Niels Vrang

Wisconsin National Primate Research Center, Madison, Wisconsin, United States

Are you Niels Vrang?

Claim your profile

Publications (96)369.58 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The cytokine interleukin-1 β (IL-1 β ) is known to stimulate proinflammatory immune responses and impair β -cell function and viability, all critical events in the pathogenesis of type 1 diabetes (T1D). Here we evaluate the effect of SER140, a small peptide IL-1 β receptor antagonist, on diabetes progression and cellular pancreatic changes in female nonobese diabetic (NOD) mice. Eight weeks of treatment with SER140 reduced the incidence of diabetes by more than 50% compared with vehicle, decreased blood glucose, and increased plasma insulin. Additionally, SER140 changed the endocrine and immune cells dynamics in the NOD mouse pancreas. Together, the data suggest that SER140 treatment postpones the onset of diabetes in female NOD mice by interfering with IL-1 β activated pathways.
    No preview · Article · Feb 2016 · Journal of Diabetes Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of the central nervous system in mediating metabolic effects of Roux-en-Y gastric bypass (RYGB) surgery is poorly understood. Using a rat model of RYGB, we aimed to identify changes in gene expression of key hypothalamic neuropeptides known to be involved in the regulation of energy balance.
    Preview · Article · Jan 2016 · Molecular Metabolism
  • [Show abstract] [Hide abstract]
    ABSTRACT: In addition to a prominent role in glycemic control, glucagon-like peptide 1 (GLP-1) receptor agonists exhibit neuroprotective properties. There is mounting experimental evidence that GLP-1 receptor agonists, including liraglutide, may enhance synaptic plasticity, counteract cognitive deficits and ameliorate neurodegenerative features in preclinical models of Alzheimer’s disease (AD), predominantly in the context of β-amyloid toxicity. Here we characterized the effects of liraglutide in a transgenic mutant tau (hTauP301L) mouse tauopathy model, which develops age-dependent pathology-specific neuronal tau phosphorylation and neurofibrillary tangle formation with progressively compromised motor function (limb clasping). Liraglutide (500 µg/kg/day, s.c., q.d., n=18) or vehicle (n=18) was administered to hTauP301L mice for 6 months from the age of three months. Vehicle-dosed wild-type FVB/N mice served as normal control (n=17). The onset and severity of hind limb clasping was markedly different in liraglutide and vehicle-dosed transgenic mice. Clasping behavior was observed in 61% of vehicle-dosed hTauP301L mice with a 55% survival rate in 9-month old transgenic mice. In contrast, liraglutide treatment reduced the clasping rate to 39% of hTauP301L mice, and fully prevented clasping-associated lethality resulting in a survival rate of 89%. Stereological analyses demonstrated that hTauP301L mice exhibited hindbrain-dominant neuronal accumulation of phosphorylated tau closely correlated to the severity of clasping behavior. In correspondence, liraglutide treatment significantly reduced neuronal phospho-tau load by 61.9±10.2% (p<0.001) in hTauP301L mice, as compared to vehicle-dosed controls. In conclusion, liraglutide significantly reduced tau pathology in a transgenic mouse tauopathy model.
    No preview · Article · Dec 2015 · Brain research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Unlike rats and mice, hamsters develop hypercholesterolemia, and hypertriglyceridemia when fed a cholesterol-rich diet. Because hyperlipidemia is a hallmark of human obesity, we aimed to develop and characterize a novel diet-induced obesity (DIO) and hypercholesterolemia Golden Syrian hamster model. Hamsters fed a highly palatable fat- and sugar-rich diet (HPFS) for 12 weeks showed significant body weight gain, body fat accumulation and impaired glucose tolerance. Cholesterol supplementation to the diet evoked additional hypercholesterolemia. Chronic treatment with the GLP-1 analogue, liraglutide (0.2 mg/kg, SC, BID, 27 days), normalized body weight and glucose tolerance, and lowered blood lipids in the DIO-hamster. The dipeptidyl peptidase-4 (DPP-4) inhibitor, linagliptin (3.0 mg/kg, PO, QD) also improved glucose tolerance. Treatment with peptide YY3-36 (PYY3-36, 1.0 mg/kg/day) or neuromedin U (NMU, 1.5 mg/kg/day), continuously infused via a subcutaneous osmotic minipump for 14 days, reduced body weight and energy intake and changed food preference from HPFS diet towards chow. Co-treatment with liraglutide and PYY3-36 evoked a pronounced synergistic decrease in body weight and food intake with no lower plateau established. Treatment with the cholesterol uptake inhibitor ezetimibe (10 mg/kg, PO, QD) for 14 days lowered plasma total cholesterol with a more marked reduction of LDL levels, as compared to HDL, indicating additional sensitivity to cholesterol modulating drugs in the hyperlipidemic DIO-hamster. In conclusion, the features of combined obesity, impaired glucose tolerance and hypercholesterolemia in the DIO-hamster make this animal model useful for preclinical evaluation of novel anti-obesity, anti-diabetic and lipid modulating agents.
