Cyril W C Kendall

St. Michael's Hospital, Toronto, Ontario, Canada

Are you Cyril W C Kendall?

Claim your profile

Publications (188)839.54 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous research on the effect of replacing sources of animal protein with plant protein on glycemic control has been inconsistent. We therefore conducted a systematic review and meta-analysis of randomized controlled trials (RCTs) to assess the effect of this replacement on glycemic control in individuals with diabetes. We searched MEDLINE, EMBASE, and Cochrane databases through 26 August 2015. We included RCTs ≥ 3-weeks comparing the effect of replacing animal with plant protein on HbA1c, fasting glucose (FG), and fasting insulin (FI). Two independent reviewers extracted relevant data, assessed study quality and risk of bias. Data were pooled by the generic inverse variance method and expressed as mean differences (MD) with 95% confidence intervals (CIs). Heterogeneity was assessed (Cochran Q-statistic) and quantified (I2-statistic). Thirteen RCTs (n = 280) met the eligibility criteria. Diets emphasizing a replacement of animal with plant protein at a median level of ~35% of total protein per day significantly lowered HbA1c (MD = −0.15%; 95%-CI: −0.26, −0.05%), FG (MD = −0.53 mmol/L; 95%-CI: −0.92, −0.13 mmol/L) and FI (MD = −10.09 pmol/L; 95%-CI: −17.31, −2.86 pmol/L) compared with control arms. Overall, the results indicate that replacing sources of animal with plant protein leads to modest improvements in glycemic control in individuals with diabetes. Owing to uncertainties in our analyses there is a need for larger, longer, higher quality trials. Trial Registration: ClinicalTrials.gov registration number: NCT02037321.
    Full-text · Article · Dec 2015 · Nutrients
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background and aim: Compared to a DASH-type diet, an intensively applied dietary portfolio reduced diastolic blood pressure at 24 weeks as a secondary outcome in a previous study. Due to the importance of strategies to reduce blood pressure, we performed an exploratory analysis pooling data from intensively and routinely applied portfolio treatments from the same study to assess the effect over time on systolic, diastolic and mean arterial pressure (MAP), and the relation to sodium (Na(+)), potassium (K(+)), and portfolio components. Methods and results: 241 participants with hyperlipidemia, from four academic centers across Canada were randomized and completed either a DASH-type diet (control n = 82) or a dietary portfolio that included, soy protein, viscous fibers and nuts (n = 159) for 24 weeks. Fasting measures and 7-day food records were obtained at weeks 0, 12 and 24, with 24-h urines at weeks 0 and 24. The dietary portfolio reduced systolic, diastolic and mean arterial blood pressure compared to the control by 2.1 mm Hg (95% CI, 4.2 to -0.1 mm Hg) (p = 0.056), 1.8 mm Hg (CI, 3.2 to 0.4 mm Hg) (p = 0.013) and 1.9 mm Hg (CI, 3.4 to 0.4 mm Hg) (p = 0.015), respectively. Blood pressure reductions were small at 12 weeks and only reached significance at 24 weeks. Nuts, soy and viscous fiber all related negatively to change in mean arterial pressure (ρ = -0.15 to -0.17, p ≤ 0.016) as did urinary potassium (ρ = -0.25, p = 0.001), while the Na(+)/K(+) ratio was positively associated (ρ = 0.20, p = 0.010). Conclusions: Consumption of a cholesterol-lowering dietary portfolio also decreased blood pressure by comparison with a healthy DASH-type diet. CLINICAL TRIAL REG. NO.: NCT00438425, clinicaltrials.gov.
    Full-text · Article · Oct 2015 · Nutrition, metabolism, and cardiovascular diseases: NMCD
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Debate over the role of fructose in mediating cardiovascular risk remains active. To update the evidence on the effect of fructose on established therapeutic lipid targets for cardiovascular disease (low-density lipoprotein cholesterol [LDL]-C, apolipoprotein B, non-high-density lipoprotein cholesterol [HDL-C]), and metabolic syndrome (triglycerides and HDL-C), we conducted a systematic review and meta-analysis of controlled feeding trials. Methods and results: MEDLINE, EMBASE, CINHAL, and the Cochrane Library were searched through July 7, 2015 for controlled feeding trials with follow-up ≥7 days, which investigated the effect of oral fructose compared to a control carbohydrate on lipids (LDL-C, apolipoprotein B, non-HDL-C, triglycerides, and HDL-C) in participants of all health backgrounds. Two independent reviewers extracted relevant data. Data were pooled using random effects models and expressed as mean difference with 95% CI. Interstudy heterogeneity was assessed (Cochran Q statistic) and quantified (I(2) statistic). Eligibility criteria were met by 51 isocaloric trials (n=943), in which fructose was provided in isocaloric exchange for other carbohydrates, and 8 hypercaloric trials (n=125), in which fructose supplemented control diets with excess calories compared to the control diets alone without the excess calories. Fructose had no effect on LDL-C, non-HDL-C, apolipoprotein B, triglycerides, or HDL-C in isocaloric trials. However, in hypercaloric trials, fructose increased apolipoprotein B (n=2 trials; mean difference = 0.18 mmol/L; 95% CI: 0.05, 0.30; P=0.005) and triglycerides (n=8 trials; mean difference = 0.26 mmol/L; 95% CI: 0.11, 0.41; P<0.001). The study is limited by small sample sizes, limited follow-up, and low quality scores of the included trials. Conclusions: Pooled analyses showed that fructose only had an adverse effect on established lipid targets when added to existing diets so as to provide excess calories (+21% to 35% energy). When isocalorically exchanged for other carbohydrates, fructose had no adverse effects on blood lipids. More trials that are larger, longer, and higher quality are required. Clinical trials registration: URL: https://www.clinicaltrials.gov/. Unique Identifier: NCT01363791.
    Full-text · Article · Sep 2015 · Journal of the American Heart Association
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The positive and negative health effects of dietary carbohydrates are of interest to both researchers and consumers. International experts on carbohydrate research held a scientific summit in Stresa, Italy, in June 2013 to discuss controversies surrounding the utility of the glycemic index (GI), glycemic load (GL) and glycemic response (GR). The outcome was a scientific consensus statement which recognized the importance of postprandial glycemia in overall health, and the GI as a valid and reproducible method of classifying carbohydrate foods for this purpose. There was consensus that diets low in GI and GL were relevant to the prevention and management of diabetes and coronary heart disease, and probably obesity. Moderate to weak associations were observed for selected cancers. The group affirmed that diets low in GI and GL should always be considered in the context of diets otherwise understood as healthy, complementing additional ways of characterizing carbohydrate foods, such as fiber and whole grain content. Diets of low GI and GL were considered particularly important in individuals with insulin resistance. Given the high prevalence of diabetes and pre-diabetes worldwide and the consistency of the scientific evidence reviewed, the expert panel confirmed an urgent need to communicate information on GI and GL to the general public and health professionals, through channels such as national dietary guidelines, food composition tables and food labels. Copyright © 2015 Elsevier B.V. All rights reserved.
    Full-text · Article · May 2015 · Nutrition Metabolism and Cardiovascular Diseases
  • Source

