Ikuko Miyazaki

Okayama University of Science, Okayama, Okayama, Japan

Are you Ikuko Miyazaki?

Claim your profile

Publications (104)290.28 Total impact

  • Ikuko Miyazaki · Masato Asanuma
    [Show abstract] [Hide abstract]
    ABSTRACT: Astrocytes are the most abundant neuron-supporting glial cells in the central nervous system. The neuroprotective role of astrocytes has been demonstrated in various neurological disorders such as amyotrophic lateral sclerosis, spinal cord injury, stroke and Parkinson's disease (PD). Astrocyte dysfunction or loss-of-astrocytes increases the susceptibility of neurons to cell death, while astrocyte transplantation in animal studies has therapeutic advantage. We reported recently that stimulation of serotonin 1A (5-HT1A) receptors on astrocytes promoted astrocyte proliferation and upregulated antioxidative molecules to act as a neuroprotectant in parkinsonian mice. PD is a progressive neurodegenerative disease with motor symptoms such as tremor, bradykinesia, rigidity and postural instability, that are based on selective loss of nigrostriatal dopaminergic neurons, and with non-motor symptoms such as orthostatic hypotension and constipation based on peripheral neurodegeneration. Although dopaminergic therapy for managing the motor disability associated with PD is being assessed at present, the main challenge remains the development of neuroprotective or disease-modifying treatments. Therefore, it is desirable to find treatments that can reduce the progression of dopaminergic cell death. In this article, we summarize first the neuroprotective properties of astrocytes targeting certain molecules related to PD. Next, we review neuroprotective effects induced by stimulation of 5-HT1A receptors on astrocytes. The review discusses new promising therapeutic strategies based on neuroprotection against oxidative stress and prevention of dopaminergic neurodegeneration.
    No preview · Article · Jan 2016 · Current Medicinal Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metal-binding proteins, metallothioneins (MTs), may play important roles in bone metabolism. However, the contribution of MTs to bone metabolism remains obscure. In the present study, we investigated the expression of MT isoforms in bone cells and mRNA for MT isoforms in the tibiae following ovariectomy (OVX). The results obtained showed that MT-I/II and MT-III were expressed in osteoblasts, osteoclasts, and osteocytes 4 weeks after OVX. Peaks in the mRNA expression ratios (OVX/Sham) of MT-I/II and MT-III changed following OVX. The expression ratio of MT-I/II increased after 1 week, whereas that of MT-III increased 4 weeks after OVX. These results suggest that the contribution of MTs to bone metabolism may depend on the isoforms in the cell types and the stage after OVX.
    Preview · Article · Jan 2016 · Journal of Hard Tissue Biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: The high mobility group box-1 (HMGB1), exists as an architectural nuclear protein in the normal state, but displays an inflammatory cytokine-like activity in the extracellular space under pathological condition. Inflammation in the pathogenesis of Parkinson's disease (PD) has been documented. In this study, we investigated the involvement of HMGB1 in the pathology and the neuroprotective effects of neutralizing anti-HMGB1 monoclonal antibody (mAb) on an animal model of PD. Adult female Sprague-Dawley rats were initially injected with 6-hydroxydopmaine (6-OHDA, 20 μg / 4 μl) into the right striatum, then anti-HMGB1 mAb (1 mg/kg), or control mAb was intravenously administered immediately, at 6 and 24 hours after 6-OHDA injection. The treatment with anti-HMGB1 mAb significantly preserved dopaminergic neurons in substantia nigra pars compacta and dopaminergic teminals inherent in the striatum, and attenuated PD behavioral symptoms compared to control mAb-treated group. HMGB1 was retained in the nucleus of neurons and astrocytes by inhibiting the proinflammation-induced oxidative stress in anti-HMGB1 mAb-treated group, whereas HMGB1 translocation was observed in neurons at 1 day and astrocytes at 7 days after 6-OHDA injection in control mAb-treated group. Anti-HMGB1 mAb inhibited the activation of microglia, disruption of blood-brain-barrier (BBB), and the expression of inflammation cytokines such as IL-1β and IL-6. These results suggested that HMGB1 released from neurons and astrocytes was at least partly involved in the mechanism and pathway of degeneration of dopaminergic neurons induced by 6-OHDA exposure. Intravenous administration of anti-HMGB1 mAb stands as a novel therapy for PD possibly acting through the suppression of neuroinflammation and the attenuation of disruption of BBB associated with the disease.
