Cuiqing Ma

Shandong University, Chi-nan-shih, Shandong Sheng, China

Are you Cuiqing Ma?

Claim your profile

Publications (126)457.76 Total impact

  • Source
    Bo Xin · Yu Wang · Fei Tao · Lixiang Li · Cuiqing Ma · Ping Xu
    [Show abstract] [Hide abstract]
    ABSTRACT: Anaerobic fermentation using lignocellulosic hydrolysates as co-substrates is an economically attractive method to enhance 1,3-propanediol (1,3-PD) production by increasing the conversion yield from glycerol. Lignocellulosic hydrolysates contain the mixed sugars that are primarily glucose, xylose, and arabinose. Therefore, these three individual sugars were used, separately, as co-substrates with glycerol, in 1,3-PD production by a Clostridium diolis strain DSM 15410, resulting in an 18%–28% increase in the 1,3-PD yield. Co-fermentation of the mixed sugars and glycerol obtained a higher intracellular NADH/NAD+ ratio and increased the 1,3-PD yield by 22% relative to fermentation of glycerol alone. Thereafter, two kinds of lignocellulosic hydrolysates, corn stover hydrolysate and corncob molasses, were individually co-fermented with glycerol. The maximum 1,3-PD yield from glycerol reached 0.85 mol/mol. Fed-batch co-fermentation was also performed, improving the 1,3-PD yield (from 0.62 mol/mol to 0.82 mol/mol). These results demonstrate that the co-fermentation strategy is an efficient and economical way to produce 1,3-PD from glycerol.
    Full-text · Article · Jan 2016 · Scientific Reports
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: The surplus of glycerol has increased remarkably as a main byproduct during the biofuel's production. Exploiting an alternative route for glycerol utilization is significantly important for sustainability of biofuels. Results: A novel biocatalyst that could be prepared from glycerol for producing 2-oxo-carboxylates was developed. First, Pseudomonas putida KT2440 was reconstructed by deleting lldR to develop a mutant expressing the NAD-independent lactate dehydrogenases (iLDHs) constitutively. Then, the Vitreoscilla hemoglobin (VHb) was heterologously expressed to further improve the biotransformation activity. The reconstructed strain, P. putida KT2440 (ΔlldR)/pBSPPcGm-vgb, exhibited high activities of iLDHs when cultured with glycerol as the carbon source. This cost-effective biocatalyst could efficiently produce pyruvate and 2-oxobutyrate from dl-lactate and dl-2-hydroxybutyrate with high molar conversion rates of 91.9 and 99.8 %, respectively. Conclusions: The process would not only be a promising alternative for the production of 2-oxo-carboxylates, but also be an example for preparation of efficient biocatalysts for the value-added utilization of glycerol.
    Full-text · Article · Nov 2015 · Biotechnology for Biofuels
  • [Show abstract] [Hide abstract]
    ABSTRACT: Acetoin (AC) is regarded as one of the top potential sugar-derived chemical building blocks that can be used as food additives, precursors in chemical synthesis, and plant growth promoting molecules. In this study, a low-cost lignocellulosic resource of pretreated corn stover was used as a carbon source to produce AC. After redirecting the metabolic flux, fine tuning reducing power, and eliminating carbon catabolite repression in Enterobacter cloacae SDM, a systematically engineered strain SDM 53 was constructed, which is able to utilize glucose and xylose efficiently and simultaneously. Using fed-batch fermentation of SDM 53, 45.6 g L−1 AC was produced at a rate of 1.52 g L−1 h−1 using the lignocellulosic hydrolysate. Biotechnological synthesis of AC has various advantages such as being sustainable and environment-friendly. With its desirable properties, the engineered strain SDM 53 may be a potential choice for the industrial production of AC.