    Full-text · Dataset · Jan 2015
  • Source

    Full-text · Article · Jan 2015 · Journal of Pediatric Gastroenterology and Nutrition
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cell walls (dietary fibre) of edible plants, which consist of mainly non-starch polysaccharides, play an important role in regulating nutrient bioaccessibility (release) during digestion in the upper gastrointestinal tract. Recent studies have shown that structurally-intact cell walls hinder lipid release from the parenchyma cells of almond seeds. A theoretical model was developed to predict the bioaccessibility of lipid using simple geometry and data on cell dimensions and particle size for calculating the number of ruptured cells in cut almond cubes. Cubes (2 mm) and finely-ground flour of low and high lipid bioaccessibility, respectively, were prepared from almond cotyledon. The model predictions were compared with data from in vitro gastric and duodenal digestion of almond cubes and flour. The model showed that lipid bioaccessibility is highly dependent on particle size and cell diameter. Only a modified version of the model (the Extended Theoretical Model, ETM), in which the cells at the edges and corners were counted once only, was acceptable for the full range of particle sizes. Lipid release values predicted from the ETM were 5.7% for almond cubes and 42% for almond flour. In vitro digestion of cubes and flour showed that lipid released from ruptured cells was available for hydrolysis and resulted in lipid losses of 9.9 and 39.3%, respectively. The ETM shows considerable potential for predicting lipid release in the upper gastrointestinal tract. Further work is warranted to evaluate the efficacy of this model to accurately predict nutrient bioaccessibility in a broad range of edible plants.
    Full-text · Article · Oct 2014 · Food & Function
  • E. Viguiliouk · C. W. C. Kendall · Blanco S. Mejia · A. Cozma · V Ha

