John F. Kearney

University of Alabama at Birmingham, Birmingham, Alabama, United States

Are you John F. Kearney?

Claim your profile

Publications (211)1497.92 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: In the adult mouse, three major subsets of mature B-lymphocytes are recognized: B-1, marginal zone (MZ), and follicular (FO) B cells. These B lymphocytes are the products of B-cell precursors that follow developmental programs that require passage through successive checkpoints to produce appropriately matured B-cell clonotypes. Comparative studies of human subjects found patterns of development and subset composition that are similar, but not identical, to those observed in mice. This chapter focuses on the derivation, development, compartmentalization, and function of these three major B-cell subsets: B-1, MZ and FO. Discussion of the developmental fate of these cells after exposure to antigen, including germinal center formation, class switching, memory B cell, and plasma cell development, can be found in other chapters of this textbook.
    No preview · Chapter · Dec 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease, defined by loss of B cell self-tolerance that results in production of antinuclear antibodies (ANA) and chronic inflammation. While the initiating events in lupus development are not well defined, overexpression of the RNA-recognizing toll-like receptor (TLR)7 has been linked to SLE in humans and mice. We postulated that autophagy plays an essential role in TLR7 activation of B cells for the induction of SLE by delivering RNA ligands to the endosomes, where this innate immune receptor resides. To test this hypothesis, we compared SLE development in Tlr7 transgenic (Tg) mice with or without B cell-specific ablation of autophagy (Cd19-Cre Atg5(f/f)). We observed that in the absence of B cell autophagy the 2 hallmarks of SLE, ANA and inflammation, were eliminated, thus curing these mice of lupus. This was also evident in the significantly extended survival of the autophagy-deficient mice compared to Tlr7.1 Tg mice. Furthermore, glomerulonephritis was ameliorated, and the serum levels of inflammatory cytokines in the knockout (KO) mice were indistinguishable from those of control mice. These data provide direct evidence that B cells require TLR7-dependent priming through an autophagy-dependent mechanism before autoimmunity is induced, thereafter involving many cell types. Surprisingly, hyper-IgM production persisted in Tlr7.1 Tg mice in the absence of autophagy, likely involving a different activation pathway than the production of autoantibodies. Furthermore, these mice still presented with anemia, but responded with a striking increase in extramedullary hematopoiesis (EMH), possibly due to the absence of pro-inflammatory cytokines.
    No preview · Article · Jun 2015 · Autophagy
  • Source
    Preeyam S Patel · John F Kearney
    [Show abstract] [Hide abstract]
    ABSTRACT: Currently, ∼20% of the global population suffers from an allergic disorder. Allergies and asthma occur at higher rates in developed and industrialized countries. It is clear that many human atopic diseases are initiated neonatally and herald more severe IgE-mediated disorders, including allergic asthma, which is driven by the priming of Th2 effector T cells. The hygiene hypothesis attempts to link the increased excessively sanitary conditions early in life to a default Th2 response and increasing allergic phenomena. Despite the substantial involvement of IgE Abs in such conditions, little attention has been paid to the effects of early microbial exposure on the B cell repertoire prior to the initiation of these diseases. In this study, we use Ab-binding assays to demonstrate that Streptococcus pneumoniae and house dust mite (HDM) bear similar phosphorylcholine (PC) epitopes. Neonatal C57BL/6 mice immunized with a PC-bearing pneumococcal vaccine expressed increased frequencies of PC-specific B cells in the lungs following sensitizing exposure to HDM as adults. Anti-PC IgM Abs in the lung decreased the interaction of HDM with pulmonary APCs and were affiliated with lowered allergy-associated cell infiltration into the lung, IgE production, development of airway hyperresponsiveness, and Th2 T cell priming. Thus, exposure of neonatal mice to PC-bearing pneumococci significantly reduced the development of HDM-induced allergic disease during adult life. Our findings demonstrate that B cells generated against conserved epitopes expressed by bacteria, encountered early in life, are also protective against the development of allergic disease during adult life. Copyright © 2015 by The American Association of Immunologists, Inc.
