Heike Tost

Universität Heidelberg, Heidelburg, Baden-Württemberg, Germany

Are you Heike Tost?

Claim your profile

Publications (118)701.43 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: White matter (WM) magnetic resonance imaging (MRI) hyperintensities are common in Alzheimer's disease (AD), but their pathophysiological relevance and relationship to genetic factors are unclear. In the present study, we investigated potential apolipoprotein E (APOE)-dependent effects on the extent and cognitive impact of WM hyperintensities in patients with AD. WM hyperintensity volume on fluid-attenuated inversion recovery images of 201 patients with AD (128 carriers and 73 non-carriers of the APOE ε4 risk allele) was determined globally as well as regionally with voxel-based lesion mapping. Clinical, neuropsychological and MRI data were collected from prospective multicenter trials conducted by the German Dementia Competence Network. WM hyperintensity volume was significantly greater in non-carriers of the APOE ε4 allele. Lesion distribution was similar among ε4 carriers and non-carriers. Only ε4 non-carriers showed a correlation between lesion volume and cognitive performance. The current findings indicate an increased prevalence of WM hyperintensities in non-carriers compared with carriers of the APOE ε4 allele among patients with AD. This is consistent with a possibly more pronounced contribution of heterogeneous vascular risk factors to WM damage and cognitive impairment in patients with AD without APOE ε4-mediated risk.
    Full-text · Article · Dec 2015 · Alzheimer's Research and Therapy
  • [Show abstract] [Hide abstract]
    ABSTRACT: The developing human brain is shaped by environmental exposures - for better or worse. Many exposures relevant to mental health are genuinely social in nature or believed to have social subcomponents, even those related to more complex societal or area-level influences. The nature of how these social experiences are embedded into the environment may be crucial. Here we review select neuroscience evidence on the neural correlates of adverse and protective social exposures in their environmental context, focusing on human neuroimaging data and supporting cellular and molecular studies in laboratory animals. We also propose the inclusion of innovative methods in social neuroscience research that may provide new and ecologically more valid insight into the social-environmental risk architecture of the human brain.
    No preview · Article · Sep 2015 · Nature Neuroscience
  • [Show abstract] [Hide abstract]
    ABSTRACT: Convergent evidence implicates regional neural responses to reward anticipation in the pathogenesis of several psychiatric disorders, such as schizophrenia, where blunted ventral striatal responses to positive reward are observed in patients and at-risk populations. in vivo oxygen amperometry measurements in the ventral striatum in awake, behaving rats reveal reward-related tissue oxygen changes that closely parallel BOLD signal changes observed in human fMRI, suggesting that a cross-species approach targeting this mechanism might be feasible in psychopharmacology. The present study explored modulatory effects of acute, subanaesthetic doses of ketamine—a pharmacological model widely used in psychopharmacological research, both preclinically and clinically—on ventral striatum activity during performance of a reward anticipation task in both species, using fMRI in humans and in vivo oxygen amperometry in rats. In a region of interest analysis conducted following a cross-over placebo and ketamine study in human subjects, an attenuated ventral striatal response during reward anticipation was observed following ketamine relative to placebo during performance of a monetary incentive delay task. In rats, a comparable attenuation of ventral striatal signal was found after ketamine challenge, relative to vehicle, in response to a conditioned stimulus that predicted delivery of reward. This study provides the first data in both species demonstrating an attenuating effect of acute ketamine on reward-related ventral striatal [O2] and fMRI signals. These findings may help elucidate a deeper mechanistic understanding of the potential role of ketamine as a model for psychosis, show that cross-species pharmacological experiments targeting reward signalling are feasible, and suggest this phenotype as a promising translational biomarker for the development of novel compounds, assessment of disease status, and treatment efficacy.
    No preview · Article · Sep 2015 · Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multivariate pattern analysis can reveal new information from neuroimaging data to illuminate human cognition and its disturbances. Here, we develop a methodological approach, based on multivariate statistical/machine learning and time series analysis, to discern cognitive processing stages from functional magnetic resonance imaging (fMRI) blood oxygenation level dependent (BOLD) time series. We apply this method to data recorded from a group of healthy adults whilst performing a virtual reality version of the delayed win-shift radial arm maze (RAM) task. This task has been frequently used to study working memory and decision making in rodents. Using linear classifiers and multivariate test statistics in conjunction with time series bootstraps, we show that different cognitive stages of the task, as defined by the experimenter, namely, the encoding/retrieval, choice, reward and delay stages, can be statistically discriminated from the BOLD time series in brain areas relevant for decision making and working memory. Discrimination of these task stages was significantly reduced during poor behavioral performance in dorsolateral prefrontal cortex (DLPFC), but not in the primary visual cortex (V1). Experimenter-defined dissection of time series into class labels based on task structure was confirmed by an unsupervised, bottom-up approach based on Hidden Markov Models. Furthermore, we show that different groupings of recorded time points into cognitive event classes can be used to test hypotheses about the specific cognitive role of a given brain region during task execution. We found that whilst the DLPFC strongly differentiated between task stages associated with different memory loads, but not between different visual-spatial aspects, the reverse was true for V1. Our methodology illustrates how different aspects of cognitive information processing during one and the same task can be separated and attributed to specific brain regions based on information contained in multivariate patterns of voxel activity.
    Full-text · Article · Sep 2015 · Frontiers in Human Neuroscience
  • [Show abstract] [Hide abstract]
    ABSTRACT: As evidenced by a multitude of studies, abnormalities in Theory of Mind (ToM) and its neural processing might constitute an intermediate phenotype of schizophrenia. If so, neural alterations during ToM should be observable in unaffected relatives of patients as well, since they share a considerable amount of genetic risk. While behaviorally, impaired ToM function is confirmed meta-analytically in relatives, evidence on aberrant function of the neural ToM network is sparse and inconclusive. The present study therefore aimed to further explore the neural correlates of ToM in relatives of schizophrenia. 297 controls and 63 unaffected first-degree relatives of patients with schizophrenia performed a ToM task during functional magnetic resonance imaging. Consistent with the literature relatives exhibited decreased activity of the medial prefrontal cortex. Additionally, increased recruitment of the right middle temporal gyrus and posterior cingulate cortex was found, which was related to subclinical paranoid symptoms in relatives. These results further support decreased medial prefrontal activation during ToM as an intermediate phenotype of genetic risk for schizophrenia. Enhanced recruitment of posterior ToM areas in relatives might indicate inefficiency mechanisms in the presence of genetic risk. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
    No preview · Article · Sep 2015 · Social Cognitive and Affective Neuroscience