    No preview · Article · Nov 2015 · Experimental Neurology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Astrocytes but not neurons express cystine/glutamate exchange transporter (xCT), which takes up cystine, and consequently supplies the substrate for GSH synthesis in neurons. It is recognized that GSH synthesis in neurons is dependent on the expression of xCT in astrocytes. Previous studies reported that levetiracetam (LEV), an anti-epileptic drug, increased xCT expression in vivo. The purpose of this study was to examine neuroprotective effects of LEV in parkinsonian models and demonstrate xCT in astrocytes as a target of neuroprotection against dopaminergic neurodegeneration. We identified striatal astrocytes cultured with LEV showed significant increase in xCT expression and GSH levels. Preincubation of primary cultured mesencephalic dopamine neurons with conditioned media from LEV-treated astrocytes protected against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity. These protective effects were canceled by xCT inhibitor. Furthermore, reduction of nigrostriatal dopaminergic neurons in 6-OHDA-lesioned parkinsonian model mice was significantly abrogated by repeated injections of LEV. Treatment with LEV significantly increased the expression of xCT in striatal astrocytes in the hemi-parkinsonian mice. In conclusion, LEV exerts neuroprotective effects against neurodegeneration via up-regulation of xCT and GSH in astrocytes. Thus, xCT in astrocytes could be a potential target in novel neuroprotective approaches to prevent degeneration of dopaminergic neurons. This article is protected by copyright. All rights reserved.
    No preview · Article · Oct 2015 · Journal of Neurochemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many patients who have received chemotherapy to treat cancer experience depressive- and anxiety-like symptoms or cognitive impairment. However, despite the evidence for this, the underlying mechanisms are still not understood. This study investigated behavioral and biochemical changes upon treatment with doxorubicin and cyclophosphamide, focusing on mental and cognitive systems, as well as neurogenesis in male rats. Doxorubicin (2mg/kg), cyclophosphamide (50mg/kg), and the combination of doxorubicin and cyclophosphamide were injected intraperitoneally once per week for 4 weeks. In particular, the co-administration of doxorubicin and cyclophosphamide produced anhedonia-like, anxiety-like, and spatial cognitive impairments in rats. It also reduced both the number of proliferating cells in the subgranular zone of the hippocampal dentate gyrus and their survival. Serum brain-derived neurotrophic factor (BDNF) levels were decreased along with chemotherapy-induced decreases in platelet levels. However, hippocampal BDNF levels and Bdnf mRNA levels were not decreased by this treatment. On the other hand, hippocampal cyclin D1 levels were significantly decreased by chemotherapy. These results suggest that the co-administration of doxorubicin and cyclophosphamide induces psychological and cognitive impairment, in addition to negatively affecting hippocampal neurogenesis, which may be related to hippocampal cyclin D1 levels, but not hippocampal BDNF levels. Copyright © 2015. Published by Elsevier B.V.
    No preview · Article · Jun 2015 · Behavioural brain research
  • Shinki Murakami · Ikuko Miyazaki · Ko Miyoshi · Masato Asanuma
    [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson's disease (PD) is a progressive neurodegenerative disease with motor and non-motor symptoms that precede the onset of motor symptoms. Rotenone is often used to induce PD-like pathology in the central nervous system (CNS) and enteric nervous system (ENS). However, there is little or no information on the temporal changes in other neural tissues and the spread of pathology throughout the entire body organs. Here, we recorded the serial immunohistochemical changes in neurons and glial cells of the striatum, substantia nigra (SN), olfactory bulb (OB), thoracic cord (ThC) and ascending colon (AC) induced by 1-, 3- and 6-week administration of rotenone (50 mg/kg/day) infused subcutaneously in C57BL mice using an osmotic pump. Rotenone exposure for 3 or 6 weeks caused neurodegeneration in the striatum, whereas neuronal damage was seen in the SN and OB only after 6 weeks. Moreover, rotenone induced neurodegeneration in the myenteric plexus of AC but not in ThC. Rotenone also activated glial cells before any apparent neurodegeneration in the CNS but not in the ENS. Our results demonstrated that subcutaneous administration of rotenone can cause progressive neurodegeneration in the OB and AC, in addition to the nigrostriatal pathway, and temporal differential glial activation, and that these changes do not spread retrogradely from OB or ENS to nigrostriatal pathway. The results suggested that the different vulnerability of neurons to the neurotoxic effects of rotenone administrated subcutaneously are due to glial activation in these neural tissues.
