Robert Schwarzenbacher

IMPPC Institute of Predictive and Personalized Cancer Medicine, Badalona, Catalonia, Spain

Are you Robert Schwarzenbacher?

Claim your profile

Publications (120)621.83 Total impact

  • Source
    N. Manoj · V. R. Srinivas · A. Surolia · M. Vijayan · K. Suguna · R. Ravishankar · R. Schwarzenbacher · K. Zeth · Diederichs · G. M. Kostner · [...] · M. De Spirito · Rajendra K. Agrawal · Amy B. Heagle · Pawel Penczek · Robert Grassucci · Joachim Frank · Manjuli R. Sharma · Loice H. Jeyakumar · Sidney Fleischer · Terence Wagenknecht ·

    Full-text · Dataset · Jan 2016
  • Source
    N. Manoj · V. R. Srinivas · A. Surolia · M. Vijayan · K. Suguna · R. Ravishankar · R. Schwarzenbacher · K. Zeth · Diederichs · G. M. Kostner · [...] · M. De Spirito · Rajendra K. Agrawal · Amy B. Heagle · Pawel Penczek · Robert Grassucci · Joachim Frank · Manjuli R. Sharma · Loice H. Jeyakumar · Sidney Fleischer · Terence Wagenknecht ·

    Full-text · Dataset · Jan 2016
  • Source

    Full-text · Article · Jul 2013 · British Journal of Haematology
  • N Zaborsky · M Brunner · M Wallner · M Himly · T Karl · R Schwarzenbacher · F Ferreira · G Achatz