  • No preview · Article · Sep 2015

  • No preview · Article · Sep 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Improved classification of mental disorders through neurobiological measures will require a set of traits that map to transdiagnostic subgroups of patients and align with heritable, core psychopathological processes at the center of the disorders of interest. A promising candidate is working memory (WM) function, for which deficits have been reported across multiple diagnostic entities including schizophrenia, bipolar disorder, ADHD, autism, and major depressive disorder. Here we review genetic working memory associations and their brain functional correlates from the perspective of identifying patient subgroups across conventional diagnostic boundaries, explore the utility of multimodal investigations integrating functional information at the neural systems level and explore potential limitations as well as future directions for research. © 2015 Wiley Periodicals, Inc.
    No preview · Article · Sep 2015 · American Journal of Medical Genetics Part B Neuropsychiatric Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The brain is an inherently dynamic system, and executive cognition requires dynamically reconfiguring, highly evolving networks of brain regions that interact in complex and transient communication patterns. However, a precise characterization of these reconfiguration processes during cognitive function in humans remains elusive. Here, we use a series of techniques developed in the field of "dynamic network neuroscience" to investigate the dynamics of functional brain networks in 344 healthy subjects during a working-memory challenge (the "n-back" task). In contrast to a control condition, in which dynamic changes in cortical networks were spread evenly across systems, the effortful working-memory condition was characterized by a reconfiguration of frontoparietal and frontotemporal networks. This reconfiguration, which characterizes "network flexibility," employs transient and heterogeneous connectivity between frontal systems, which we refer to as "integration." Frontal integration predicted neuropsychological measures requiring working memory and executive cognition, suggesting that dynamic network reconfiguration between frontal systems supports those functions. Our results characterize dynamic reconfiguration of large-scale distributed neural circuits during executive cognition in humans and have implications for understanding impaired cognitive function in disorders affecting connectivity, such as schizophrenia or dementia.
    Full-text · Article · Aug 2015 · Proceedings of the National Academy of Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The search for quantifiable biological mediators of genetic risk or 'intermediate phenotypes' is an essential strategy in psychiatric neuroscience and a useful tool for exploring the complex relationships between genes, neural circuits and behaviors. In recent years, the examination of connectivity-based intermediate phenotypes has gained increasing popularity in the study of schizophrenia, a brain disorder that manifests in early adulthood and disturbs a wide range of neural network functions. To date, several potential connectivity phenotypes have been identified that link neuroimaging measures of neural circuit interaction to genetic susceptibility for schizophrenia. This paper briefly reviews recent advances, current limitations and future directions in the search for functional connectivity intermediate phenotypes for schizophrenia across different cognitive domains. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Full-text · Article · Aug 2015 · Current opinion in neurobiology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aberrant prefrontal-hippocampal (PFC-HC) connectivity is disrupted in several psychiatric and at-risk conditions. Advances in rodent functional imaging have opened the possibility that this phenotype could serve as a translational imaging marker for psychiatric research. Recent evidence from functional magnetic resonance imaging (fMRI) studies has indicated an increase in PFC-HC coupling during working-memory tasks in both schizophrenic patients and at-risk populations, in contrast to a decrease in resting-state PFC-HC connectivity. Acute ketamine challenge is widely used in both humans and rats as a pharmacological model to study the mechanisms of N-methyl-D-aspartate (NMDA) receptor hypofunction in the context of psychiatric disorders. We aimed to establish whether acute ketamine challenge has consistent effects in rats and humans by investigating resting-state fMRI PFC-HC connectivity and thus to corroborate its potential utility as a translational probe. Twenty-four healthy human subjects (12 females, mean age 25 years) received intravenous doses of either saline (placebo) or ketamine (0.5 mg/kg body weight). Eighteen Sprague-Dawley male rats received either saline or ketamine (25 mg/kg). Resting-state fMRI measurements took place after injections, and the data were analyzed for PFC-HC functional connectivity. In both species, ketamine induced a robust increase in PFC-HC coupling, in contrast to findings in chronic schizophrenia. This translational comparison demonstrates a cross-species consistency in pharmacological effect and elucidates ketamine-induced alterations in PFC-HC coupling, a phenotype often disrupted in pathological conditions, which may give clue to understanding of psychiatric disorders and their onset, and help in the development of new treatments.