    No preview · Article · Apr 2015 · Neurochemical Research
  • [Show abstract] [Hide abstract]
    ABSTRACT: In vertebrates, almost all somatic cells extend a single immotile cilium, referred to as a primary cilium. Increasing evidence suggests that primary cilia serve as cellular antennae in many types of tissues by sensing chemical or mechanical stimuli in the milieu surrounding the cells. In rodents an antibody to adenylyl cyclase 3 (AC3) has been widely used to label the primary cilia of neurons in vivo by immunostaining, whereas the lack of markers for the primary cilia of astrocytes has made it difficult to observe astrocytic primary cilia in vivo. Here, we obtained a visualization of astrocytic primary cilia in the mouse brain. In the somatosensory cortex, a large portion of neurons and astrocytes at postnatal day 10 (P10), and of neurons at P56 had AC3-positive primary cilia, whereas only approx. one-half of the astrocytes in the P56 mice carried primary cilia weakly positive for AC3. In contrast, the majority of astrocytes had ADP-ribosylation factor-like protein 13B (Arl13b)-positive primary cilia in the somatosensory cortex and other brain regions of P56 mice. The lengths of astrocytic primary cilia positive for Arl13b varied among the brain regions. Our data indicate that Arl13b is a noteworthy marker of astrocytic primary cilia in the brain.
    No preview · Article · Dec 2014 · Acta medica Okayama
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: L-DOPA is therapeutically efficacious in patients with Parkinson's disease (PD), although dopamine (DA) neurons are severely degenerated. Since cortical astrocytes express neutral amino acid transporter (LAT) and DA transporter (DAT), the uptake and metabolism of L-DOPA and DA in striatal astrocytes may influence their availability in the dopaminergic system of PD. To assess possible L-DOPA- and DA-uptake and metabolic properties of striatal astrocytes, we examined the expression of L-DOPA, DA and DAT in striatal astrocytes of hemi-parkinsonian model rats after repeated L-DOPA administration, and measured the contents of L-DOPA, DA and their metabolite in primary cultured striatal astrocytes after L-DOPA/DA treatment. Repeated injections of L-DOPA induced apparent L-DOPA- and DA-immunoreactivities and marked expression of DAT in reactive astrocytes on the lesioned side of the striatum in hemi-parkinsonian rats. Exposure to DA for 4h significantly increased the levels of DA and its metabolite DOPAC in cultured striatal astrocytes. L-DOPA was also markedly increased in cultured striatal astrocytes after 4-h L-DOPA exposure, but DA was not detected 4 or 8h after L-DOPA treatment, despite the expression of aromatic amino acid decarboxylase in astrocytes. Furthermore, the intracellular level of L-DOPA in cultured striatal astrocytes decreased rapidly after removal of extracellular L-DOPA. The results suggest that DA uptaken into striatal astrocytes is rapidly metabolized and that striatal astrocytes act as a reservoir of L-DOPA that govern the uptake or release of L-DOPA depending on extracellular L-DOPA concentration, but are less capable of converting L-DOPA to DA.