    Full-text · Article · Aug 2015 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neuromedin U (NMU) is a gut-brain peptide, implicated in energy and glucose homeostasis via the peripherally expressed NMU receptor 1 (NMUR1) and the central NMUR2. We investigated the effects of a lipidated NMU analogue on gastric emptying (GE), glucose homeostasis and food intake to evaluate the use of a NMU analogue as drug candidate for treatment of obesity and diabetes. Finally mRNA expression of NMU and NMUR1 in the gut and NMUR2 in the hypothalamus was investigated using a novel chromogen-based in situ hybridization (ISH) assay. Effects on food intake (6 and 18hrs post dosing) were addressed in both mice and rats. The effects on GE and glycaemic control were assessed in mice, immediately after the first dose and after seven days of bidaily (BID) dosing. The lipidated NMU analogue exerted robust reductions in GE and food intake in mice and improved glycaemic control when measured immediately after the first dose. No effects were observed after seven days BID. In rats, the analogue induced only a minor effect on food intake. NMU mRNA was detected in the enteric nervous system throughout the gut, whereas NMUR1 was confined to the lamina propria. NMUR2 was detected in the paraventricular (PVN) and arcuate nuclei (ARC) in mice, with a reduced expression in ARC in rats. In summary, the anorectic effect of the lipidated NMU is partly mediated by a decrease in gastric emptying which is subject to tachyphylaxis after continuous dosing. Susceptibility to NMU appears to be species specific. Copyright © 2015. Published by Elsevier Inc.
    No preview · Article · Apr 2015 · Peptides
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies indicate that glucagon-like peptide 1 (GLP-1) receptor agonists, currently used in the management of type 2 diabetes, exhibit neurotrophic and neuroprotective effects in amyloid-β (Aβ) toxicity models of Alzheimer's disease (AD). We investigated the potential pro-cognitive and neuroprotective effects of the once-daily GLP-1 receptor agonist liraglutide in senescence-accelerated mouse prone 8 (SAMP8) mice, a model of age-related sporadic AD not dominated by Aβ plaques. Six-month-old SAMP8 mice received liraglutide (100 or 500 μg/kg/day, s.c.) or vehicle once daily for 4 months. Vehicle-dosed age-matched 50% back-crossed as well as untreated young (4-month-old) SAMP8 mice were used as control groups for normal memory function. Vehicle-dosed 10-month-old SAMP8 mice showed significant learning and memory retention deficits in an active-avoidance T-maze, as compared to both control groups. Also, 10-month-old SAMP8 mice displayed no immunohistological signatures of Aβ plaques or hyperphosphorylated tau, indicating the onset of cognitive deficits prior to deposition of amyloid plaques and neurofibrillary tangles in this AD model. Liraglutide significantly increased memory retention and total hippocampal CA1 pyramidal neuron numbers in SAMP8 mice, as compared to age-matched vehicle-dosed SAMP8 mice. In conclusion, liraglutide delayed or partially halted the progressive decline in memory function associated with hippocampal neuronal loss in a mouse model of pathological aging with characteristics of neurobehavioral and neuropathological impairments observed in early-stage sporadic AD.
    Preview · Article · Apr 2015 · Journal of Alzheimer's disease: JAD