    Full-text · Article · May 2015 · The Journal of Immunology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Invasive aspergillosis (IA) resulting from infection by Aspergillus fumigatus is a leading cause of death in immunosuppressed populations. There are limited therapeutic options for this disease and currently no vaccine. There is evidence that some anti-A. fumigatus mAbs can provide protection against IA. However, vaccine development has been impeded by a paucity of immunological targets on this organism demonstrated to provide protective responses. Sialylated oligosaccharide epitopes found on a variety of pathogens, including fungi and group B streptococci (GBS), are thought to be major virulence factors of these organisms facilitating pathogen attachment to host cells and modulating complement activation and phagocytosis. Because some of these oligosaccharide structures are conserved across kingdoms, we screened a panel of mAbs raised against GBS serotypes for reactivity to A. fumigatus. This approach revealed that SMB19, a GBSIb type-specific mAb, reacts with A. fumigatus conidia and hyphae. The presence of this Ab in mice, as a result of passive or active immunization, or by enforced expression of the SMB19 H chain as a transgene, results in significant protection in both i.v. and airway-induced models of IA. This study demonstrates that some Abs generated against bacterial polysaccharides engage fungal pathogens and promote their clearance in vivo and thus provide rationale of alternative strategies for the development of vaccines or therapeutic mAbs against these organisms. Copyright © 2015 by The American Association of Immunologists, Inc.
    No preview · Article · Mar 2015 · The Journal of Immunology
  • Preeyam S. Patel · John F. Kearney

    No preview · Article · Feb 2015 · Journal of Allergy and Clinical Immunology
  • Source
    John F Kearney · Preeyam Patel · Emily K Stefanov · R Glenn King
    [Show abstract] [Hide abstract]
    ABSTRACT: In this review we discuss the effects of microbial exposure on the B cell repertoire. Neonatal exposure to conserved bacterial carbohydrates and phospholipids permanently reprograms the natural antibody repertoire directed toward these antigens by clonal expansion, alterations in clonal dominance, and increased serum antibody levels. These epitopes are present not only in bacterial cell walls, but also in common environmental allergens. Neonatal immunization with bacteria polysaccharide vaccines results in attenuated allergic airway responses to fungi-, house dust mite-, and cockroach-associated allergens in mouse models. The similarities between mouse and human natural antibody repertoires suggest that reduced microbial exposure in children may have the opposite effect, providing a potential mechanistic explanation for the hygiene hypothesis. We propose that understanding the effects of childhood infections on the natural antibody repertoire and the mechanisms of antibody-mediated immunoregulation observed in allergy models will lead to the development of prevention/interventional strategies for treatment of allergic asthma. Expected final online publication date for the Annual Review of Immunology Volume 33 is March 21, 2015. Please see for revised estimates.
    Full-text · Article · Jan 2015 · Annual Review of Immunology
  • [Show abstract] [Hide abstract]
    ABSTRACT: The IgM Fc receptor (FcμR) is the newest FcR, and coligation of FcμR and Fas/CD95 on Jurkat cells with agonistic IgM anti-Fas mAb was shown to inhibit Fas-induced apoptosis. The ligand-binding activity of human FcμR was further examined. FcμR-mediated protection from apoptosis was partially blocked by addition of 10(4) molar excess of IgM or its soluble immune complexes, but it could be inhibited by addition of 10-fold excess of IgM anti-CD2 mAb. This suggests that FcμR binds more efficiently to the Fc portion of IgM reactive with plasma-membrane proteins than to the Fc portion of IgM in solution. The former interaction occurred in cis on the same cell surface, but not in trans between neighboring cells. This cis engagement of FcμR resulted in modulation of Ca(2+) mobilization via CD2 on Jurkat cells or BCRs on blood B cells upon cross-linkage with the corresponding IgM mAbs. Several functional changes were observed with FcμR mutants: 1) significant increase in IgM ligand binding in the cytoplasmic tail-deletion mutant, 2) enhanced cap formation in FcμR upon IgM binding at 4°C with a point mutation of the transmembrane His to Phe, and 3) less protective activity of FcμR in IgM anti-Fas mAb-mediated apoptosis assays with a point mutation of the membrane-proximal Tyr to Phe. These findings show the importance of the cis engagement of FcμR and its critical role in receptor function. Hence, FcμR on B, T, and NK cells may modulate the function of surface proteins recognized by natural or immune IgM Abs on the shared membrane cell surface. Copyright © 2015 by The American Association of Immunologists, Inc.