    No preview · Article · Sep 2014 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objectives: Although most controlled feeding trials have failed to show an adverse effect of fructose on blood pressure, concerns continue to be raised regarding the role of fructose in hypertension. To quantify the association between fructose-containing sugar (high-fructose corn syrup, sucrose, and fructose) intake and incident hypertension, a systematic review and meta-analysis of prospective cohort studies was undertaken. Methods: MEDLINE, EMBASE, CINAHL and the Cochrane Library (through February 5, 2014) were searched for relevant studies. Two independent reviewers reviewed and extracted relevant data. Risk estimates were aggregated comparing the lowest (reference) quintile with highest quintile of intake using inverse variance random effect models and expressed as risk ratios (RR) with 95% confidence intervals (CIs). Interstudy heterogeneity was assessed (Cochran Q statistic) and quantified (I 2 statistic). The Newcastle–Ottawa Scale assessed study quality. Clinicaltrials.gov NCT01608620. Results: Eligibility criteria were met by 3 prospective cohorts (n = 37,375 men and 185,855 women) with 58,162 cases of hypertension observed over 2,502,357 person-years of follow-up. Median fructose intake was 5.7–6.0% total energy in the lowest quintile and 13.9–14.3% total energy in the highest quintile. Fructose intake was not associated with incident hypertension (RR = 1.02, 95% CI, 0.99–1.04), with no evidence of heterogeneity (I 2 = 0%, p = 0.59). Spline curve modeling showed a U-shaped relationship with a negative association at intakes ≤50th percentile (∼10% total energy) and a positive association at higher intakes. Conclusions: Total fructose intake was not associated with an increased risk of hypertension in 3 large prospective cohorts of U.S. men and women.
    Full-text · Article · Aug 2014 · Journal of the American College of Nutrition
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Consumption of almonds has been shown to be associated with a decreased risk of CHD, which may be related to their fatty acid (FA) composition. However, the effect of almond consumption on the serum FA composition is not known. Therefore, in the present study, we investigated whether almond consumption would alter the serum FA profile and risk of CHD, as calculated using Framingham's 10-year risk score, in a dose-dependent manner in hyperlipidaemic individuals when compared with a higher-carbohydrate control group using dietary interventions incorporating almonds. A total of twenty-seven hyperlipidaemic individuals consumed three isoenergetic (mean 1770 kJ/d) supplements during three 1-month dietary phases: (1) full-dose almonds (50-100 g/d); (2) half-dose almonds with half-dose muffins; (3) full-dose muffins. Fasting blood samples were obtained at weeks 0 and 4 for the determination of FA concentrations. Almond intake (g/d) was found to be inversely associated with the estimated Framingham 10-year CHD risk score (P= 0·026). In both the half-dose and full-dose almond groups, the proportions of oleic acid (OA) and MUFA in the TAG fraction (half-almond: OA P= 0·003; MUFA P= 0·004; full-almond: OA P< 0·001; MUFA P< 0·001) and in the NEFA fraction (half-almond: OA P= 0·01; MUFA P= 0·04; full-almond: OA P= 0·12; MUFA P= 0·06) increased. The estimated Framingham 10-year CHD risk score was inversely associated with the percentage change of OA (P= 0·011) and MUFA (P= 0·016) content in the TAG fraction. The proportions of MUFA in the TAG and NEFA fractions were positively associated with changes in HDL-cholesterol concentrations. Similarly, the estimated Framingham 10-year CHD risk score was inversely associated with the percentage change of OA (P= 0·069) and MUFA content in the NEFA fraction (P= 0·009). In conclusion, the results of the present study indicate that almond consumption increases OA and MUFA content in serum TAG and NEFA fractions, which are inversely associated with CHD lipid risk factors and overall estimated 10-year CHD risk.
    Preview · Article · Aug 2014 · British Journal Of Nutrition
  • Source