    No preview · Article · Apr 2013 · The Journal of Immunology
  • Julia Schauer · Magdalena Meikl · Ana Gimeno · Robert Schwarzenbacher
    [Show abstract] [Hide abstract]
    ABSTRACT: The mixed forest of the locally protected Aigner Park in the city of Salzburg, Austria, is a good example of a perfect fire salamander habitat. It provides ideal habitat conditions for the aquatic and terrestrial life of this threatened amphibian species. It was therefore chosen as the study site for long-term larval monitoring and for defining the best conditions for larval detectability. Monitoring started in 2010 in the Schwarzenbach first-order stream and is still in progress. In 2012, it was possible to show for the first time the dependence of larval detection rates on the time of day and on weather conditions. Hence, nightly counts in the main larval season (April - May), in combination with dry weather conditions, can be recommended for future larval monitoring studies. Involving local school children in the field work raised and increased their awareness of this amphibian species and nature protection in general. Once more it was shown that successful conservation is only possible by involving the public, starting with the children, who are responsible for future protection. Altogether, the Sparkling Science Project turned out to be a perfect way to attain this goal.
    No preview · Article · Dec 2012 · eco.mont
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The authors of J. Immunol. 184, 725–735 respond to the article by Rupp (2012), Acta Cryst. F68, 366–376.
    Full-text · Article · Apr 2012 · Acta Crystallographica Section F Structural Biology and Crystallization Communications
  • Véronique Helfer · Ana Gimeno · Lucio Balzarini · Robert Schwarzenbacher · Vincenzo Ferri
    [Show abstract] [Hide abstract]
    ABSTRACT: The alpine salamander is an emblematic amphibian, endemic to the Alps and the Dinarides. Its subtaxonomy is still debated and we still lack a comprehensive representation of its genetic diversity distribution, which is essential for delineating potential conservation units. A recent phylogeographical study highlighted the presence of several localized genetic lineages in northeastern Italy. In particular, the Valtelline region (orobie Alps) shelters a very peculiar haplotypic lineage, well differentiated from all others. The main goal of this study is a thorough genetic characterization of this localized "Valtelline" lineage. Genetic analyses based on the sequencing of three mtDNA regions conirmed that all individuals of Salamandra atra of the Valtelline region belong to this peculiar localized "Valtelline" lineage, and genotypic data conirmed that this lineage is also well differentiated on nuclear markers. Further analyses of genetic diversity will help evaluating the conservation status of this localized lineage. These data will be fundamental for a better prioritization of conservation efforts towards this peculiar alpine species.
    No preview · Article · Dec 2011
  • [Show abstract] [Hide abstract]
    ABSTRACT: Asparagine deamidation is one of the important determinants of protein thermostability. Here, structure based mutagenesis has been done in order to probe the role of Asn residues in thermostability of a Ca independent Bacillus sp. KR-8104 α-amylase (BKA). Residues involved in potential deamidation processes have been selected and replaced using a site directed mutagenesis. Fourteen different variants were tested for thermostability by measuring residual activities after incubation at high temperature. In comparison to the wild-type enzyme, four mutated variants are able to increase the half life of the protein at high temperatures. The highest stabilization resulted from the substitution of asparatate in place of asparagine at position 112, leading to a nearly fivefold increase of the enzyme's half-life at 70°C. Also replacement of Asn129 to aspartic acid and Asn312 to serine markedly increased the half-life of the enzyme at 70°C indicating that the deamination of these residues may have a deleterious effect on BKA.
    No preview · Article · Nov 2011 · International journal of biological macromolecules
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The initial line of defense against infection is sustained by the innate immune system. Together, membrane-bound Toll-like receptors and cytosolic nucleotide-binding domain and leucine-rich repeat-containing receptors (NLR) play key roles in the innate immune response by detecting bacterial and viral invaders as well as endogenous stress signals. NLRs are multi-domain proteins with varying N-terminal effector domains that are responsible for regulating downstream signaling events. Here, we report the structure and dynamics of the N-terminal pyrin domain of NLRP12 (NLRP12 PYD) determined using NMR spectroscopy. NLRP12 is a non-inflammasome NLR that has been implicated in the regulation of Toll-like receptor-dependent nuclear factor-κB activation. NLRP12 PYD adopts a typical six-helical bundle death domain fold. By direct comparison with other PYD structures, we identified hydrophobic residues that are essential for the stable fold of the NLRP PYD family. In addition, we report the first in vitro confirmed non-homotypic PYD interaction between NLRP12 PYD and the pro-apoptotic protein Fas-associated factor 1 (FAF-1), which links the innate immune system to apoptotic signaling. Interestingly, all residues that participate in this protein:protein interaction are confined to the α2-α3 surface, a region of NLRP12 PYD that differs most between currently reported NLRP PYD structures. Finally, we experimentally highlight a significant role for tryptophan 45 in the interaction between NLRP12 PYD and the FAF-1 UBA domain.