    No preview · Article · Jan 2015 · The Journal of Immunology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Systemic lupus erythematosus (SLE) is an autoimmune disease with a high incidence in females and a complex phenotype. Using 564Igi mice, a model of SLE with knock-in genes encoding an autoreactive anti-RNA antibody, we investigated how expression of Toll-like receptors (TLRs) in B cells and neutrophils affects pathogenesis. We established that TLR signaling through MyD88 is necessary for disease. Autoantibody was produced in mice with single deletions of Tlr7, Tlr8 or Tlr9 or combined deletions of Tlr7 and 9. Autoantibody was not produced in the combined absence of Tlr7 and 8, indicating that TLR8 contributes to the break in tolerance. Furthermore, TLR8 was sufficient for the loss of B-cell tolerance, the production of class-switched autoantibody, heightened granulopoiesis, and increased production of type I interferon (IFN-I) by neutrophils as well as glomerulonephritis and death. We show that dosage of X-linked Tlr8 plays a major role in the high incidence of disease in females. In addition, we show that the negative regulation of disease by TLR9 is exerted primarily on granulopoiesis and IFN-I production by neutrophils. Collectively, we suggest that individual TLRs play unique roles in the pathogenesis of SLE, suggesting new targets for treatment. This article is protected by copyright. All rights reserved.
    No preview · Article · May 2014 · European Journal of Immunology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Radioimmunotherapy (RIT) takes advantage of the specificity and affinity of the antigen-antibody interaction to deliver microbicidal radioactive nuclides to a site of infection. In this study, we investigated the microbicidal properties of an alpha particle-emitting 213Bi-labeled monoclonal antibody (MAb), EA2-1 (213Bi-EA2-1), that binds to the immunodominant antigen on Bacillus anthracis spores. Our results showed that dormant spores were resistant to 213Bi-EA2-1. Significant spore killing was observed following treatment with EA2-1 labeled with 300 μCi 213Bi; however, this effect was not dependent on the MAb. In contrast, when spores were germinating, 213Bi-EA2-1 mediated MAb-specific killing in a dose-dependent manner. Dormant spores are very resistant to RIT, and RIT should focus on targeting vegetative cells and germinating spores.
    Preview · Article · Dec 2013 · Antimicrobial Agents and Chemotherapy
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe a unique extracellular matrix (ECM) niche in the spleen, the marginal zone (MZ), characterized by the basement membrane glycoproteins, laminin α5 and agrin, that promotes formation of a specialized population of MZ B lymphocytes that respond rapidly to blood-borne antigens. Mice with reduced laminin α5 expression show reduced MZ B cells and increased numbers of newly formed (NF) transitional B cells that migrate from the bone marrow, without changes in other immune or stromal cell compartments. Transient integrin α6β1-mediated interaction of NF B cells with laminin α5 in the MZ supports the MZ B-cell population, their long-term survival, and antibody response. Data suggest that the unique 3D structure and biochemical composition of the ECM of lymphoid organs impacts on immune cell fate.
    Full-text · Article · Jul 2013 · Proceedings of the National Academy of Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Evidence is accumulating to suggest that our indigenous microbial communities (microbiota) may play a role in modulating allergic and immune disorders of the skin. To examinethe link between the microbiota and atopic dermatitis, we examined a mouse model of defective cutaneous barrier function with an atopic dermatitis-like disease due to loss of Notch signaling. Comparisons of conventionally-raised (CONV-R) and germ-free (GF) mice revealed a similar degree of allergic skin inflammation, systemic atopy, and airway hypersensitivity. GF mutant animals expressed significantly higher levels of thymic stromal lymphopoietin (TSLP), a major proinflammatory cytokine released by skin with defective barrier function, resulting in a more severe B-lymphoproliferative disorder that persisted into adulthood. These findings suggest a role for the microbiota in ameliorating stress signals released by keratinocytes in response to perturbation in cutaneous barrier function.Journal of Investigative Dermatology accepted article preview online, 22 May 2013; doi:10.1038/jid.2013.228.