    Full-text · Article · Aug 2014 · Nutrition
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective To assess the effect of dietary pulses (beans, peas, chickpeas, lentils) on acute satiety and second meal intake, a systematic review and meta-analysis was conducted.MethodsMEDLINE, EMBASE, CINAHL, and the Cochrane Registry (through May 6, 2013) were searched for acute controlled trials examining the effect of dietary pulses on postprandial satiety or second meal intake compared with isocaloric controls. Two independent reviewers extracted data and assessed methodological quality and risk of bias. Data were pooled by generic inverse variance random effects models and expressed as ratio of means (RoMs) for satiety and mean differences (MDs) for second meal food intake, with 95% confidence intervals (95% CIs). Heterogeneity was assessed (Q statistic) and quantified (I2 statistic). Protocol registration: clinicaltrials.gov identifier, NCT01605422.ResultsNine trials met the eligibility criteria. Dietary pulses produced a 31% greater satiety incremental area under the curve (IAUC) (RoM = 1.31, 95% CI: 1.09 to 1.58, P = 0.004; Phet = 0.96; I2 = 0%) without affecting second meal intake (MD = −19.94, 95% CI: −75-35, P = 0.48; Phet = 0.01; I2 = 63%). Our data are limited by the small sample sizes, narrow participant characteristics and significant unexplained heterogeneity among the available trials.Conclusions Pooled analyses show that dietary pulses contribute to acute satiety but not second meal intake.
    Full-text · Article · Aug 2014 · Obesity
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background and Aims Nut consumption has been associated with decreased risk of coronary heart disease (CHD) and type 2 diabetes which has been largely attributed to their healthy fatty acid profile, yet this has not been ascertained. Therefore, we investigated the effect of nut consumption on serum fatty acid concentrations and how these relate to changes in markers of glycemic control and calculated CHD risk score in type 2 diabetes. Methods and Results 117 subjects with type 2 diabetes consumed one of three iso-energetic (mean 475 kcal/d) supplements for 12 weeks: 1. full-dose nuts (50-100g/d); 2. half-dose nuts with half-dose muffins; and 3. full-dose muffins. In this secondary analysis, fatty acid concentrations in the phospholipid, triacylglycerol, free fatty acid, and cholesteryl ester fractions from fasting blood samples obtained at baseline and week 12 were analyzed using thin layer and gas chromatography. Full-dose nut supplementation significantly increased serum oleic acid (OA) and MUFAs compared to the control in the phospholipid fraction (OA: P=0.036; MUFAs: P=0.024). Inverse associations were found with changes in CHD risk versus changes in OA and MUFAs in the triacylglycerol (r=-0.256, P=0.011; r=-0.228, P=0.024, respectively) and phospholipid (r=-0.278, P=0.006; r=-0.260, P=0.010, respectively) fractions. In the cholesteryl ester fraction, change in MUFAs was inversely associated with markers of glycemic control (HbA1c: r=-0.250, P=0.013; fasting blood glucose: r=-0.395, P<0.0001). Conclusion Nut consumption increased OA and MUFA content of the serum phospholipid fraction, which was inversely associated with CHD risk factors and 10-year CHD risk. Clinical Trial Reg. No. NCT00410722, clinicaltrials.gov
    No preview · Article · Aug 2014 · Nutrition, metabolism, and cardiovascular diseases: NMCD
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Tree nut consumption has been associated with reduced diabetes risk, however, results from randomized trials on glycemic control have been inconsistent. Objective: To provide better evidence for diabetes guidelines development, we conducted a systematic review and meta-analysis of randomized controlled trials to assess the effects of tree nuts on markers of glycemic control in individuals with diabetes. Data Sources: MEDLINE, EMBASE, CINAHL, and Cochrane databases through 6 April 2014. Study Selection: Randomized controlled trials >= 3 weeks conducted in individuals with diabetes that compare the effect of diets emphasizing tree nuts to isocaloric diets without tree nuts on HbA1c, fasting glucose, fasting insulin, and HOMA-IR. Data Extraction and Synthesis: Two independent reviewer's extracted relevant data and assessed study quality and risk of bias. Data were pooled by the generic inverse variance method and expressed as mean differences (MD) with 95% CI's. Heterogeneity was assessed (Cochran Q-statistic) and quantified (I-2). Results: Twelve trials (n = 450) were included. Diets emphasizing tree nuts at a median dose of 56 g/d significantly lowered HbA1c (MD = -0.07% [95% CI: -0.10, -0.03%]; P = 0.0003) and fasting glucose (MD = -0.15 mmol/L [95% CI: -0.27, -0.02 mmol/L]; P = 0.03) compared with control diets. No significant treatment effects were observed for fasting insulin and HOMA-IR, however the direction of effect favoured tree nuts. Limitations: Majority of trials were of short duration and poor quality. Conclusions: Pooled analyses show that tree nuts improve glycemic control in individuals with type 2 diabetes, supporting their inclusion in a healthy diet. Owing to the uncertainties in our analyses there is a need for longer, higher quality trials with a focus on using nuts to displace high-glycemic index carbohydrates.