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neuromedin U (NMU) is a 25 amino acid peptide expressed and secreted in the brain and gastrointestinal tract. Data have shown that peripheral administration of human NMU decreases food intake and body weight and improves glucose tolerance in mice, suggesting that NMU receptors constitute a possible anti-diabetic and anti-obesity drug target. However, the clinical use of native NMU is hampered by a poor pharmacokinetic profile. In the current study, we report in vitro and in vivo data from a series of novel lipidated NMU analogs.In vitro plasma stability studies of native NMU were performed to investigate the proteolytic stability and cleavage sites using LC–MS. Native NMU was found to be rapidly cleaved at the C-terminus between Arg24 and Asn25, followed by cleavage between Arg16 and Gly17. Lipidated NMU analogs were generated using solid-phase peptide synthesis, and in vitro potency was investigated using a human embryonic kidney 293-based inositol phosphate accumulation assay. All lipidated analogs had preserved in vitro activity on both NMU receptors with potency improving as the lipidation site was moved away from the receptor-interacting C-terminal octapeptide segment.In vivo efficacy was assessed in lean mice as reduction in food intake after acute subcutaneous administration of 1, 0.3, 0.1, and 0.03 µmol/kg. These lipidated NMU analogs prolonged the anorectic effect of NMU in a dose-dependent manner. This was likely an effect of improved pharmacokinetic properties because of improved vitro plasma stability. Accordingly, the data demonstrate that lipidated NMU analogs may represent drug candidates for the treatment of obesity. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.
    No preview · Article · Dec 2014 · Journal of Peptide Science
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glucagon-like peptide-1 (GLP-1) is released from endocrine L-cells lining the gut in response to food ingestion. However, GLP-1 is also produced in the nucleus of the solitary tract (NTS) where it acts as an anorectic neurotransmitter and key regulator of many autonomic and neuroendocrine functions. The expression and projections of GLP-1-producing neurons is highly conserved between rodent and primate brain, although a few key differences have been identified. The GLP-1 receptor (GLP-1R) has been mapped in the rodent brain, but no studies have described the distribution of GLP-1Rs in the nonhuman primate central nervous system. Here, we characterized the distribution of GLP-1R mRNA and protein in the adult macaque brain using in situ hybridization, radioligand receptor autoradiography and immunohistochemistry with a primate specific GLP-1R antibody. Immunohistochemistry demonstrated that the GLP-1R is localized to cell bodies and fiber terminals in a very selective distribution throughout the brain. Consistent with the functional role of the GLP-1R system, we find the highest concentration of GLP-1R-immunoreactivity present in select hypothalamic and brainstem regions that regulate feeding including the paraventricular and arcuate hypothalamic nuclei, as well as the area postrema, NTS, and dorsal motor nucleus of the vagus. Together, our data demonstrate that GLP-1R distribution is highly conserved between rodent and primate although a few key species differences were identified including the amygdala where GLP-1R expression is much higher in primate than in rodent.
    Full-text · Article · Nov 2014 · Endocrinology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Liraglutide is a glucagon-like peptide-1 (GLP-1) analog marketed for the treatment of type 2 diabetes. Besides lowering blood glucose, liraglutide also reduces body weight. It is not fully understood how liraglutide induces weight loss or to what degree liraglutide acts directly in the brain. Here, we determined that liraglutide does not activate GLP-1–producing neurons in the hindbrain, and liraglutide-dependent body weight reduction in rats was independent of GLP-1 receptors (GLP-1Rs) in the vagus nerve, area postrema, and paraventricular nucleus. Peripheral injection of fluorescently labeled liraglutide in mice revealed the presence of the drug in the circumventricular organs. Moreover, labeled liraglutide bound neurons within the arcuate nucleus (ARC) and other discrete sites in the hypothalamus. GLP-1R was necessary for liraglutide uptake in the brain, as liraglutide binding was not seen in Glp1r–/– mice. In the ARC, liraglutide was internalized in neurons expressing proopiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART). Electrophysiological measurements of murine brain slices revealed that GLP-1 directly stimulates POMC/CART neurons and indirectly inhibits neurotransmission in neurons expressing neuropeptide Y (NPY) and agouti-related peptide (AgRP) via GABA-dependent signaling. Collectively, our findings indicate that the GLP-1R on POMC/CART-expressing ARC neurons likely mediates liraglutide-induced weight loss.
    Full-text · Article · Oct 2014 · Journal of Clinical Investigation