    Full-text · Article · Nov 2011 · Journal of Molecular Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pathogenesis by Bacillus anthracis requires coordination between two distinct activities: plasmid-encoded virulence factor expression (which protects vegetative cells from immune surveillance during outgrowth and replication) and chromosomally encoded sporulation (required only during the final stages of infection). Sporulation is regulated by at least five sensor histidine kinases that are activated in response to various environmental cues. One of these kinases, BA2291, harbors a sensor domain that has ∼35% sequence identity with two plasmid proteins, pXO1-118 and pXO2-61. Because overexpression of pXO2-61 (or pXO1-118) inhibits sporulation of B. anthracis in a BA2291-dependent manner, and pXO2-61 expression is strongly up-regulated by the major virulence gene regulator, AtxA, it was suggested that their function is to titrate out an environmental signal that would otherwise promote untimely sporulation. To explore this hypothesis, we determined crystal structures of both plasmid-encoded proteins. We found that they adopt a dimeric globin fold but, most unusually, do not bind heme. Instead, they house a hydrophobic tunnel and hydrophilic chamber that are occupied by fatty acid, which engages a conserved arginine and chloride ion via its carboxyl head group. In vivo, these domains may therefore recognize changes in fatty acid synthesis, chloride ion concentration, and/or pH. Structure-based comparisons with BA2291 suggest that it binds ligand and dimerizes in an analogous fashion, consistent with the titration hypothesis. Analysis of newly sequenced bacterial genomes points to the existence of a much broader family of non-heme, globin-based sensor domains, with related but distinct functionalities, that may have evolved from an ancestral heme-linked globin.
    Full-text · Article · Mar 2011 · Journal of Biological Chemistry
  • Source
    Birte Zurek · Martina Proell · Roland N Wagner · Robert Schwarzenbacher · Thomas A Kufer
    [Show abstract] [Hide abstract]
    ABSTRACT: Nucleotide-binding oligomerization domain-containing protein (NOD)1 and NOD2 are intracellular pattern recognition receptors (PRRs) of the nucleotide-binding domain and leucine-rich repeat containing (NLR) gene family involved in innate immune responses. Their centrally located NACHT domain displays ATPase activity and is necessary for activation and oligomerization leading to inflammatory signaling responses. Mutations affecting key residues of the ATPase domain of NOD2 are linked to severe auto-inflammatory diseases, such as Blau syndrome and early-onset sarcoidosis. By mutational dissection of the ATPase domain function, we show that the NLR-specific extended Walker B box (DGhDE) can functionally replace the canonical Walker B sequence (DDhWD) found in other ATPases. A requirement for an intact Walker A box and the magnesium-co-ordinating aspartate of the classical Walker B box suggest that an initial ATP hydrolysis step is necessary for activation of both NOD1 and NOD2. In contrast, a Blau-syndrome associated mutation located in the extended Walker B box of NOD2 that results in higher autoactivation and ligand-induced signaling does not affect NOD1 function. Moreover, mutation of a conserved histidine in the NACHT domain also has contrasting effects on NOD1 and NOD2 mediated NF-κB activation. We conclude that these two NLRs employ different modes of activation and propose distinct models for activation of NOD1 and NOD2.
    Full-text · Article · Feb 2011 · Innate Immunity
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Huntington's disease is an inherited and incurable neurodegenerative disorder caused by an abnormal polyglutamine (polyQ) expansion in huntingtin (encoded by HTT). PolyQ length determines disease onset and severity, with a longer expansion causing earlier onset. The mechanisms of mutant huntingtin-mediated neurotoxicity remain unclear; however, mitochondrial dysfunction is a key event in Huntington's disease pathogenesis. Here we tested whether mutant huntingtin impairs the mitochondrial fission-fusion balance and thereby causes neuronal injury. We show that mutant huntingtin triggers mitochondrial fragmentation in rat neurons and fibroblasts of individuals with Huntington's disease in vitro and in a mouse model of Huntington's disease in vivo before the presence of neurological deficits and huntingtin aggregates. Mutant huntingtin abnormally interacts with the mitochondrial fission GTPase dynamin-related protein-1 (DRP1) in mice and humans with Huntington's disease, which, in turn, stimulates its enzymatic activity. Mutant huntingtin-mediated mitochondrial fragmentation, defects in anterograde and retrograde mitochondrial transport and neuronal cell death are all rescued by reducing DRP1 GTPase activity with the dominant-negative DRP1 K38A mutant. Thus, DRP1 might represent a new therapeutic target to combat neurodegeneration in Huntington's disease.