    No preview · Article · Nov 2015 · Green Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Butane-2,3-diol (2,3-BD) is a fuel and platform biochemical with various industrial applications. 2,3-BD exists in three stereoisomeric forms: (2R,3R)-2,3-BD, meso-2,3-BD and (2S,3S)-2,3-BD. Microbial fermentative processes have been reported for (2R,3R)-2,3-BD and meso-2,3-BD production. Results: The production of (2S,3S)-2,3-BD from glucose was acquired by whole cells of recombinant Escherichia coli coexpressing the α-acetolactate synthase and meso-butane-2,3-diol dehydrogenase of Enterobacter cloacae subsp. dissolvens strain SDM. An optimal biocatalyst for (2S,3S)-2,3-BD production, E. coli BL21 (pETDuet-PT7-budB-PT7-budC), was constructed and the bioconversion conditions were optimized. With the addition of 10 mM FeCl3 in the bioconversion system, (2S,3S)-2,3-BD at a concentration of 2.2 g/L was obtained with a stereoisomeric purity of 95.0 % using the metabolically engineered strain from glucose. Conclusions: The engineered E. coli strain is the first one that can be used in the direct production of (2S,3S)-2,3-BD from glucose. The results demonstrated that the method developed here would be a promising process for efficient (2S,3S)-2,3-BD production.
    Full-text · Article · Sep 2015 · Biotechnology for Biofuels
  • Source
    Bo Yu · Fei Tao · Fuli Li · Jianfeng Hou · Hongzhi Tang · Cuiqing Ma · Ping Xu
    [Show abstract] [Hide abstract]
    ABSTRACT: Mycobacterium goodii X7B appeared to have the ability to remove organic sulfur from a broad range of sulfur species in gasoline, diesel and crude oils. The predominant properties make it as a potential workhorse for petroleum biodesulfurization process. We sequenced and annotated the whole genome to serve as a basis for further elucidation of the genetic background of this promising strain, and provide opportunities for investigating the metabolic and regulatory mechanisms. Copyright © 2015. Published by Elsevier B.V.
    Full-text · Article · Aug 2015 · Journal of Biotechnology
  • [Show abstract] [Hide abstract]
    ABSTRACT: NAD-independent L-lactate dehydrogenases (L-iLDHs) play important roles in L-lactate utilization of different organisms. All of the previously reported L-iLDHs were flavoproteins that catalyze the oxidation of L-lactate by the flavin mononucleotide (FMN)- dependent mechanism. Based on comparative genomic analysis, a gene cluster with three genes (lldA, lldB, and lldC) encoding a novel type of L-iLDH was identified in Pseudomonas stutzeri A1501. When the gene cluster was expressed in Escherichia coli, distinctive L-iLDH activity was detected. The expressed L-iLDH was purified by ammonium sulfate precipitation, ion-exchange chromatography, and affinity chromatography. SDS-PAGE and successive matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of the purified L-iLDH indicated that it is a complex of LldA, LldB, and LldC (encoded by lldA, lldB, and lldC, respectively). Purified L-iLDH (LldABC) is a dimer of three subunits (LldA, LldB, and LldC), and the ratio between LldA, LldB, and LldC is 1:1:1. Different from the FMN-containing L-iLDH, absorption spectra and elemental analysis suggested that LldABC might use the iron-sulfur cluster for the L-lactate oxidation. LldABC has narrow substrate specificity, and only L-lactate and DL-2-hydrobutyrate were rapidly oxidized. Mg2+ could activate L-iLDH activity effectively (6.6-fold). Steady-state kinetics indicated a ping-pong mechanism of LldABC for the L-lactate oxidation. Based on the gene knockout results, LldABC was confirmed to be required for the L-lactate metabolism of P. stutzeri A1501. LldABC is the first purified and characterized L-iLDH with different subunits that uses the iron-sulfur cluster as the cofactor.
