Xiang-Yang Wang

Virginia Commonwealth University, Ричмонд, Virginia, United States

Are you Xiang-Yang Wang?

Claim your profile

Publications (94)425.94 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Melanoma differentiation associated gene-7/Interleukin-24 (MDA-7/IL-24) is a novel member of the IL-10 gene family that selectively induces apoptosis and toxic autophagy in a broad spectrum of human cancers, including breast cancer, without harming normal cells or tissues. The ability to investigate the critical events underlying cancer initiation and progression, as well as the capacity to test the efficacy of novel therapeutics, has been significantly advanced by the development of genetically engineered mice (GEMs) that accurately recapitulate specific human cancers. We utilized three transgenic mouse models to better comprehend the in vivo role of MDA-7/IL-24 in breast cancer. Using the MMTV-PyMT spontaneous mammary tumor model, we confirmed that exogenously introducing MDA-7/IL-24 using a Cancer Terminator Virus caused a reduction in tumor burden and also produced an antitumor "bystander" effect. Next we performed xenograft studies in a newly created MMTV-MDA-7 transgenic model that over-expresses MDA-7/IL-24 in the mammary glands during pregnancy and lactation, and found that MDA-7/IL-24 overexpression delayed tumor growth following orthotopic injection of a murine PDX tumor cell line (mPDX) derived from a tumor formed in an MMTV-PyMT mouse. We also crossed the MMTV-MDA-7 line to MMTV-Erbb2 transgenic mice and found that MDA-7/IL-24 overexpression delayed the onset of mammary tumor development in this model of spontaneous mammary tumorigenesis as well. Finally, we assessed the role of MDA-7/IL-24 in immune regulation, which can potentially contribute to tumor suppression in vivo. Our findings provide further direct in vivo evidence for the role of MDA-7/IL-24 in tumor suppression in breast cancer in immune-competent transgenic mice.
    Preview · Article · Oct 2015 · Oncotarget
  • Source
    Xiaofei Yu · Chunqing Guo · Paul B Fisher · John R Subjeck · Xiang-Yang Wang
    [Show abstract] [Hide abstract]
    ABSTRACT: Scavenger receptors constitute a large family of evolutionally conserved protein molecules that are structurally and functionally diverse. Although scavenger receptors were originally identified based on their capacity to scavenge modified lipoproteins, these molecules have been shown to recognize and bind to a broad spectrum of ligands, including modified and unmodified host-derived molecules or microbial components. As a major subset of innate pattern recognition receptors, scavenger receptors are mainly expressed on myeloid cells and function in a wide range of biological processes, such as endocytosis, adhesion, lipid transport, antigen presentation, and pathogen clearance. In addition to playing a crucial role in maintenance of host homeostasis, scavenger receptors have been implicated in the pathogenesis of a number of diseases, e.g., atherosclerosis, neurodegeneration, or metabolic disorders. Emerging evidence has begun to reveal these receptor molecules as important regulators of tumor behavior and host immune responses to cancer. This review summarizes our current understanding on the newly identified, distinct functions of scavenger receptors in cancer biology and immunology. The potential of scavenger receptors as diagnostic biomarkers and novel targets for therapeutic interventions to treat malignancies is also highlighted. © 2015 Elsevier Inc. All rights reserved.
    Full-text · Article · Jul 2015 · Advances in Cancer Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Scavenger receptor A (SRA) has been implicated in the processes of tumor invasion and acts as an immunosuppressor during therapeutic cancer vaccination. Pharmacological inhibition of SRA function thus holds a great potential to improve treatment outcome of cancer therapy. Macromolecular natural product sennoside B was recently shown to block SRA function. Here we report the identification and characterization of a small molecule SRA inhibitor rhein. Rhein, a deconstructed analog of sennoside B, reversed the suppressive activity of SRA in dendritic cell-primed T cell activation, indicated by transcription activation of il2 gene and production of IL-2. Rhein also inhibited SRA ligand polyinosinic:polycytidylic acid (poly(I:C)) induced activation of transcriptional factors, including interferon regulatory factor 3 (IRF3) and signal transducer and activator of transcription 1 (STAT1). Additionally, this newly identified lead compound was docked into the homology models of the SRA cysteine rich domain to gain insights into its interaction with the receptor. It was then found that rhein can favorably interact with SRA cysteine rich domain. Collectively, rhein, being the first identified small molecule inhibitors for SRA, warrants further structure-activity relationship studies, which may lead to development of novel pharmacological intervention for cancer therapy. Published by Elsevier Ltd.
    Full-text · Article · Jun 2015 · Bioorganic & medicinal chemistry letters
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite recent advances, treatment options for advanced prostate cancer (CaP) remain limited. We are pioneering approaches to treat advanced CaP that employ conditionally replication-competent oncolytic adenoviruses that simultaneously produce a systemically active cancer-specific therapeutic cytokine, mda-7/IL-24, Cancer Terminator Viruses (CTV). A truncated version of the CCN1/CYR61 gene promoter, tCCN1-Prom, was more active than progression elevated gene-3 promoter (PEG-Prom) in regulating transformation-selective transgene expression in CaP and oncogene-transformed rat embryo cells. Accordingly, we developed a new CTV, Ad.tCCN1-CTV-m7, which displayed dose-dependent killing of CaP without harming normal prostate epithelial cells in vitro with significant anti-cancer activity in vivo in both nude mouse CaP xenograft and transgenic Hi-Myc mice (using ultrasound-targeted microbubble (MB)-destruction, UTMD, with decorated MBs). Resistance to mda-7/IL-24-induced cell deathcorrelated with overexpression of Bcl-2 family proteins. Inhibiting Mcl-1 using an enhanced BH3 mimetic, BI-97D6, sensitized CaP cell lines to mda-7/IL-24-induced apoptosis. Combining BI-97D6 with Ads expressing mda-7/IL-24promoted ER stress, decreased anti-apoptotic Mcl-1 expression and enhanced mda-7/IL-24expression through mRNA stabilization selectively in CaP cells. In Hi-myc mice, the combination induced enhanced apoptosis and tumor growth suppression. These studies highlight therapeutic efficacy of combining a BH3 mimetic with a novel CTV, supporting potential clinical applications for treating advanced CaP.
    Preview · Article · Mar 2015 · Oncotarget
  • Xiang-Yang Wang · Paul B. Fisher