  • No preview · Article · Sep 2014 · Journal of Peptide Science
  • [Show abstract] [Hide abstract]
    ABSTRACT: Linagliptin is a dipeptidyl peptidase (DPP)-IV inhibitor approved for the treatment of type 2 diabetes. DPP-IV inhibitors are considered weight neutral, suggesting that elevation of endogenous incretin levels is not sufficient to promote weight loss per se. Here we evaluated the effect of linagliptin in combination with subcutaneous treatment of GLP-1(7-36) on body weight regulation in diet-induced obese (DIO) rats. Linagliptin administered perorally (1.5mg/kg, b.i.d.), but not subcutaneously (0.5mg/kg, b.i.d.), evoked a very modest body weight loss (2.2%) after 28 days of treatment. GLP-1 (0.5mg/kg, s.c.) treatment alone induced a body weight loss of 4.1%. In contrast, combined linagliptin (1.5mg/kg, p.o., or 0.5mg/kg, s.c.) and GLP-1 (0.5mg/kg) treatment evoked a marked anorectic response with both routes of linagliptin administration being equally effective on final body weight loss (7.5-8.0%). In comparison, liraglutide monotherapy (0.2mg/kg, s.c., b.i.d.) reduced body weight by 10.1%. Interestingly, the weight lowering effect of combined linagliptin and GLP-1 treatment was associated with a marked increase in chow preference, being more pronounced as compared to liraglutide treatment. In addition, linagliptin and GLP-1 co-treatment, but not liraglutide, specifically increased prepro-dynorphin mRNA levels in the caudate-putamen, an effect not obtained with administration of the compounds individually. In conclusion, co-treatment with linagliptin and GLP-1 synergistically reduces body weight in obese rats. The anti-obesity effect was caused by appetite suppression with a concomitant change in diet preference, which may potentially be associated with increased dynorphin activity in forebrain regions involved in reward anticipation and habit learning.
    No preview · Article · Aug 2014 · European Journal of Pharmacology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Type 2 diabetes is characterized by impaired β-cell function associated with progressive reduction of insulin secretion and β-cell mass. Evidently, there is an unmet need for treatments with greater sustainability in β-cell protection and anti-diabetic efficacy. Through an insulin and β-cell independent mechanism, empagliflozin, a specific sodium glucose co-transporter type-2 (SGLT-2) inhibitor, may potentially provide longer efficacy. This study compared the anti-diabetic durability of empagliflozin treatment (10 mg/kg, p.o.) against glibenclamide (3 mg/kg, p.o.) and liraglutide (0.2 mg/kg, s.c.) on deficient glucose homeostasis and β-cell function in Zucker diabetic Fatty (ZDF) rats. Empagliflozin and liraglutide led to marked improvements in fed glucose and HbA1c levels, as well as impeding a progressive decline in insulin levels. In contrast, glibenclamide was ineffective. Whereas the effects of liraglutide were less pronounced at week 8 of treatment compared to week 4, those of empagliflozin remained stable throughout the study period. Similarly, empagliflozin improved glucose tolerance and preserved insulin secretion after both 4 and 8 weeks of treatment. These effects were reflected by a less reduction in β-cell mass with empagliflozin or liraglutide at week 4, while only empagliflozin showed β-cell sparing effects at week 8. While this study cannot be used to dissociate the absolute anti-diabetic efficacy among those different mechanisms of action, the study demonstrates that empagliflozin exerts a more sustained improvement of glucose homeostasis and β-cell protection ZDF rats. In comparison to other type 2 diabetic treatments, SGLT-2 inhibitors may through insulin-independent pathways thus enhance durability of β-cell protection and anti-diabetic efficacy.
    Preview · Article · Jul 2014 · Journal of Pharmacology and Experimental Therapeutics
  • [Show abstract] [Hide abstract]
    ABSTRACT: Anti-diabetic treatments aiming to preserve or even to increase beta cell mass are currently gaining increased interest. Here we investigated the effect of chronic treatment with the novel glucagon-like peptide-1 (GLP-1)-gastrin dual agonist, ZP3022, on glycemic control, beta cell mass and proliferation, and islet number. Male db/db mice were treated with ZP3022, liraglutide, or vehicle for 2, 4, or 8 weeks with terminal assessment of HbA1c, basal blood glucose, and plasma insulin concentrations. Pancreata were removed for immunohistochemical staining and stereological quantification of beta cell mass, islet numbers, proliferation, and apoptosis. Treatment with ZP3022 or liraglutide led to a significant improvement in glycemic control. ZP3022 treatment resulted in a sustained increase in beta cell mass after 4 and 8 weeks treatment, whereas the effect of liraglutide was transient. The expansion in beta cell mass observed in the ZP3022 treated mice appeared to be driven by an increased beta cell proliferation in existing islets rather than by formation of new islets, as mean islet mass increased, but the number of islets remained constant. Our data demonstrates that the GLP-1-gastrin dual agonist, ZP3022, causes a sustained improvement in glycemic control accompanied by an increase in beta cell mass, increased proliferation, and increased mean islet mass. The results highlight that the GLP-1-gastrin dual agonist increases beta cell mass more than liraglutide and that dual agonists could potentially be developed into a new class of anti-diabetic treatments.