    No preview · Article · Jul 2015 · Journal of Bacteriology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: d-Lactate was identified as one of a few available organic acids that supported the growth of Gluconobacter oxydans 621H in this study. Interestingly, this strain used d-lactate as an energy source but not as a carbon source, unlike other lactate-utilizing bacteria. The enzymatic basis for the growth of G. oxydans 621H on d-lactate was therefore investigated. Although two putative NAD-independent d-lactate dehydrogenases, GOX1253 and GOX2071, were capable of oxidizing d-lactate, GOX1253 was the only enzyme able to support the d-lactate-driven growth of the strain. GOX1253 was characterized as a membrane-bound dehydrogenase with a high activity towards d-lactate, while GOX2071 was characterized as a soluble oxidase with broad substrate specificity towards d-2-hydroxy acids. The latter used molecular oxygen as a direct electron acceptor, a feature that has not been reported previously in d-lactate oxidizing enzymes. This study not only clarifies the mechanism for the growth of G. oxydans on d-lactate, but also provides new insights for applications of the important industrial microbe and the novel d-lactate oxidase. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
    Full-text · Article · Apr 2015 · Applied and Environmental Microbiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diacetyl, a high value product that can be extensively used as a food ingredient, could be produced from the non-enzymatic oxidative decarboxylation of α-acetolactate during 2,3-butanediol fermentation. In this study, the 2,3-butanediol biosynthetic pathway in Enterobacter cloacae subsp. dissolvens strain SDM, a good candidate for microbial 2,3-butanediol production, was reconstructed for diacetyl production. To enhance the accumulation of the precursor of diacetyl, the α-acetolactate decarboxylase encoding gene (budA) was knocked out in strain SDM. Subsequently, the two diacetyl reductases DR-I (gdh) and DR-II (budC) encoding genes were inactivated in strain SDM individually or in combination to decrease the reduction of diacetyl. Although the engineered strain E. cloacae SDM (ΔbudAΔbudC) was found to have a good ability for diacetyl production, more α-acetolactate than diacetyl was produced simultaneously. In order to enhance the nonenzymatic oxidative decarboxylation of α-acetolactate to diacetyl, 20 mM Fe(3+) was added to the fermentation broth at the optimal time. In the end, by using the metabolically engineered strain E. cloacae SDM (ΔbudAΔbudC), diacetyl at a concentration of 1.45 g/L was obtained with a high productivity (0.13 g/(L·h)). The method developed here may be a promising process for biotechnological production of diacetyl.
    Full-text · Article · Mar 2015 · Scientific Reports
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biotechnological production of biofuels is restricted by toxicity of the products such as ethanol and butanol. As its low toxicity to microbes, 2,3-butanediol (2,3-BD), a fuel and platform bio-chemical, could be a promising alternative for biofuel production from renewable bioresources. In addition, no bacterial strains have been reported to produce enantiopure 2,3-BD using lignocellulosic hydrolysates. In this study, Enterobacter cloacae strain SDM was systematically and metabolically engineered to construct an efficient biocatalyst for production for the fuel and enantiopure bio-chemical-(2R,3R)-2,3-BD. First, the various (2R,3R)-2,3-BD dehydrogenase encoding genes were expressed in a meso-2,3-BD dehydrogenase encoding gene disrupted E. cloacae strain under native promoter Pb of the 2,3-BD biosynthetic gene cluster of E. cloacae. Then, carbon catabolite repression was eliminated via inactivation of the glucose transporter encoding gene ptsG and overexpression of a galactose permease encoding gene galP. The resultant strain could utilize glucose and xylose simultaneously. To improve the efficiency of (2R,3R)-2,3-BD production, the byproduct-producing genes (ldh, frdA, and adh) were knocked out, thereby enhancing the yield of (2R,3R)-2,3-BD by 16.5% in 500-mL Erlenmeyer flasks. By using fed-batch fermentation in a 5-L bioreactor, 152.0g/L (2R,3R)-2,3-BD (purity>97.5%) was produced within 44h with a specific productivity of 3.5g/[L·h] and a yield of 97.7% from a mixture of glucose and xylose, two major carbohydrate components in lignocellulosic hydrolysates. In addition, when a lignocellulosic hydrolysate was used as the substrate, 119.4g/L (2R,3R)-2,3-BD (purity>96.0%) was produced within 51h with a productivity of 2.3g/[L·h] and a yield of 95.0%. These results show that the highest records have been acquired for enantiopure (2R,3R)-2,3-BD production by a native or engineered strain from biomass-derived sugars. In addition to producing the 2,3-BD, our systematic approach might also be used in the production of other important chemicals by using lignocellulose-derived sugars. Copyright © 2014. Published by Elsevier Inc.
