca(2+)-binding protein recoverin may be required for the light-dependent modulation of Rh* lifetime.
    Full-text · Article · Jan 2010 · The Journal of Neuroscience : The Official Journal of the Society for Neuroscience
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The visual pigment in vertebrate photoreceptors is a G protein-coupled receptor that consists of a protein, opsin, covalently attached to a chromophore, 11-cis-retinal. Activation of the visual pigment by light triggers a transduction cascade that produces experimentally measurable electrical responses in photoreceptors. The interactions between opsin and chromophore can be investigated with electrophysiologial recordings in intact amphibian and mouse rod and cone photoreceptor cells. Here we describe methods for substituting the native chromophore with various chromophore analogs to investigate how specific parts of the chromophore affect the signaling properties of the visual pigment and the function of photoreceptors. We also describe methods for genetically substituting the native rod opsin gene with cone opsins or with mutant rod opsins to investigate and compare their signaling properties. These methods are useful not only for understanding the relation between the properties of visual pigments and the function of photoreceptors but also for understanding the mechanisms by which mutations in rod opsin produce night blindness and other visual disorders.
    Full-text · Article · Jan 2010 · Methods in molecular biology (Clifton, N.J.)
  • Source
    Alapakkam P Sampath · Gordon L Fain
    [Show abstract] [Hide abstract]
    ABSTRACT: The performance of sensory systems in many cases is limited by the physical nature of the stimulus. For vision, the quantal nature of light limits detection by dark-adapted observers; only now are we beginning to be aware of the subtleties in the biophysical mechanisms underlying this exquisite sensitivity.
    Preview · Article · Aug 2009 · F1000 Biology Reports
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ion flow into the rod photoreceptor outer segment (ROS) is regulated by a member of the cyclic-nucleotide-gated cation-channel family; this channel consists of two subunit types, alpha and beta. In the rod cells, the Cngb1 locus encodes the channel beta-subunit and two related glutamic-acid-rich proteins (GARPs). Despite intensive research, it is still unclear why the beta-subunit and GARPs are coexpressed and what function these proteins serve. We hypothesized a role for the proteins in the maintenance of ROS structural integrity. To test this hypothesis, we created a Cngb1 5'-knockout photoreceptor null (Cngb1-X1). Morphologically, ROSs were shorter and, in most rods that were examined, some disks were misaligned, misshapen and abnormally elongated at periods when stratification was still apparent and degeneration was limited. Additionally, a marked reduction in the level of channel alpha-subunit, guanylate cyclase I (GC1) and ATP-binding cassette transporter (ABCA4) was observed without affecting levels of other ROS proteins, consistent with a requirement for the beta-subunit in channel assembly or targeting of select proteins to ROS. Remarkably, phototransduction still occurred when only trace levels of homomeric alpha-subunit channels were present, although rod sensitivity and response amplitude were both substantially reduced. Our results demonstrate that the beta-subunit and GARPs are necessary not only to maintain ROS structural integrity but also for normal disk morphogenesis, and that the beta-subunit is required for normal light sensitivity of the rods.
    Full-text · Article · May 2009 · Journal of Cell Science

Publication Stats

5k Citations
833.64 Total Impact Points


  • 1978-2015
    • Jules Stein Eye Institute
      Maryland, United States
  • 1977-2015
    • University of California, Los Angeles
      • • Department of Integrative Biology and Physiology
      • • Division of Physical Sciences
      • • Division of Life Sciences
      • • Department of Ophthalmology
      • • Jules Stein Eye Institute
      Los Ángeles, California, United States
  • 2010
    • Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center
      Torrance, California, United States
  • 2007
    • Wayne State University
      • Department of Anatomy and Cell Biology
      Detroit, Michigan, United States
  • 2003
    • CSU Mentor
      Long Beach, California, United States
  • 1988-2001
    • University of Cambridge
      • Department of Physiology, Development and Neuroscience
      Cambridge, England, United Kingdom
  • 1996
    • Boston University
      Boston, Massachusetts, United States
  • 1995
    • University of Massachusetts Boston
      Boston, Massachusetts, United States
  • 1994
    • Yale University
      New Haven, Connecticut, United States
  • 1982-1993
    • Brandeis University
      • Department of Biology
      Волтам, Massachusetts, United States
  • 1992
    • University of California, Davis
      • School of Medicine
      Davis, California, United States
  • 1973-1976
    • Harvard University
      Cambridge, Massachusetts, United States