    No preview · Article · Jan 2015 · Advances in Cancer Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objectives Although myeloid-derived suppressor cells (MDSCs) have been linked to T cell tolerance, their role in autoimmune rheumatoid arthritis (RA) remains elusive. Here we investigate the potential association of MDSCs with the disease pathogenesis using a preclinical model of RA and specimen collected from patients with RA. Methods The frequency of MDSCs in blood, lymphoid tissues, inflamed paws or synovial fluid and their association with disease severity, tissue inflammation and the levels of pathogenic T helper (Th) 17 cells were examined in arthritic mice or in patients with RA (n=35) and osteoarthritis (n=15). The MDSCs in arthritic mice were also characterised for their phenotype, inflammation status, T cell suppressive activity and their capacity of pro-Th17 cell differentiation. The involvement of MDSCs in the disease pathology and a Th17 response was examined by adoptive transfer or antibody depletion of MDSCs in arthritic mice or by coculturing mouse or human MDSCs with naïve CD4+ T cells under Th17-polarising conditions. Results MDSCs significantly expanded in arthritic mice and in patients with RA, which correlated positively with disease severity and an inflammatory Th17 response. While displaying T cell suppressive activity, MDSCs from arthritic mice produced high levels of inflammatory cytokines (eg, interleukin (IL)-1β, TNF-α). Mouse and human MDSCs promoted Th17 cell polarisation ex vivo. Transfer of MDSCs facilitated disease progression, whereas their elimination in arthritic mice ameliorated disease symptoms concomitant with reduction of IL-17A/Th17 cells. Conclusions Our studies suggest that proinflammatory MDSCs with their capacity to drive Th17 cell differentiation may be a critical pathogenic factor in autoimmune arthritis.
    Full-text · Article · Nov 2014 · Annals of the Rheumatic Diseases
  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Melanoma differentiation-associated gene - 9 (MDA-9)/Syntenin has become an increasingly popular focus for investigation in numerous cancertypes. Originally implicated in melanoma metastasis, it has diverse cellular roles and is consistently identified as a regulator of tumor invasion and angiogenesis. As a potential target for inhibiting some of the most lethal aspects of cancer progression, further insight into the function of MDA-9/Syntenin is mandatory. Areas covered: Recent literature and seminal articles were reviewed to summarize the latest collective understanding of MDA-9/Syntenin's role in normal and cancerous settings. Insights into its participation in developmental processes are included, as is the functional significance of the N- and C-terminals and PDZ domains of MDA-9/Syntenin. Current reports highlight the clinical significance of MDA-9/Syntenin expression level in a variety of cancers, often correlating directly with reduced patient survival. Also presented are assessments of roles of MDA-9/Syntenin in cancer progression as well as its functions as an intracellular adapter molecule. Expert opinion: Multiple studies demonstrate the importance of MDA-9/Syntenin in tumor invasion and progression. Through the use of novel drug design approaches, this protein may provide a worthwhile therapeutic target. As many conventional therapies do not address, or even enhance, tumor invasion, an anti-invasive approach would be a worthwhile addition in cancer therapy.
    No preview · Article · Sep 2014 · Expert Opinion on Therapeutic Targets
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Activation of the oncogene AEG-1 (MTDH, LYRIC) has been implicated recently in the development of hepatocellular carcinoma (HCC). In mice, HCC can be initiated by exposure to the carcinogen DEN, which has been shown to rely upon activation of NF-kB in liver macrophages. Since AEG-1 is an essential component of NF-kB activation, we interrogated the susceptibility of mice lacking the AEG-1 gene to DEN-induced hepatocarcinogenesis. AEG-1-deficient mice displayed resistance to DEN-induced HCC and lung metastasis. No difference was observed in the response to growth factor signaling or activation of Akt, ERK and B-catenin, compared to wild-type control animals. However, AEG-1-deficient hepatocytes and macrophages exhibited a relative defect in NF-kB activation. Mechanistic investigations showed that IL-6 production and STAT-3 activation, two key mediators of HCC development, were also deficient along with other biological and epigenetics findings in the tumor microenvironment confirming that AEG-1 supports an NF-kB-mediated inflammatory state that drives HCC development. Overall, our findings offer in vivo proofs that AEG-1 is essential for NF-kB activation and hepatocarcinogenesis, and they reveal new roles for AEG-1 in shaping the tumor microenvironment for HCC development.