    Full-text · Article · Sep 2014 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective Developmental disorders including cognitive deficit, hyperkinetic disorder, and autistic behaviors are frequently comorbid in epileptic patients with SCN1A mutations. However, the mechanisms underlying these developmental disorders are poorly understood and treatments are currently unavailable. Using a rodent model with an Scn1a mutation, we aimed to elucidate the pathophysiologic basis and potential therapeutic treatments for developmental disorders stemming from Scn1a mutations.Methods We conducted behavioral analyses on rats with the N1417H-Scn1a mutation. With high-performance liquid chromatography, we measured dopamine and its metabolites in the frontal cortex, striatum, nucleus accumbens, and midbrain. Methylphenidate was administered intraperitoneally to examine its effects on developmental disorder–like behaviors and hyperthermia-induced seizures.ResultsBehavioral studies revealed that Scn1a-mutant rats had repetitive behavior, hyperactivity, anxiety-like behavior, spatial learning impairments, and motor imbalance. Dopamine levels in the striatum and nucleus accumbens in Scn1a-mutant rats were significantly lower than those in wild-type rats. In Scn1a-mutant rats, methylphenidate, by increasing dopamine levels in the synaptic cleft, improved hyperactivity, anxiety-like behavior, and spatial learning impairments. Surprisingly, methylphenidate also strongly suppressed hyperthermia-induced seizures.SignificanceDysfunction of the mesolimbic dopamine reward pathway may contribute to the hyperactivity and learning impairments in Scn1a-mutant rats. Methylphenidate was effective for treating hyperactivity, learning impairments, and hyperthermia-induced seizures. We propose that methylphenidate treatment may ameliorate not only developmental disorders but also epileptic seizures in patients with SCN1A mutations.
    Preview · Article · Aug 2014 · Epilepsia
  • [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson's disease (PD) is a neurodegenerative disease with motor symptoms as well as non-motor symptoms that precede the onset of motor symptoms. Mitochondrial complex I inhibitor, rotenone, has been widely used to reproduce PD pathology in the central nervous system (CNS) and enteric nervous system (ENS). We reported previously that metallothioneins (MTs) released from astrocytes can protect dopaminergic neurons against oxidative stress. The present study examined the changes in MT expression by chronic systemic rotenone administration in the striatum and colonic myenteric plexus of C57BL mice. In addition, we investigated the effects of MT depletion on rotenone-induced neurodegeneration in CNS and ENS using MT-1 and MT-2 knockout (MT KO) mice, or using primary cultured neurons from MT KO mice. In normal C57BL mice, subcutaneous administration of rotenone for 6 weeks caused neurodegeneration, increased MT expression with astrocytes activation in the striatum and myenteric plexus. MT KO mice showed more severe myenteric neuronal damage by rotenone administration after 4 weeks than wild-type mice, accompanied by reduced astroglial activation. In primary cultured mesencephalic neurons from MT KO mice, rotenone exposure induced neurotoxicity in dopaminergic neurons, which was complemented by addition of recombinant protein. The present results suggest that MT seems to provide protection against neurodegeneration in ENS of rotenone-induced PD model mice.
    No preview · Article · Jun 2014 · Neurotoxicity Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the rodent brain, certain G protein-coupled receptors and adenylyl cyclase type 3 are known to localize to the neuronal primary cilium, a primitive sensory organelle protruding singly from almost all neurons. A recent chemical screening study demonstrated that many compounds targeting dopamine receptors regulate the assembly of Chlamydomonas reinhardtii flagella, structures which are analogous to vertebrate cilia. Here we investigated the effects of dopaminergic inputs loss on the architecture of neuronal primary cilia in the rodent striatum, a brain region that receives major dopaminergic projections from the midbrain. We first analyzed the lengths of neuronal cilia in the dorsolateral striatum of hemi-parkinsonian rats with unilateral lesions of the nigrostriatal dopamine pathway. In these rats, the striatal neuronal cilia were significantly longer on the lesioned side than on the non-lesioned side. In mice, the repeated injection of reserpine, a dopamine-depleting agent, elongated neuronal cilia in the striatum. The combined administration of agonists for dopamine receptor type 2 (D2) with reserpine attenuated the elongation of striatal neuronal cilia. Repeated treatment with an antagonist of D2, but not of dopamine receptor type 1 (D1), elongated the striatal neuronal cilia. In addition, D2-null mice displayed longer neuronal cilia in the striatum compared to wild-type controls. Reserpine treatment elongated the striatal neuronal cilia in D1-null mice but not in D2-null mice. Repeated treatment with a D2 agonist suppressed the elongation of striatal neuronal cilia on the lesioned side of hemi-parkinsonian rats. These results suggest that the elongation of striatal neuronal cilia following the lack of dopaminergic inputs is attributable to the absence of dopaminergic transmission via D2 receptors. Our results provide the first evidence that the length of neuronal cilia can be modified by the lack of a neurotransmitter's input.