    Full-text · Article · Jul 2014 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective To provide a broader evidence summary to inform dietary guidelines of the effect of tree nuts on criteria of the metabolic syndrome (MetS). Design We conducted a systematic review and meta-analysis of the effect of tree nuts on criteria of the MetS. Data sources We searched MEDLINE, EMBASE, CINAHL and the Cochrane Library (through 4 April 2014). Eligibility criteria for selecting studies We included relevant randomised controlled trials (RCTs) of ≥3 weeks reporting at least one criterion of the MetS. Data extraction Two or more independent reviewers extracted all relevant data. Data were pooled using the generic inverse variance method using random effects models and expressed as mean differences (MD) with 95% CIs. Heterogeneity was assessed by the Cochran Q statistic and quantified by the I2 statistic. Study quality and risk of bias were assessed. Results Eligibility criteria were met by 49 RCTs including 2226 participants who were otherwise healthy or had dyslipidaemia, MetS or type 2 diabetes mellitus. Tree nut interventions lowered triglycerides (MD=−0.06 mmol/L (95% CI −0.09 to −0.03 mmol/L)) and fasting blood glucose (MD=−0.08 mmol/L (95% CI −0.16 to −0.01 mmol/L)) compared with control diet interventions. There was no effect on waist circumference, high-density lipoprotein cholesterol or blood pressure with the direction of effect favouring tree nuts for waist circumference. There was evidence of significant unexplained heterogeneity in all analyses (p<0.05). Conclusions Pooled analyses show a MetS benefit of tree nuts through modest decreases in triglycerides and fasting blood glucose with no adverse effects on other criteria across nut types. As our conclusions are limited by the short duration and poor quality of the majority of trials, as well as significant unexplained between-study heterogeneity, there remains a need for larger, longer, high-quality trials. Trial registration number NCT01630980.
    Full-text · Article · Jul 2014 · BMJ Open
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective: Despite their independent cardiovascular disease (CVD) advantages, effects of α-linolenic acid (ALA), monounsaturated fatty acid (MUFA), and low-glycemic-load (GL) diets have not been assessed in combination. We therefore determined the combined effect of ALA, MUFA, and low GL on glycemic control and CVD risk factors in type 2 diabetes. Research design and methods: The study was a parallel design, randomized trial wherein each 3-month treatment was conducted in a Canadian academic center between March 2011 and September 2012 and involved 141 participants with type 2 diabetes (HbA1c 6.5%-8.5% [48-69 mmol/mol]) treated with oral antihyperglycemic agents. Participants were provided with dietary advice on either a low-GL diet with ALA and MUFA given as a canola oil-enriched bread supplement (31 g canola oil per 2,000 kcal) (test) or a whole-grain diet with a whole-wheat bread supplement (control). The primary outcome was HbA1c change. Secondary outcomes included calculated Framingham CVD risk score and reactive hyperemia index (RHI) ratio. Results: Seventy-nine percent of the test group and 90% of the control group completed the trial. The test diet reduction in HbA1c units of -0.47% (-5.15 mmol/mol) (95% CI -0.54% to -0.40% [-5.92 to -4.38 mmol/mol]) was greater than that for the control diet (-0.31% [-3.44 mmol/mol] [95% CI -0.38% to -0.25% (-4.17 to -2.71 mmol/mol)], P = 0.002), with the greatest benefit observed in those with higher systolic blood pressure (SBP). Greater reductions were seen in CVD risk score for the test diet, whereas the RHI ratio increased for the control diet. Conclusions: A canola oil-enriched low-GL diet improved glycemic control in type 2 diabetes, particularly in participants with raised SBP, whereas whole grains improved vascular reactivity.
    Full-text · Article · Jun 2014 · Diabetes Care
  • Source
    V Ha · L Chiavaroli · R J de Souza · C W C Kendall · J L Sievenpiper