    Full-text · Article · Sep 2014 · Cancer Research
  • [Show abstract] [Hide abstract]
    ABSTRACT: First identified almost two decades ago as a novel gene differentially expressed in human melanoma cells induced to terminally differentiate, MDA-7/IL-24 has since shown great potential as an anti-cancer gene. MDA-7/IL24, a secreted protein of the IL-10 family, functions as a cytokine at normal physiological levels and is expressed in tissues of the immune system. At supra-physiological levels, MDA-7/IL-24 plays a prominent role in inhibiting tumor growth, invasion, metastasis and angiogenesis and was recently shown to target tumor stem/initiating cells for death. Much of the attention focused on MDA-7/IL-24 originated from the fact that it can selectively induce cell death in cancer cells without affecting normal cells. Thus, this gene originally shown to be associated with melanoma cell differentiation has now proven to be a multi-functional protein affecting a broad array of cancers. Moreover, MDA-7/IL-24 has proven efficacious in a Phase I/II clinical trial in humans with multiple advanced cancers. As research in the field progresses, we will unravel more of the functions of MDA-7/IL-24 and define novel ways to utilize MDA-7/IL-24 in the treatment of cancer.
    No preview · Article · Jul 2014 · Advances in Experimental Medicine and Biology
  • Source
    Masoud H Manjili · Xiang-Yang Wang · Scott Abrams
    [Show abstract] [Hide abstract]
    ABSTRACT: The term myeloid-derived suppressor cells (MDSCs) was first suggested in 2007 in order to reflect the origin and function of myeloid cells during immunosuppression in cancer and other pathologic conditions. Emerging evidence suggests that MDSCs suppress CTL and Th1 responses in malignant diseases while they regulate effective immune responses in parasitic and helminth infections as well as Th17 inflammatory response during autoimmune diseases. Based on these data, the term myeloid regulatory cells (Mregs) more accurately reflects their function and interactions with different cells of the immune system during diseased conditions. Here, we provide evidence on the multifaceted function of Mregs during diseased states.
    Full-text · Article · Jul 2014 · Frontiers in Immunology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Elucidating the mechanism of pathogenesis of breast cancer has greatly benefited from breakthrough advances in both genetically engineered mouse (GEM) models and xenograft transplantation technologies. The vast array of breast cancer mouse models currently available is testimony to the complexity of mammary tumorigenesis and attempts by investigators to accurately portray the heterogeneity and intricacies of this disease. Distinct molecular changes that drive various aspects of tumorigenesis, such as alterations in tumor cell proliferation and apoptosis, invasion and metastasis, angiogenesis, and drug resistance have been evaluated using the currently available GEM breast cancer models. GEM breast cancer models are also being exploited to evaluate and validate the efficacy of novel therapeutics, vaccines, and imaging modalities for potential use in the clinic. This review provides a synopsis of the various GEM models that are expanding our knowledge of the nuances of breast cancer development and progression and can be instrumental in the development of novel prevention and therapeutic approaches for this disease.
    No preview · Article · Jun 2014 · Advances in Cancer Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24), a unique member of the IL-10 gene family, displays a broad range of antitumor properties including cancer-specific induction of apoptosis, inhibition of tumor angiogenesis, and modulation of anti-tumor immune responses. Here, we identify clusterin (CLU) as a MDA-7/IL-24 interacting protein in DU-145 cells and investigate the role of MDA-7/IL-24 in regulating CLU expression and mediating the antitumor properties of mda-7/IL-24 in prostate cancer. Ad.mda-7 decreased expression of soluble CLU (sCLU) and increased expression of nuclear CLU (nCLU). In the initial phase of Ad.mda-7 infection sCLU