    Preview · Article · May 2014 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, we examined the effect of ACTH on the immobilization of rats in the forced swim test and hippocampal cell proliferation after administration of the 5-HT1A receptor agonist, R-(+)-8-hydroxy-2-di-n-propylamino tetralin ((+)-8-OH-DPAT). Chronic treatment with (+)-8-OH-DPAT (0.01 - 0.1mg/kg, s.c.) significantly decreased the duration of immobility in saline- and ACTH-treated rats. Chronic administration of ACTH caused a significant decrease in hippocampal cell proliferation. However, (+)-8-OH-DPAT significantly normalized cell proliferation in ACTH-treated rats. We then investigated the effects of (+)-8-OH-DPAT on the expression of brain-derived neurotrophic factor (BDNF) and cyclin D1 (elements of cyclic adenosine monophosphate response element-binding protein (CREB)-BDNF and Wnt signaling pathways, respectively) in the hippocampus of saline- and ACTH-treated rats. ACTH treatment significantly decreased the expression of cyclin D1, while treatment with (+)-8-OH-DPAT normalized the expression of cyclin D1 in ACTH-treated rats. However, the expression of BDNF did not change in either saline- or ACTH-treated rats. These findings suggest that the antidepressant effects of (+)-8-OH-DPAT in treatment-resistant animals may be attributed to an enhancement of hippocampal cell proliferation, at least in part due to an enhancement of cyclin D1 expression.
    No preview · Article · Apr 2014 · Pharmacology Biochemistry and Behavior
  • Taizo Kita · Masato Asanuma · Ikuko Miyazaki · Mika Takeshima
    [Show abstract] [Hide abstract]
    ABSTRACT: The specific toxicity to dopaminergic neurons of psychostimulants and neurotoxins has been extensively studied in vivo and in vitro, and findings have been used to establish animal models of amphetamine psychosis or Parkinson's disease. The multiple mechanisms of neurotoxicity operating in these disorders are known to involve oxidative stress or neuroinflammation, producing the characteristic behavioral and neuropathlogical changes arising from injured dopaminergic neurons and glial cells. A number of studies have shown that glia-targeting antioxidants play important roles in protecting against the neurotoxicity caused by psychostimulants or neurotoxins. Phytochemicals, which are non-nutritive plant chemicals, protect dopaminergic neurons and glial cells from damage caused by psychostimulants or neurotoxins. The objective of this review was to evaluate the involvement of glial cells in dopaminergic neuron-specific toxicity and to explore the neuroprotective activity of phytochemicals in terms of anti-inflammatory and antioxidant action.
    No preview · Article · Mar 2014 · Journal of Pharmacological Sciences
  • [Show abstract] [Hide abstract]
    ABSTRACT: The dopamine reuptake inhibitor bupropion and dopamine D2/3 receptor agonist pramipexole have been clinically proven to improve both depression and treatment-resistant depression. We examined its influence on the duration of immobility during the forced swim test in adrenocorticotropic hormone (ACTH)-treated rats and further analyzed the possible role of the dopamine nerve system in this effect. Bupropion and pramipexole significantly decreased the duration of immobility in normal and ACTH-treated rats. We previously demonstrated that the chronic administration of ACTH caused a significant decrease in hippocampal cell proliferation and neurogenesis. In this study, we used the mitotic marker 5-bromo-2'-deoxyridine to investigate the effects of bupropion and pramipexole on cell proliferation in the subgranular zone of the hippocampal dentate gyrus following chronic treatment with ACTH. The ACTH treatment for 14 d decreased adult hippocampal cell proliferation. The chronic administration of bupropion for 14 d blocked the loss of cell proliferation resulting from the chronic treatment with ACTH, whereas pramipexole did not. The administration of bupropion may have treatment-resistant antidepressive properties, which may be partly attributed to the normalization of hippocampal cell proliferation.