    Full-text · Article · May 2013 · Journal of Investigative Dermatology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Selection and physiological production of protective natural antibodies (NAbs) have been associated with exposure to endogenous antigens. The extent to which this association depends on germline NAb sequence is uncertain. Here we show that alterations in germline DH sequence can sever the association between the production of self-reactive NAbs and NAbs that afford protection against a pathogen. In unmanipulated hosts, the availability of the evolutionarily conserved DFL16.1 gene segment sequence profoundly affected the serum levels of NAbs against bacterial phosphorylcholine but not oxidized low-density lipoprotein. Mice with partially altered DFL16.1 sequence could use N nucleotides to recreate the amino acid sequence associated with the classical protective T15 idiotype-positive NAbs, whereas those without DFL16.1 could not. DFL16.1 gene-deficient mice proved more susceptible to challenge with live Streptococcus pneumoniae. Our findings indicate that although production of self-reactive NAbs can be independent of germline DH sequence, their capacity to provide protection against pathogens cannot. The potential relevance of these findings for the rational design of vaccines is discussed.
    Full-text · Article · Apr 2013 · Journal of Experimental Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell surface Fc receptor for IgM antibody (FcμR) is the most recently identified member among FcRs. We determined the cellular distribution of mouse FcμR and the functional consequences of Fcmr disruption. Surface FcμR expression was restricted to B-lineage cells, from immature B to plasma cells, except for a transient down-modulation during germinal center reactions. Fcmr ablation had no significant effect on overall B- and T-cell development, but led to a reduction of marginal zone B cells and an increase in splenic B1 B cells. Preimmune serum IgM in mutant mice was significantly elevated as were natural autoantibodies. When immunized with live attenuated pneumococci, mutant mice mounted robust antibody responses against phosphorylcholine, but not protein, determinants compared with wild-type mice. By contrast, upon immunization with a hapten-carrier conjugate, nitrophenyl-coupled chicken γ-globulin (NP-CGG), the mutant mice had a diminished primary IgG1 response to both NP and CGG. These findings suggest that FcμR has an important role in IgM homeostasis and regulation of humoral immune responses.
    Full-text · Article · Sep 2012 · Proceedings of the National Academy of Sciences
  • [Show abstract] [Hide abstract]
    ABSTRACT: There has been a sharp rise in allergic asthma and asthma-related deaths in the developed world, in contrast to many childhood illnesses that have been reduced or eliminated. The hygiene hypothesis proposes that excessively sanitary conditions early in life result in autoimmune and allergic phenomena because of a failure of the immune system to receive proper microbial stimulation during development. We demonstrate that Abs generated against conserved bacterial polysaccharides are reactive with and dampen the immune response against chitin and Aspergillus fumigatus. A reduction in Ag uptake, cell influx, cell activation, and cytokine production occurred in the presence of anti-polysaccharide Abs, resulting in a striking decrease in the severity of allergic airway disease in mice. Overall, our results suggest that Ag exposure--derived from environmental sources, self-antigens, or vaccination--during the neonatal period has dramatic effects on the adult Ab response and modifies the development of allergic airway disease.
    No preview · Article · Jul 2012 · The Journal of Immunology
  • Source
    Jeremy B Foote · Tamer I Mahmoud · Andre M Vale · John F Kearney
    [Show abstract] [Hide abstract]
    ABSTRACT: Many bacteria-associated polysaccharides induce long-lived Ab responses that protect against pathogenic microorganisms. The maintenance of polysaccharide-specific Ab titers may be due to long-lived plasma cells or ongoing Ag-driven B cell activation due to polysaccharide persistence. BALB/c and V(H)J558.3 transgenic mice respond to α1→3-dextran (DEX) by generating a peak anti-DEX response at 7 d, followed by maintenance of serum Ab levels for up to 150 d. Analysis of the cellular response to DEX identified a population of short-lived, cyclophosphamide-sensitive DEX-specific plasmablasts in the spleen, and a quiescent, cyclophosphamide-resistant DEX-specific Ab-secreting population in the bone marrow. BrdU pulse-chase experiments demonstrated the longevity of the DEX-specific Ab-secreting population in the bone marrow. Splenic DEX-specific plasmablasts were located in the red pulp with persisting DEX-associated CD11c(+) dendritic cells 90 d after immunization, whereas DEX was not detected in the bone marrow after 28 d. Selective depletion of short-lived DEX-specific plasmablasts and memory B1b B cells using cyclophosphamide and anti-CD20 treatment had a minimal impact on the maintenance of serum anti-DEX Abs. Collectively, these findings demonstrate that the maintenance of serum polysaccharide-specific Abs is the result of continuous Ag-driven formation of short-lived plasmablasts in the spleen and a quiescent population of Ab-secreting cells maintained in the bone marrow for a long duration.