expression increased and CLU interacted with MDA-7/IL-24 producing a cytoprotective effect. Infection of stable clones of DU-145 prostate cancer cells expressing sCLU with Ad.mda-7 resulted in generation of nCLU that correlated with decreased cell viability and increased apoptosis. In the presence of mda-7/IL-24, sCLU-DU-145 cells displayed G(2)/M phase arrest followed by apoptosis. Similarly, Ad.mda-7 infection decreased cell migration by altering cytoskeleton in sCLU-DU-145 cells. Ad.mda-7-treated sCLU-DU-145 cells displayed a significant reduction in tumor growth in mouse xenograft models and reduced angiogenesis when compared to the vector control group. Tumor tissue lysates demonstrated enhanced nCLU generated from sCLU with increased apoptosis in the presence of MDA-7/IL-24. Our findings reveal novel aspects relative to the role of sCLU/nCLU in regulating the anticancer properties of MDA-7/IL-24 that may be exploited for developing enhanced therapies for prostate cancer.
    Full-text · Article · Apr 2014 · Journal of Cellular Physiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glucose-regulated protein 170 (GRP170) is the largest member of GRP family that resides in the endoplasmic reticulum (ER). As a component of the ER chaperone network, GRP170 assists in protein folding, assembly, and transportation of secretory or transmembrane proteins. The well documented cytoprotective activity of intracellular GRP170 due to its intrinsic chaperoning property has been shown to provide a survival benefit in cancer cells during tumor progression or metastasis. Accumulating evidence shows that extracellular GRP170 displays a superior capacity in delivering tumor antigens to specialized antigen-presenting cells for cross-presentation, resulting in generation of an antitumor immune response dependent on cytotoxic CD8+ T cells. This unique feature of GRP170 provides a molecular basis for using GRP170 as an immunostimulatory adjuvant to develop a recombinant vaccine for therapeutic immunization against cancers. This review summarizes the latest findings in understanding the biological effects of GRP170 on cell functions and tumor progression. The immunomodulating activities of GRP170 during interactions with the innate and adaptive arms of the immune system as well as its therapeutic applications in cancer immunotherapy will be discussed.
    Full-text · Article · Jan 2014 · Frontiers in Oncology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glucose-regulated protein 170 (GRP170) is the largest member of glucose-regulated protein family that resides in the endoplasmic reticulum (ER). As a component of the ER chaperone network, GRP170 assists in protein folding, assembly, and transportation of secretory or transmembrane proteins. The well documented cytoprotective activity of intracellular GRP170 due to its intrinsic chaperoning property has been shown to provide a survival benefit in cancer cells during tumor progression or metastasis. Accumulating evidence shows that extracellular GRP170 displays a superior capacity in delivering tumor antigens to specialized antigen-presenting cells for cross-presentation, resulting in generation of an anti-tumor immune response dependent on cytotoxic CD8(+) T cells. This unique feature of GRP170 provides a molecular basis for using GRP170 as an immunostimulatory adjuvant to develop a recombinant vaccine for therapeutic immunization against cancers. This review summarizes the latest findings in understanding the biological effects of GRP170 on cell functions and tumor progression. The immunomodulating activities of GRP170 during interactions with the innate and adaptive arms of the immune system as well as its therapeutic applications in cancer immunotherapy will be discussed.
    Full-text · Article · Jan 2014 · Frontiers in Oncology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tumor vascularization is a highly complex process that involves the interaction between tumors and their surrounding stroma, as well as many distinct angiogenesis-regulating factors. Tumor associated macrophages (TAMs) represent one of the most abundant cell components in the tumor environment and key contributors to cancer-related inflammation. A large body of evidence supports the notion that TAMs play a critical role in promoting the formation of an abnormal tumor vascular network and subsequent tumor progression and invasion. Clinical and experimental evidence has shown that high levels of infiltrating TAMs are associated with poor patient prognosis