    No preview · Article · Feb 2014 · Biological & Pharmaceutical Bulletin

  • No preview · Article · Jan 2014 · Journal of Behavioral and Brain Science
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, we examined the effect of ACTH on the immobilization of rats in the forced swim test and hippocampal cell proliferation after administration of the 5-HT1A receptor agonist, R-(+)-8-hydroxy-2-di-n-propylamino tetralin ((+)-8-OH-DPAT). Chronic treatment with (+)-8-OH-DPAT (0.01 – 0.1 mg/kg, s.c.) significantly decreased the duration of immobility in saline- and ACTH-treated rats. Chronic administration of ACTH caused a significant decrease in hippocampal cell proliferation. However, (+)-8-OH-DPAT significantly normalized cell proliferation in ACTH-treated rats. We then investigated the effects of (+)-8-OH-DPAT on the expression of brain-derived neurotrophic factor (BDNF) and cyclin D1 (elements of cyclic adenosine monophosphate response element-binding protein (CREB)-BDNF and Wnt signaling pathways, respectively) in the hippocampus of saline- and ACTH-treated rats. ACTH treatment significantly decreased the expression of cyclin D1, while treatment with (+)-8-OH-DPAT normalized the expression of cyclin D1 in ACTH-treated rats. However, the expression of BDNF did not change in either saline- or ACTH-treated rats. These findings suggest that the antidepressant effects of (+)-8-OH-DPAT in treatment-resistant animals may be attributed to an enhancement of hippocampal cell proliferation, at least in part due to an enhancement of cyclin D1 expression.
    No preview · Article · Jan 2014 · Pharmacology Biochemistry and Behavior
  • [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative stress and inflammation play important roles in diabetic complications, including diabetic nephropathy. Metallothionein (MT) is induced in proximal tubular epithelial cells as an antioxidant in diabetic kidney; however, the role of MT in renal function remains unclear. We therefore investigated if MT deficiency accelerates diabetic nephropathy through oxidative stress and inflammation. Diabetes was induced by streptozotocin injection in MT-deficient (MT(-/-)) and MT(+/+) mice. Urinary albumin excretion, histological changes, markers for reactive oxygen species (ROS) and kidney inflammation were measured. Murine proximal tubular epithelial (mProx24) cells were used to further elucidate the role of MT under high-glucose conditions. Parameters of diabetic nephropathy and markers of ROS and inflammation were accelerated in diabetic MT(-/-) mice compared with diabetic MT(+/+) mice, despite equivalent levels of hyperglycemia. MT deficiency accelerated interstitial fibrosis and macrophage infiltration into the interstitium in diabetic kidney. Electron microscopy revealed abnormal mitochondrial morphology in proximal tubular epithelial cells in diabetic MT(-/-) mice. In vitro studies demonstrated that knockdown of MT by small interfering RNA enhanced mitochondrial ROS generation and inflammation-related gene expression in mProx24 cells cultured under high-glucose conditions. The results of this study suggest that MT may play a key role in protecting the kidney against high glucose-induced ROS and subsequent inflammation in diabetic nephropathy.