    No preview · Article · Jun 2014 · Journal of Pharmacology and Experimental Therapeutics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stimulation of the G protein coupled receptor GPR120 has been shown to have anti-inflammatory and insulin-sensitizing effects, to promote glucagon like peptide-1 (GLP-1) secretion, and to play a key role in sensing dietary fat and control energy balance. In a search for differentially expressed genes potentially involved in food intake and body-weight regulation we identified GPR120 to be differentially regulated in the intestine of selectively bred diet induced obese (DIO) and diet resistant (DR) rats. Subsequently we investigated the effect of GPR120 receptor stimulation with the long chain fatty acid alpha linolenic acid (ALA) on GLP-1 secretion in rats. Independent of diet (high or low fat), GPR120 expression showed a two-fold increase in the intestine of DIO compared to DR rats. In situ hybridization revealed a broad expression of GPR120 in the gut mucosa in both intestinal epithelial and endocrine cells. Using double in situ hybridization GPR120 mRNA did not appear to be enriched in preproglucagon expressing L-cells. In line with the anatomical data, ALA administration did not increase circulating GLP-1 levels. Our data shows a widespread expression of GPR120 in the gut epithelium and can not confirm a major role for GPR120 in the regulation of GLP-1 secretion. The broad expression of GPR120 in the gut epithelium supports reports indicating a putative role of GPR120 as a sensor of dietary fat.
    Preview · Article · Feb 2014 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aim To investigate the short-term effect of ileal interposition (IT) surgery on gut morphology and enteroendocrine cell numbers in the pre-diabetic Uc Davis Type 2 Diabetes Mellitus (UCD-T2DM) rat. Study Design Two-month old male UCD-T2DM rats underwent either sham (n = 5) or IT (n = 5) surgery. Intestines were collected 1.5 months after surgery. The jejunum, ileum and colon regions were processed for histochemical and immunohistochemical labeling and stereological analyses of changes in gut morphometry and number of enteroendocrine cells. Results Stereological analysis of intestinal volume, luminal surface area and the number of all chromogranin A-positive enteroendocrine cells were markedly increased in the IT rats compared with sham-operated animals. Subanalyses of the glucagon-like peptide 2, cholecystokinin, serotonin cells and the neurotensin immunoreactive sub-pool of enteroendocrine cells in the IT region revealed an increase in numbers across phenotypes. However, the density of the different cell types varied. Conclusion IT surgery in the UCD-T2DM rat leads to rapid alterations in gut morphometry and an increase in the number of enteroendocrine cells. This effect may potentially explain why IT surgery delays the onset of type 2 diabetes in the UCD-T2DM rat.
    Full-text · Article · Feb 2014 · Regulatory Peptides
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To characterise changes in pancreatic beta cell mass during the development of diabetes in untreated male C57BLKS/J db/db mice. Blood samples were collected from a total of 72 untreated male db/db mice aged 5, 6, 8, 10, 12, 14, 18, 24 and 34 weeks, for measurement of terminal blood glucose, HbA1c, plasma insulin, and C-peptide. Pancreata were removed for quantification of beta cell mass, islet numbers as well as proliferation and apoptosis by immunohistochemistry and stereology. Total pancreatic beta cell mass increased significantly from 2.1 ± 0.3 mg in mice aged 5 weeks to a peak value of 4.84 ± 0.26 mg (P < 0.05) in 12-week-old mice, then gradually decreased to 3.27 ± 0.44 mg in mice aged 34 weeks. Analysis of islets in the 5-, 10-, and 24-week age groups showed increased beta cell proliferation in the 10-week-old animals whereas a low proliferation is seen in older animals. The expansion in beta cell mass was driven by an increase in mean islet mass as the total number of islets was unchanged in the three groups. The age-dependent beta cell dynamics in male db/db mice has been described from 5-34 weeks of age and at the same time alterations in insulin/glucose homeostasis were assessed. High beta cell proliferation and increased beta cell mass occur in young animals followed by a gradual decline characterised by a low beta cell proliferation in older animals. The expansion of beta cell mass was caused by an increase in mean islet mass and not islet number.
    Full-text · Article · Dec 2013 · PLoS ONE