    Full-text · Article · Feb 2011 · Nature medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Herpes simplex virus (HSV) glycoprotein B (gB) is an integral part of the multicomponent fusion system required for virus entry and cell-cell fusion. Here we investigated the mechanism of viral neutralization by the monoclonal antibody (MAb) 2c, which specifically recognizes the gB of HSV type 1 (HSV-1) and HSV-2. Binding of MAb 2c to a type-common discontinuous epitope of gB resulted in highly efficient neutralization of HSV at the postbinding/prefusion stage and completely abrogated the viral cell-to-cell spread in vitro. Mapping of the antigenic site recognized by MAb 2c to the recently solved crystal structure of the HSV-1 gB ectodomain revealed that its discontinuous epitope is only partially accessible within the observed multidomain trimer conformation of gB, likely representing its postfusion conformation. To investigate how MAb 2c may interact with gB during membrane fusion, we characterized the properties of monovalent (Fab and scFv) and bivalent [IgG and F(ab')(2)] derivatives of MAb 2c. Our data show that the neutralization capacity of MAb 2c is dependent on cross-linkage of gB trimers. As a result, only bivalent derivatives of MAb 2c exhibited high neutralizing activity in vitro. Notably, bivalent MAb 2c not only was capable of preventing mucocutaneous disease in severely immunodeficient NOD/SCID mice upon vaginal HSV-1 challenge but also protected animals even with neuronal HSV infection. We also report for the first time that an anti-gB specific monoclonal antibody prevents HSV-1-induced encephalitis entirely independently from complement activation, antibody-dependent cellular cytotoxicity, and cellular immunity. This indicates the potential for further development of MAb 2c as an anti-HSV drug.
    Full-text · Article · Feb 2011 · Journal of Virology
  • [Show abstract] [Hide abstract]
    ABSTRACT: PQQ is an exogenous, tricyclic, quino-cofactor for a number of bacterial dehydrogenases. The final step of PQQ formation is catalyzed by PqqC, a cofactorless oxidase. This study focuses on the activation of molecular oxygen in an enzyme active site without metal or cofactor and has identified a specific oxygen binding and activating pocket in PqqC. The active site variants H154N, Y175F,S, and R179S were studied with the goal of defining the site of O(2) binding and activation. Using apo-glucose dehydrogenase to assay for PQQ production, none of the mutants in this "O(2) core" are capable of PQQ/PQQH(2) formation. Spectrophotometric assays give insight into the incomplete reactions being catalyzed by these mutants. Active site variants Y175F, H154N, and R179S form a quinoid intermediate (Figure 1) anaerobically. Y175S is capable of proceeding further from quinoid to quinol, whereas Y175F, H154N, and R179S require O(2) to produce the quinol species. None of the mutations precludes substrate/product binding or oxygen binding. Assays for the oxidation of PQQH(2) to PQQ show that these O(2) core mutants are incapable of catalyzing a rate increase over the reaction in buffer, whereas H154N can catalyze the oxidation of PQQH(2) to PQQ in the presence of H(2)O(2) as an electron acceptor. Taken together, these data indicate that none of the targeted mutants can react fully to form quinone even in the presence of bound O(2). The data indicate a successful separation of oxidative chemistry from O(2) binding. The residues H154, Y175, and R179 are proposed to form a core O(2) binding structure that is essential for efficient O(2) activation.
    No preview · Article · Feb 2011 · Biochemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Two apical caspases, caspase-8 and -10, are involved in the extrinsic death receptor pathway in humans, but it is mainly caspase-8 in its apoptotic and nonapoptotic functions that has been an intense research focus. In this study we concentrate on caspase-10, its mechanism of activation, and the role of the intersubunit cleavage. Our data obtained through in vitro dimerization assays strongly suggest that caspase-10 follows the proximity-induced dimerization model for apical caspases. Furthermore, we compare the specificity and activity of the wild-type protease with a mutant incapable of autoprocessing by using positional scanning substrate analysis and cleavage of natural protein substrates. These experiments reveal a striking difference between the wild type and the mutant, leading us to hypothesize that the single chain enzyme has restricted activity on most proteins but high activity on the proapoptotic protein Bid, potentially supporting a prodeath role for both cleaved and uncleaved caspase-10.
    Full-text · Article · Sep 2010 · Biochemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In response to many apoptotic stimuli, oligomerization of Bax is essential for mitochondrial outer membrane permeabilization and the ensuing release of cytochrome c. These events are accompanied by mitochondrial fission that appears to require Drp1, a large GTPase of the dynamin superfamily. Loss of Drp1 leads to decreased cytochrome c release by a mechanism that is poorly understood. Here we show that Drp1 stimulates tBid-induced Bax oligomerization and cytochrome c release by promoting tethering and hemifusion of membranes in vitro. This function of Drp1 is independent of its GTPase activity and relies on arginine 247 and the presence of cardiolipin in membranes. In cells, overexpression of Drp1 R247A/E delays Bax oligomerization and cell death. Our findings uncover a function of Drp1 and provide insight into the mechanism of Bax oligomerization.
    Full-text · Article · Sep 2010 · Cell