    No preview · Article · Oct 2013 · AJP Renal Physiology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Astrocytes are abundant neuron-supporting glial cells that harbor a powerful arsenal of neuroprotective antioxidative molecules and neurotrophic factors. Here we examined whether enrichment with healthy striatal astrocytes can provide neuroprotection against progressive dopaminergic neurodegeneration. Serotonin 1A (5-HT1A) agonist 8-OH-DPAT induced astrocyte proliferation and increased metallothionein-1/-2 (MT-1/-2), antioxidative molecules, in cultured astrocytes and the striatum of mice. Primary cultured mesencephalic dopamine neurons were protected against oxidative stress by preincubation with conditioned media from 8-OH-DPAT-treated astrocytes. These protective effects were cancelled by 5-HT1A antagonist or MT-1/-2-specific antibody. Furthermore, reduction of nigrostriatal dopaminergic neurons in 6-hydroxydopamine-lesioned parkinsonian model mice was significantly abrogated by repeated injections of 8-OH-DPAT. Treatment with 8-OH-DPAT markedly increased the expression of MT in striatal astrocytes in the hemi-parkinsonian mice. Our study provides a promising therapeutic strategy of neuroprotection against oxidative stress and progressive dopaminergic neurodegeneration by demonstrating the efficacy of targeting 5-HT1A receptors in astrocytes.
    No preview · Article · Aug 2013 · Neurobiology of Disease
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tyrosinase, which catalyzes both the hydroxylation of tyrosine and consequent oxidation of L-DOPA to form melanin in melanocytes, is also expressed in the brain, and oxidizes L-DOPA and dopamine. Replacement of dopamine synthesis by tyrosinase was reported in tyrosine hydroxylase null mice. To examine the potential benefits of autograft cell transplantation for patients with Parkinson's disease, tyrosinase-producing cells including melanocytes, were transplanted into the striatum of hemi-parkinsonian model rats or mice lesioned with 6-hydroxydopamine. Marked improvement in apomorphine-induced rotation was noted at day 40 after intrastriatal melanoma cell transplantation. Transplantation of tyrosinase cDNA-transfected hepatoma cells, which constitutively produce L-DOPA, resulted in marked amelioration of the asymmetric apomorphine-induced rotation in hemi-parkinsonian mice and the effect was present up to 2 months. Moreover, parkinsonian mice transplanted with melanocytes from the back skin of black newborn mice, but not from albino mice, showed marked improvement in the apomorphine-induced rotation behavior up to 3 months after the transplantation. Dopamine-positive signals were seen around the surviving transplants in these experiments. Taken together with previous studies showing dopamine synthesis and metabolism by tyrosinase, these results highlight therapeutic potential of intrastriatal autograft cell transplantation of melanocytes in patients with Parkinson's disease.
    Full-text · Article · Jun 2013 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: In clinical studies, electroconvulsive stimuli have been associated with improvements in both depression and treatment-resistant depression. In a previous study, treatment with adrenocorticotropic hormone (ACTH) for 14 days decreased adult hippocampal cell proliferation. Furthermore, electroconvulsive stimuli significantly decreased the duration of immobility following repeated administration of ACTH for 14 days in rats. The present study was undertaken to further characterize the mechanism of treatment-resistant antidepressant effects of electroconvulsive stimuli by measuring cell proliferation, brain-derived neurotrophic factor (BDNF) levels, and phosphorylated and total cyclic adenosine monophosphate (cAMP) response element-binding protein (pCREB/CREB) levels in the hippocampus of ACTH-treated rats. Electroconvulsive stimuli increased cell proliferation in both saline-treated and ACTH-treated rats. Mature-BDNF protein levels showed a tendency to decrease in ACTH-treated rats. Electroconvulsive stimuli treatment increased mature-BDNF protein levels in the hippocampus of both salinetreated and ACTH-treated rats. Furthermore, electroconvulsive stimuli increased phospho-Ser133-CREB (pCREB) levels and the ratio of pCREB/CREB in both saline-treated and ACTH-treated rats. These findings suggest that the treatment-resistant antidepressant effects of electroconvulsive stimuli may be attributed, at least in part, to an enhancement of hippocampal cell proliferation.
    No preview · Article · Apr 2013 · Journal of Pharmacological Sciences

Publication Stats

2k Citations
290.28 Total Impact Points

Institutions

  • 2005-2016
    • Okayama University of Science
      • Department of Life Science
      Okayama, Okayama, Japan
  • 1998-2015
    • Okayama University
      • Department of Brain Science
      Okayama, Okayama, Japan
  • 2008
    • Shujitsu Women's University
      Okayama, Okayama, Japan