  • No preview · Article · Dec 2013 · Diabetes care
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Roux-en-Y gastric bypass (RYGB) leads to a rapid remission of type 2 diabetes mellitus (T2DM), but the underlying mode of action remains incompletely understood. L-cell derived gut hormones such as glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) are thought to play a central role in the anti-diabetic effects of RYGB; therefore, an improved understanding of intestinal endocrine L-cell adaptability is considered pivotal. The full rostrocaudal extension of the gut was analyzed in rats after RYGB and in sham-operated controls ad libitum fed or food restricted to match the body weight of RYGB rats. Total number of L-cells, as well as regional numbers, densities and mucosa volumes were quantified using stereological methods. Preproglucagon and PYY mRNA transcripts were quantified by qPCR to reflect the total and relative hormone production capacity of the L-cells. RYGB surgery induced hypertrophy of the gut mucosa in the food exposed regions of the small intestine coupled with a doubling in the total number of L-cells. No changes in L-cell density were observed in any region regardless of surgery or food restriction. The total gene expression capacity of the entire gut revealed a near 200% increase in both PYY and preproglucagon mRNA levels in RYGB rats associated with both increased L-cell number as well as region-specific increased transcription per cell. Collectively, these findings indicate that RYGB in rats is associated with gut hypertrophy, an increase in L-cell number, but not density, and increased PYY and preproglucagon gene expression. This could explain the enhanced gut hormone dynamics seen after RYGB.
    Full-text · Article · Jun 2013 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gut secreted incretin hormones and gastric bypass surgery currently provides some of the most successful treatments for diabetes and obesity respectively. However, despite the evident importance of the gut endocrine system no information exists on the total number and distribution of different types of endocrine cells in the gut. Here we have used the established preclinical Zucker Diabetic Fatty (ZDF) rat model which displays elevated levels of GLP-1 to assess L-cell distribution and L-cell dynamics in the full rostro-caudal extension of the rat intestinal tract. Using mathematically unbiased stereology we provide total and regional estimates of gut volume, gut surface area and the total number of L-cells throughout the intestinal tract in obese ZDF rats and lean controls. The total number of L-cells in the lean and obese ZDF gut is estimated to 4.8 and 10.9 million, respectively, coupled with a corresponding near doubling in total gut volume and total surface area. L-cell numbers were found to be distributed rather evenly throughout the jejunum, ileum and colon. The present study provides the first stereological report of total L-cell number and L-cell distribution throughout the rat intestinal tract. In contrast to the currently held view, the majority of L-cells are actually located proximal to the traditionally defined ileum and colon.
    Full-text · Article · May 2013 · American Journal of Translational Research
  • J Jelsing · N Vrang · M Mark · E Mayoux · T Klein

    No preview · Article · Apr 2013 · Diabetologie und Stoffwechsel

Publication Stats

4k Citations
369.58 Total Impact Points

Institutions

  • 2014
    • Wisconsin National Primate Research Center
      Madison, Wisconsin, United States
  • 2012
    • Boehringer Ingelheim Veterinary Research Center Gmbh & Co. Kg
      Hanover, Lower Saxony, Germany
  • 1994-2007
    • IT University of Copenhagen
      København, Capital Region, Denmark
  • 2002
    • Center for Clinical and Basic Research
      København, Capital Region, Denmark