    No preview · Article · Jul 2015 · Psychopharmacology
  • [Show abstract] [Hide abstract]
    ABSTRACT: The application of global signal regression (GSR) to resting-state functional magnetic resonance imaging data and its usefulness is a widely discussed topic. In this article, we report an observation of segregated distribution of amygdala resting-state functional connectivity (rs-FC) within the fusiform gyrus (FFG) as an effect of GSR in a multi-center-sample of 276 healthy subjects. Specifically, we observed that amygdala rs-FC was distributed within the FFG as distinct anterior versus posterior clusters delineated by positive versus negative rs-FC polarity when GSR was performed. To characterize this effect in more detail, post hoc analyses revealed the following: first, direct overlays of task-functional magnetic resonance imaging derived face sensitive areas and clusters of positive versus negative amygdala rs-FC showed that the positive amygdala rs-FC cluster corresponded best with the fusiform face area, whereas the occipital face area corresponded to the negative amygdala rs-FC cluster. Second, as expected from a hierarchical face perception model, these amygdala rs-FC defined clusters showed differential rs-FC with other regions of the visual stream. Third, dynamic connectivity analyses revealed that these amygdala rs-FC defined clusters also differed in their rs-FC variance across time to the amygdala. Furthermore, subsample analyses of three independent research sites confirmed reliability of the effect of GSR, as revealed by similar patterns of distinct amygdala rs-FC polarity within the FFG. In this article, we discuss the potential of GSR to segregate face sensitive areas within the FFG and furthermore discuss how our results may relate to the functional organization of the face-perception circuit. Hum Brain Mapp, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
    No preview · Article · Jul 2015 · Human Brain Mapping
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Social interactions are fundamental for human behavior, but the quantification of their neural underpinnings remains challenging. Here, we used hyperscanning functional MRI (fMRI) to study information flow between brains of human dyads during real-time social interaction in a joint attention paradigm. In a hardware setup enabling immersive audiovisual interaction of subjects in linked fMRI scanners, we characterize cross-brain connectivity components that are unique to interacting individuals, identifying information flow between the sender's and receiver's temporoparietal junction. We replicate these findings in an independent sample and validate our methods by demonstrating that cross-brain connectivity relates to a key real-world measure of social behavior. Together, our findings support a central role of human-specific cortical areas in the brain dynamics of dyadic interactions and provide an approach for the noninvasive examination of the neural basis of healthy and disturbed human social behavior with minimal a priori assumptions. Information flow between interacting human brains: Identification, validation, and relationship to social expertise. Available from: https://www.researchgate.net/publication/274696119_Information_flow_between_interacting_human_brains_Identification_validation_and_relationship_to_social_expertise [accessed Apr 21, 2015].
    Full-text · Article · Apr 2015 · Proceedings of the National Academy of Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Social interactions are fundamental for human behavior, but the quantification of their neural underpinnings remains challenging. Here, we used hyperscanning functional MRI (fMRI) to study information flow between brains of human dyads during real-time social interaction in a joint attention paradigm. In a hardware setup enabling immersive audiovisual interaction of subjects in linked fMRI scanners, we characterize cross-brain connectivity components that are unique to interacting individuals, identifying information flow between the sender's and receiver's temporoparietal junction. We replicate these findings in an independent sample and validate our methods by demonstrating that cross-brain connectivity relates to a key real-world measure of social behavior. Together, our findings support a central role of human-specific cortical areas in the brain dynamics of dyadic interactions and provide an approach for the noninvasive examination of the neural basis of healthy and disturbed human social behavior with minimal a priori assumptions.
    Full-text · Article · Apr 2015
  • Source