    Full-text · Article · May 2014 · Experimental and Clinical Endocrinology & Diabetes
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND:Evidence from controlled trials encourages the intake of dietary pulses (beans, chickpeas, lentils and peas) as a method of improving dyslipidemia, but heart health guidelines have stopped short of ascribing specific benefits to this type of intervention or have graded the beneficial evidence as low. We conducted a systematic review and meta-analysis of randomized controlled trials (RCTs) to assess the effect of dietary pulse intake on established therapeutic lipid targets for cardiovascular risk reduction. METHODS:We searched electronic databases and bibliographies of selected trials for relevant articles published through Feb. 5, 2014. We included RCTs of at least 3 weeks' duration that compared a diet emphasizing dietary pulse intake with an isocaloric diet that did not include dietary pulses. The lipid targets investigated were low-density lipoprotein (LDL) cholesterol, apolipoprotein B and non-high-density lipoprotein (non-HDL) cholesterol. We pooled data using a randomeffects model. RESULTS:We identified 26 RCTs (n = 1037) that satisfied the inclusion criteria. Diets emphasizing dietary pulse intake at a median dose of 130 g/d (about 1 serving daily) significantly lowered LDL cholesterol levels compared with the control diets (mean difference -0.17 mmol/L, 95% confidence interval -0.25 to -0.09 mmol/L). Treatment effects on apolipoprotein B and non-HDL cholesterol were not observed. INTERPRETATION:Our findings suggest that dietary pulse intake significantly reduces LDL cholesterol levels. Trials of longer duration and higher quality are needed to verify these results. Trial registration: ClinicalTrials.gov, no. NCT01594567.
    Full-text · Article · Apr 2014 · Canadian Medical Association Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background/Objectives: In the absence of consistent clinical evidence, there are concerns that fructose contributes to non-alcoholic fatty liver disease (NAFLD). To determine the effect of fructose on markers of NAFLD, we conducted a systematic review and meta-analysis of controlled feeding trials. Subjects/Methods: We searched MEDLINE, EMBASE, CINAHL and the Cochrane Library (through 3 September 2013). We included relevant trials that involved a follow-up of ⩾7 days. Two reviewers independently extracted relevant data. Data were pooled by the generic inverse variance method using random effects models and expressed as standardized mean difference (SMD) for intrahepatocellular lipids (IHCL) and mean difference (MD) for alanine aminotransferase (ALT). Inter-study heterogeneity was assessed (Cochran Q statistic) and quantified (I2 statistic). Results: Eligibility criteria were met by eight reports containing 13 trials in 260 healthy participants: seven isocaloric trials, in which fructose was exchanged isocalorically for other carbohydrates, and six hypercaloric trials, in which the diet was supplemented with excess energy (+21–35% energy) from high-dose fructose (+104–220 g/day). Although there was no effect of fructose in isocaloric trials, fructose in hypercaloric trials increased both IHCL (SMD=0.45 (95% confidence interval (CI): 0.18, 0.72)) and ALT (MD=4.94 U/l (95% CI: 0.03, 9.85)). Limitations: Few trials were available for inclusion, most of which were small, short (⩽4 weeks), and of poor quality. Conclusions: Isocaloric exchange of fructose for other carbohydrates does not induce NAFLD changes in healthy participants. Fructose providing excess energy at extreme doses, however, does raise IHCL and ALT, an effect that may be more attributable to excess energy than fructose. Larger, longer and higher-quality trials of the effect of fructose on histopathological NAFLD changes are required.
    Full-text · Article · Feb 2014 · Canadian Journal of Diabetes
  • Source
    Laura Chiavaroli · Vanessa Ha · Cyril W.C. Kendall · John L Sievenpiper

    Full-text · Article · Feb 2014 · Journal of Hepatology

Publication Stats

8k Citations
839.54 Total Impact Points

Institutions

  • 1999-2015
    • St. Michael's Hospital
      Toronto, Ontario, Canada
  • 1991-2015
    • University of Toronto
      • • Department of Nutritional Sciences
      • • Faculty of Medicine
      Toronto, Ontario, Canada
  • 2012-2014
    • McMaster University
      • • Department of Clinical Epidemiology and Biostatistics
      • • Faculty of Health Sciences
      Hamilton, Ontario, Canada
  • 2011
    • University of Saskatchewan
      • College of Pharmacy and Nutrition
      Saskatoon, Saskatchewan, Canada
  • 2004
    • University of Milan
      Milano, Lombardy, Italy