    Full-text · Article · Dec 2014 · Metabolic Engineering
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As an important method for building blocks synthesis, whole cell biocatalysis is hindered by some shortcomings such as unpredictability of reactions, utilization of opportunistic pathogen, and side reactions. Due to its biological and extensively studied genetic background, Pseudomonas putida KT2440 is viewed as a promising host for construction of efficient biocatalysts. After analysis and reconstruction of the lactate utilization system in the P. putida strain, a novel biocatalyst that only exhibited NAD-independent d-lactate dehydrogenase activity was prepared and used in l-2-hydroxy-carboxylates production. Since the side reaction catalyzed by the NAD-independent l-lactate dehydrogenase was eliminated in whole cells of recombinant P. putida KT2440, two important l-2-hydroxy-carboxylates (l-lactate and l-2-hydroxybutyrate) were produced in high yield and high optical purity by kinetic resolution of racemic 2-hydroxy carboxylic acids. The results highlight the promise in biocatalysis by the biotechnologically important organism P. putida KT2440 through genomic analysis and recombination.
    Full-text · Article · Nov 2014 · Scientific Reports
  • Chao Gao · Zhong Li · Lijie Zhang · Chao Wang · Kun Li · Cuiqing Ma · Ping Xu
    [Show abstract] [Hide abstract]
    ABSTRACT: Conversion of glycerol into high-value products is of significant importance for sustainability in the biofuel industry. In this study, pyruvic acid, a central intermediate needed for the production of versatile biomolecules, was produced from glycerol without the addition of any cofactors by the cell-free bio-system composed of alditol oxidase, dihydroxy acid dehydratase, and catalase. (3R)-Acetoin was then produced at 85.5% of the theoretical yield from glycerol by α-acetolactate synthase and α-acetolactate decarboxylase. Since other biomolecules can also be produced from pyruvic acid, the cell-free bio-system might serve as a versatile bio-production platform, and support the viability of the biofuel economy.
    No preview · Article · Nov 2014 · Green Chemistry
  • Source
    Jiayang Qin · Xiuwen Wang · Jian Kong · Cuiqing Ma · Ping Xu
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, a food-grade cell surface display host/vector system for Lactobacillus casei was constructed. The food-grade host L. casei Q-5 was a lactose-deficient derivative of L. casei ATCC 334 obtained by plasmid elimination. The food-grade cell surface display vector was constructed based on safe DNA elements from lactic acid bacteria containing the following: pSH71 replicon from Lactococcus lactis, lactose metabolism genes from L. casei ATCC 334 as complementation markers, and surface layer protein gene from Lactobacillus acidophilus ATCC 4356 for cell surface display. The feasibility of the new host/vector system was verified by the expression of green fluorescent protein (GFP) on L. casei. Laser scanning confocal microscopy and immunofluorescence analysis using anti-GFP antibody confirmed that GFP was anchored on the surface of the recombinant cells. The stability of recombinant L. casei cells in artificial gastrointestinal conditions was verified, which is beneficial for oral vaccination applications. These results indicate that the food-grade host/vector system can be an excellent antigen delivery vehicle in oral vaccine construction.
    Full-text · Article · Sep 2014 · Microbiological Research
  • Source
    Lixiang Li · Chao Chen · Kun Li · Yu Wang · Chao Gao · Cuiqing Ma · Ping Xu
    [Show abstract] [Hide abstract]
    ABSTRACT: 2,3-Butanediol (2,3-BD) is an important starting material for the manufacture of bulk chemicals. For efficient and large-scale production of 2,3-BD through fermentation, low-cost substrates are required. One such substrate, inulin, is a polydisperse fructan found in a wide variety of plants. In this study, a levanase with high inulinase activity and high pH and temperature stability was identified in Bacillus licheniformis strain ATCC 14580. B. licheniformis strain ATCC 14580 was found to efficiently produce 2,3-BD from fructose at 50°C. Then, the levanase was used for simultaneous saccharification and fermentation (SSF) of inulin to 2,3-BD. A fed-batch SSF yielded 103.0 g/liter 2,3-BD in 30 h, with a high productivity of 3.4 g/liter · h. The results suggest that the SSF process developed with the thermophilic B. licheniformis strain used might be a promising alternative for efficient 2,3-BD production from the favorable substrate inulin.