and tumor resistance to therapies. In addition to stimulating angiogenesis during tumor growth, TAMs enhance tumor revascularization in response to cytotoxic therapy (e.g., radiotherapy), thereby causing cancer relapse. In this review, we highlight the emerging data related to the phenotype and polarization of TAMs in the tumor microenvironment, as well as the underlying mechanisms of macrophage function in the regulation of the angiogenic switch and tumor vascularization. Additionally, we discuss the potential of targeting pro-angiogenic TAMs, or reprograming TAMs toward a tumoricidal and angiostatic phenotype, to promote normalization of the tumor vasculature to enhance the outcome of cancer therapies.
    Full-text · Article · Dec 2013 · Vascular Cell
  • Source
    Maciej Kmieciak · Kyle K Payne · Xiang-Yang Wang · Masoud H Manjili
    [Show abstract] [Hide abstract]
    ABSTRACT: During the past decade, the dual function of the immune system in tumor inhibition and tumor progression has become appreciated. We have previously reported that neu-specific T cells can induce rejection of neu positive mouse mammary carcinoma (MMC) and also facilitate tumor relapse by inducing neu antigen loss and epithelial to mesenchymal transition (EMT). Here, we sought to determine the mechanism by which CD8+ T cells either eliminate the tumor, or maintain tumor cells in a dormant state and eventually facilitate tumor relapse. We show that tumor cells that express high levels of IFN-γ Rα are eliminated by CD8+ T cells. In contrast, tumor cells that express low levels of IFN-γ Rα do not die but remain dormant and quiescent in the presence of IFN-γ producing CD8+ T cells until they hide themselves from the adaptive immune system by losing the tumor antigen, neu. Relapsed tumor cells show CD44+CD24- phenotype with higher rates of tumorigenesis, in vivo. Acquisition of CD44+CD24- phenotype in relapsed tumors was not solely due to Darwinian selection. Our data suggest that tumor cells control the outcome of tumor immune surveillance through modulation of the expression of IFN-γ Rα.
    Full-text · Article · Dec 2013 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Efficient cross-presentation of protein Ags to CTLs by dendritic cells (DCs) is essential for the success of prophylactic and therapeutic vaccines. In this study, we report a previously underappreciated pathway involving Ag entry into the endoplasmic reticulum (ER) critically needed for T cell cross-priming induced by a DC-targeted vaccine. Directing the clinically relevant, melanoma Ag gp100 to mouse-derived DCs by molecular adjuvant and chaperone Grp170 substantially facilitates Ag access to the ER. Grp170 also strengthens the interaction of internalized protein Ag with molecular components involved in ER-associated protein dislocation and/or degradation, which culminates in cytosolic translocation for proteasome-dependent degradation and processing. Targeted disruption of protein retrotranslocation causes exclusive ER retention of tumor Ag in mouse bone marrow-derived DCs and splenic CD8(+) DCs. This results in the blockade of Ag ubiquitination and processing, which abrogates the priming of Ag-specific CD8(+) T cells in vitro and in vivo. Therefore, the improved ER entry of tumor Ag serves as a molecular basis for the superior cross-presenting capacity of Grp170-based vaccine platform. The ER access and retrotranslocation represents a distinct pathway that operates within DCs for cross-presentation and is required for the activation of Ag-specific CTLs by certain vaccines. These results also reinforce the importance of the ER-associated protein quality control machinery and the mode of the Ag delivery in regulating DC-elicited immune outcomes.
    Full-text · Article · Nov 2013 · The Journal of Immunology
  • Source

    Full-text · Dataset · Aug 2013
  • Source

    Full-text · Dataset · Aug 2013
  • Source

    Full-text · Dataset · Aug 2013

Publication Stats

2k Citations
425.94 Total Impact Points

Institutions

  • 2010-2015
    • Virginia Commonwealth University
      • Department of Human and Molecular Genetics
      Ричмонд, Virginia, United States
  • 2013
    • The Institute for Molecular Medicine
      Huntington Beach, California, United States
  • 2002-2011
    • Roswell Park Cancer Institute
      • • Department of Cell Stress Biology
      • • Department of Urologic Oncology
      • • Department of Medicine
      • • Department of Molecular and Cellular Biophysics
      Buffalo, New York, United States