    Full-text · Dataset · Mar 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cortisol rise after awakening (cortisol awakening response, CAR) is a core biomarker of hypothalamic-pituitary-adrenal (HPA) axis regulation related to psychosocial stress and stress-related psychiatric disorders. However, the neural regulation of the CAR has not been examined in humans. Here, we studied neural regulation related to the CAR in a sample of 25 healthy human participants using an established psychosocial stress paradigm together with multimodal functional and structural (voxel-based morphometry) magnetic resonance imaging. Across subjects, a smaller CAR was associated with reduced grey matter volume and increased stress-related brain activity in the perigenual ACC, a region which inhibits HPA axis activity during stress that is implicated in risk mechanisms and pathophysiology of stress-related mental diseases. Moreover, functional connectivity between the perigenual ACC and the hypothalamus, the primary controller of HPA axis activity, was associated with the CAR. Our findings provide support for a role of the perigenual ACC in regulating the CAR in humans and may aid future research on the pathophysiology of stress-related illnesses, such as depression, and environmental risk for illnesses such as schizophrenia.Neuropsychopharmacology accepted article preview online, 17 March 2015. doi:10.1038/npp.2015.77.
    Full-text · Article · Mar 2015 · Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hippocampal-prefrontal interactions are implicated in working memory (WM) and altered in psychiatric conditions with cognitive impairment such as schizophrenia. While coupling between both structures is crucial for WM performance in rodents, evidence from human studies is conflicting and translation of findings is complicated by the use of differing paradigms across species. We therefore used functional magnetic resonance imaging (fMRI) together with a spatial WM paradigm adapted from rodent research to examine hippocampal-prefrontal coupling in humans. A prefrontal-parietal network was functionally connected to hippocampus (HC) during task stages requiring high levels of executive control but not during a matched control condition. The magnitude of coupling in a network comprising HC, bilateral dorsolateral prefrontal cortex (DLPFC) and right supramarginal gyrus explained one fourth of the variability in an independent spatial WM task but was unrelated to visual WM performance. HC-DLPFC coupling may thus represent a systems-level mechanism specific to spatial WM that is conserved across species, suggesting its utility for modeling cognitive dysfunction in translational neuroscience.Neuropsychopharmacology accepted article preview online, 12 January 2015. doi:10.1038/npp.2015.13.
    Full-text · Article · Jan 2015 · Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology

  • No preview · Article · Jan 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amygdala function is of high interest for cognitive, social and psychiatric neuroscience, emphasizing the need for reliable assessments in humans. Previous work has indicated unsatisfactorily low within-subject reliability of amygdala activation fMRI measures. Based on basic science evidence for strong habituation of amygdala response to repeated stimuli, we investigated whether a quantification of habituation provides additional information beyond the usual estimate of the overall mean activity. We assessed the within-subject reliability of amygdala habituation measures during a facial emotion matching paradigm in 25 healthy subjects. We extracted the amygdala signal decrement across the course of the fMRI run for the two test-retest measurement sessions and compared reliability estimates with previous findings based on mean response amplitude. Retest-reliability of the session-wise amygdala habituation was significantly higher than the evoked amygdala mean amplitude (intraclass correlation coefficients (ICC) = 0.53 vs. 0.16). To test the task-specificity of this finding, we compared the retest-reliability of amygdala habituation across two different tasks. Significant amygdala response decrement was also seen in a cognitive task (n-back working memory) that did not per se activate the amygdala, but was totally unreliable in that context (ICC ~ 0.0), arguing for task-specificity. Together the results show that emotion-dependent amygdala habituation is a robust and considerably more reliable index than the mean amplitude, and provides a robust potential endpoint for within-subject designs including pharmaco-fMRI studies.
    Full-text · Article · Oct 2014 · NeuroImage

  • No preview · Article · Oct 2014 · European Neuropsychopharmacology

Publication Stats

2k Citations
701.43 Total Impact Points

Institutions

  • 2011-2015
    • Universität Heidelberg
      • Central Institute of Mental Health
      Heidelburg, Baden-Württemberg, Germany
  • 2002-2015
    • Central Institute of Mental Health
      • Klinik für Abhängiges Verhalten und Suchtmedizin
      Mannheim, Baden-Württemberg, Germany
  • 2010-2011
    • National Institutes of Health
      베서스다, Maryland, United States
    • Northern Inyo Hospital
      BIH, California, United States
  • 2008-2010
    • National Institute of Mental Health (NIMH)
      • Clinical Brain Disorders Branch
      베서스다, Maryland, United States
    • Georg-August-Universität Göttingen
      • Department of Clinical Psychology and Psychotherapy
      Göttingen, Lower Saxony, Germany
  • 2005
    • Universität Mannheim
      Mannheim, Baden-Württemberg, Germany