    Full-text · Article · Aug 2014 · Applied and Environmental Microbiology
  • Source
    Lixiang Li · Kun Li · Kai Wang · Chao Chen · Chao Gao · Cuiqing Ma · Ping Xu
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, a thermophilic Bacillus licheniformis strain X10 was newly isolated for 2,3-butanediol (2,3-BD) production from lignocellulosic hydrolysate. Strain X10 could utilize glucose and xylose simultaneously without carbon catabolite repression. In addition, strain X10 possesses high tolerance to fermentation inhibitors including furfural, vanillin, formic acid, and acetic acid. In a fed-batch fermentation, 74.0g/L of 2,3-BD was obtained from corn stover hydrolysate, with a productivity of 2.1g/Lh and a yield of 94.6%. Thus, this thermophilic B. licheniformis strain is a candidate for the development of efficient industrial production of 2,3-BD from corn stover hydrolysate.
    Full-text · Article · Aug 2014 · Bioresource Technology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background (R)-2-Hydroxy-4-phenylbutyric acid [(R)-HPBA] is a key precursor for the production of angiotensin-converting enzyme inhibitors. However, the product yield and concentration of reported (R)-HPBA synthetic processes remain unsatisfactory. Methodology/Principal Findings The Y52L/F299Y mutant of NAD-dependent d-lactate dehydrogenase (d-nLDH) in Lactobacillus bulgaricus ATCC 11842 was found to have high bio-reduction activity toward 2-oxo-4-phenylbutyric acid (OPBA). The mutant d-nLDHY52L/F299Y was then coexpressed with formate dehydrogenase in Escherichia coli BL21 (DE3) to construct a novel biocatalyst E. coli DF. Thus, a novel bio-reduction process utilizing whole cells of E. coli DF as the biocatalyst and formate as the co-substrate for cofactor regeneration was developed for the production of (R)-HPBA from OPBA. The biocatalysis conditions were then optimized. Conclusions/Significance Under the optimum conditions, 73.4 mM OPBA was reduced to 71.8 mM (R)-HPBA in 90 min. Given its high product enantiomeric excess (>99%) and productivity (47.9 mM h−1), the constructed coupling biocatalysis system is a promising alternative for (R)-HPBA production.
    Full-text · Article · Aug 2014 · PLoS ONE
  • Source
    Pan Liu · Haiwei Zhang · Min Lv · Mandong Hu · Zhong Li · Chao Gao · Ping Xu · Cuiqing Ma
    [Show abstract] [Hide abstract]
    ABSTRACT: 5-Aminovalerate is a potential C5 platform chemical for synthesis of valerolactam, 5-hydroxyvalerate, glutarate, and 1,5-pentanediol. It is a metabolite of l-lysine catabolism through the aminovalerate pathway in Pseudomonas putida. l-Lysine monooxygenase (DavB) and 5-aminovaleramide amidohydrolase (DavA) play key roles in the biotransformation of l-lysine into 5-aminovalerate. Here, DavB and DavA of P. putida KT2440 were expressed, purified, and coupled for the production of 5-aminovalerate from l-lysine. Under optimal conditions, 20.8 g/L 5-aminovalerate was produced from 30 g/L l-lysine in 12 h. Because l-lysine is an industrial fermentation product, the two-enzyme coupled system presents a promising alternative for the production of 5-aminovalerate.