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The innate immune system provides an initial line of defense against infection. Nucleotide-binding domain- and leucine-rich repeat-containing protein (NLR or (NOD-like)) receptors play a critical role in the innate immune response by surveying the cytoplasm for traces of intracellular invaders and endogenous stress signals. NLRs themselves are multi-domain proteins. Their N-terminal effector domains (typically a pyrin or caspase activation and recruitment domain) are responsible for driving downstream signaling and initiating the formation of inflammasomes, multi-component complexes necessary for cytokine activation. However, the currently available structures of NLR effector domains have not yet revealed the mechanism of their differential modes of interaction. Here, we report the structure and dynamics of the N-terminal pyrin domain of NLRP7 (NLRP7 PYD) obtained by NMR spectroscopy. The NLRP7 PYD adopts a six-alpha-helix bundle death domain fold. A comparison of conformational and dynamics features of the NLRP7 PYD with other PYDs showed distinct differences for helix alpha3 and loop alpha2-alpha3, which, in NLRP7, is stabilized by a strong hydrophobic cluster. Moreover, the NLRP7 and NLRP1 PYDs have different electrostatic surfaces. This is significant, because death domain signaling is driven by electrostatic contacts and stabilized by hydrophobic interactions. Thus, these results provide new insights into NLRP signaling and provide a first molecular understanding of inflammasome formation.
    Full-text · Article · Aug 2010 · Journal of Biological Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: The innate immune system provides an initial line of defense against infection. Nucleotide-binding domain- and leucine-rich repeat-containing protein (NLR or (NOD-like)) receptors play a critical role in the innate immune response by surveying the cytoplasm for traces of intracellular invaders and endogenous stress signals. NLRs themselves are multi-domain proteins. Their N-terminal effector domains (typically a pyrin or caspase activation and recruitment domain) are responsible for driving downstream signaling and initiating the formation of inflammasomes, multi-component complexes necessary for cytokine activation. However, the currently available structures of NLR effector domains have not yet revealed the mechanism of their differential modes of interaction. Here, we report the structure and dynamics of the N-terminal pyrin domain of NLRP7 (NLRP7 PYD) obtained by NMR spectroscopy. The NLRP7 PYD adopts a six-α-helix bundle death domain fold. A comparison of conformational and dynamics features of the NLRP7 PYD with other PYDs showed distinct differences for helix α3 and loop α2-α3, which, in NLRP7, is stabilized by a strong hydrophobic cluster. Moreover, the NLRP7 and NLRP1 PYDs have different electrostatic surfaces. This is significant, because death domain signaling is driven by electrostatic contacts and stabilized by hydrophobic interactions. Thus, these results provide new insights into NLRP signaling and provide a first molecular understanding of inflammasome formation.
    No preview · Article · Aug 2010 · Journal of Biological Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proteins of the nucleotide-binding domain, leucine-rich repeat (NLR)-containing family recently gained attention as important components of the innate immune system. Although over 20 of these proteins are present in humans, only a few members including the cytosolic pattern recognition receptors NOD1, NOD2, and NLRP3 have been analyzed extensively. These NLRs were shown to be pivotal for mounting innate immune response toward microbial invasion. Here we report on the characterization of human NLRC5 and provide evidence that this NLR has a function in innate immune responses. We found that NLRC5 is a cytosolic protein expressed predominantly in hematopoetic cells. NLRC5 mRNA and protein expression was inducible by the double-stranded RNA analog poly(I·C) and Sendai virus. Overexpression of NLRC5 failed to trigger inflammatory responses such as the NF-κB or interferon pathways in HEK293T cells. However, knockdown of endogenous NLRC5 reduced Sendai virus- and poly(I·C)-mediated type I interferon pathway-dependent responses in THP-1 cells and human primary dermal fibroblasts. Taken together, this defines a function for NLRC5 in anti-viral innate immune responses.
    Preview · Article · Aug 2010 · Journal of Biological Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pyrroloquinoline quinone [4,5-dihydro-4,5-dioxo-1H-pyrrolo[2,3-f]quinoline-2,7,9-tricarboxylic acid (PQQ)] is a bacterial cofactor in numerous alcohol dehydrogenases including methanol dehydrogenase and glucose dehydrogenase. Its biosynthesis in Klebsiella pneumoniae is facilitated by six genes, pqqABCDEF and proceeds by an unknown pathway. PqqC is one of two metal free oxidases of known structure and catalyzes the last step of PQQ biogenesis which involves a ring closure and an eight-electron oxidation of the substrate [3a-(2-amino-2-carboxyethyl)-4,5-dioxo-4,5,6,7,8,9-hexahydroquinoline-7,9-dicarboxylic acid (AHQQ)]. PqqC has 14 conserved active site residues, which have previously been shown to be in close contact with bound PQQ. Herein, we describe the structures of three PqqC active site variants, H154S, Y175F, and the double mutant R179S/Y175S. The H154S crystal structure shows that, even with PQQ bound, the enzyme is still in the "open" conformation with helices alpha5b and alpha6 unfolded and the active site solvent accessible. The Y175F PQQ complex crystal structure reveals the closed conformation indicating that Y175 is not required for the conformational change. The R179S/Y175S AHQQ complex crystal structure is the most mechanistically informative, indicating an open conformation with a reaction intermediate trapped in the active site. The intermediate seen in R179S/Y175S is tricyclic but nonplanar, implying that it has not undergone oxidation. These studies implicate a stepwise process in which substrate binding leads to the generation of the closed protein conformation, with the latter playing a critical role in O(2) binding and catalysis.
    No preview · Article · May 2010 · Proteins Structure Function and Bioinformatics