    Full-text · Article · Jul 2014 · Scientific Reports
  • Tianyi Jiang · Chao Gao · Cuiqing Ma · Ping Xu
    [Show abstract] [Hide abstract]
    ABSTRACT: Lactate utilization endows microbes with the ability to use lactate as a carbon source. Lactate oxidizing enzymes play key roles in the lactate utilization pathway. Various types of these enzymes have been characterized, but novel ones remain to be identified. Lactate determination techniques and biocatalysts have been developed based on these enzymes. Lactate utilization has also been found to induce pathogenicity of several microbes, and the mechanisms have been investigated. More recently, studies on the structure and organization of operons of lactate utilization have been carried out. This review focuses on the recent progress and future perspectives in understanding microbial lactate utilization.
    No preview · Article · Jun 2014 · Trends in Microbiology
  • Source
    Lixiang Li · Yu Wang · Kai Wang · Kun Li · Cuiqing Ma · Ping Xu
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacillus licheniformis strain 3F-3 is an efficient pentose-utilizing producer of platform chemical, 2,3-butanediol. Here we present a 4.1-Mb assembly of its genome. The key genes for pentose utilization, regulation, and metabolism of 2,3-butanediol were annotated, which may provide further insights into the molecular mechanism of 2,3-butanediol production from biomass pentose.
    Full-text · Article · May 2014 · Genome Announcements
  • Source
    Lixiang Li · Yu Wang · Kun Li · Fei Su · Cuiqing Ma · Ping Xu
    [Show abstract] [Hide abstract]
    ABSTRACT: Serratia marcescens strain ATCC 14041 was found to be an efficient meso-2,3-butanediol (meso-2,3-BD) producer from glucose and sucrose. Here we present a 5.0-Mb assembly of its genome. We have annotated 4 coding sequences (CDSs) for meso-2,3-BD fermentation and 2 complete operons including 6 CDSs for sucrose utilization.
    Full-text · Article · May 2014 · Genome Announcements
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The production of biofuels by recombinant Escherichia coli is restricted by the toxicity of the products. 2,3-Butanediol (2,3-BD), a platform and fuel bio-chemical with low toxicity to microbes, could be a promising alternative for biofuel production. However, the yield and productivity of 2,3-BD produced by recombinant E. coli strains are not sufficient for industrial scale fermentation. In this work, the production of 2,3-BD by recombinant E. coli strains was optimized by applying a systematic approach. 2,3-BD biosynthesis gene clusters were cloned from several native 2,3-BD producers, including Bacillus subtilis, Bacillus licheniformis, Klebsiella pneumoniae, Serratia marcescens, and Enterobacter cloacae, inserted into the expression vector pET28a, and compared for 2,3-BD synthesis. The recombinant strain E. coli BL21/pETPT7-EcABC, carrying the 2,3-BD pathway gene cluster from Enterobacter cloacae, showed the best ability to synthesize 2,3-BD. Thereafter, expression of the most efficient gene cluster was optimized by using different promoters, including PT7, Ptac, Pc, and Pabc. E. coli BL21/pET-RABC with Pabc as promoter was superior in 2,3-BD synthesis. On the basis of the results of biomass and extracellular metabolite profiling analyses, fermentation conditions, including pH, agitation speed, and aeration rate, were optimized for the efficient production of 2,3-BD. After fed-batch fermentation under the optimized conditions, 73.8 g/L of 2,3-BD was produced by using E. coli BL21/pET-RABC within 62 h. The values of both yield and productivity of 2,3-BD obtained with the optimized biological system were the highest ever achieved with an engineered E. coli strain. In addition to the 2,3-BD production, the systematic approach might also be used in the production of other important chemicals through recombinant E. coli strains.
    Full-text · Article · May 2014 · Metabolic Engineering

Publication Stats

2k Citations
457.76 Total Impact Points

Institutions

  • 1997-2015
    • Shandong University
      • State Key Laboratory for Microbial Technology
      Chi-nan-shih, Shandong Sheng, China
  • 2008-2014
    • Shanghai Jiao Tong University
      • State Key Laboratory of Microbial Metabolism
      Shanghai, Shanghai Shi, China
  • 2011
    • Helmholtz Centre for Infection Research
      Brunswyck, Lower Saxony, Germany