Publication Stats

5k Citations
621.83 Total Impact Points

Institutions

  • 2013
    • IMPPC Institute of Predictive and Personalized Cancer Medicine
      Badalona, Catalonia, Spain
  • 2007-2012
    • University of Salzburg
      • Department of Molecular Biology
      Salzburg, Salzburg, Austria
  • 2004-2011
    • Sanford-Burnham Medical Research Institute
      لا هویا, California, United States
    • The Scripps Research Institute
      • Department of Cell and Molecular Biology
      لا هویا, California, United States
    • La Jolla Bioengineering Institute
      La Jolla, California, United States
  • 2008
    • University of Central Florida
      Orlando, Florida, United States
  • 2004-2007
    • University of California, San Diego
      • • Center for Research in Biological Systems (CRBS)
      • • Division of Biostatistics & Bioinformatics
      San Diego, California, United States
  • 2006
    • Columbia University
      • Department of Biochemistry and Molecular Biophysics
      New York, New York, United States
  • 2005-2006
    • CSU Mentor
      Long Beach, California, United States
  • 2003-2006
    • Stanford University
      • SSRL - Stanford Synchrotron Radiation Lightsource
      Palo Alto, California, United States
  • 2004-2005
    • San Diego Supercomputer Center
      San Diego, California, United States
  • 1998-1999
    • Austrian Academy of Sciences
      • Institute of Biophysics and Nanosystems Research
      Wien, Vienna, Austria