    Full-text · Article · Nov 2011 · The Journal of Immunology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mammalian antimicrobial peptides (AMPs) play an important role in host defense via direct antimicrobial activity as well as immune regulation. The mouse cathelin-related antimicrobial peptide (mCRAMP), produced from the mouse gene Camp, is the only mouse cathelicidin identified and the ortholog of the human gene encoding the peptide LL-37. This study tested the hypothesis that mouse B and T cells produce and respond to mCRAMP. We show that all mature mouse B-cell subsets, including follicular (FO), marginal zone (MZ), B1a, and B1b cells, as well as CD4(+) and CD8(+) T cells produce Camp mRNA and mCRAMP protein. Camp(-/-) B cells produced equivalent levels of IgM, IgG3, and IgG2c but less IgG1 and IgE, while Camp(-/-) CD4(+) T cells cultured in Th2-inducing conditions produced more IL-4-expressing cells when compared with WT cells, effects that were reversed upon addition of mCRAMP. In vivo, Camp(-/-) mice immunized with TNP-OVA absorbed in alum produced an enhanced TNP-specific IgG1 response when compared with WT mice. ELISpot analysis revealed increased numbers of TNP-specific IgG1-secreting splenic B cells and FACS analysis revealed increased CD4(+) T-cell IL-4 expression. Our results suggest that mCRAMP differentially regulates B- and T-cell function and implicate mCRAMP in the regulation of adaptive immune responses.
    Full-text · Article · Oct 2011 · European Journal of Immunology
  • Source
    Tamer I Mahmoud · Harry W Schroeder · John F Kearney
    [Show abstract] [Hide abstract]
    ABSTRACT: Anti-polysaccharide Ab responses in mice are often oligoclonal, and the mechanisms involved in Ag-specific clone production and selection remain poorly understood. We evaluated the relative contribution of D(H) germline content versus N nucleotide addition in a classic oligoclonal, T-independent Ab response (α 1→3 dextran [DEX]) by challenging adult TdT-sufficient (TdT(+/+)) and TdT-deficient (TdT(-/-)) gene-targeted mice, limited to the use of a single D(H) gene segment (D-limited mice), with Enterobacter cloacae. D-limited mice achieved anti-DEX-specific levels of Abs that were broadly comparable to those of wild-type (WT) BALB/c mice. Sequence analysis of the third CDR of the H chain intervals obtained by PCR amplification of V(H) domain DNA from DEX-specific plasmablasts revealed the near universal presence of an aspartic acid residue (D99) at the V-D junction, irrespective of the composition of the D(H) locus. Although WT mice were able to use germline D(H) (DQ52, DSP, or DST) gene segment sequence, TdT activity, or both to produce D99, all three D-limited mouse strains relied exclusively on N addition. Additionally, in the absence of TdT, D-limited mice failed to produce a DEX response. Coupled with previous studies demonstrating a reduced response to DEX in TdT(-/-) mice with a WT D(H) locus, we concluded that in the case of the anti-DEX repertoire, which uses a short third CDR of the H chain, the anti-DEX response relies more intensely on sequences created by postnatal N nucleotide addition than on the germline sequence of the D(H).
    Full-text · Article · Jun 2011 · The Journal of Immunology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The marginal zone (MZ) of the mouse spleen contains macrophages that express receptors that trap pathogens, including the scavenger receptor macrophage receptor with a collagenous structure and the C-type lectin specific intracellular adhesion molecule-grabbing nonintegrin receptor 1 (SIGN-R1). We previously reported that expression of SIGN-R1 was decreased in CD19-deficient mice. In this study, we demonstrate that SIGN-R1 is expressed on a subset of macrophage receptor with a collagenous structure (MARCO)(+) macrophages. This subset is diminished when MZ B cells are absent due to either genetic developmental defects or following transient migration of B cells out of the MZ. When B cells return to the MZ, there is a delay in recovery of SIGN-R1-expressing macrophages. During this period, capture of Ficoll, which for the macrophages requires SIGN-R1, remains defective not only by the macrophages, but also by the B cells. Thus, MZ B cells regulate expression of molecules on macrophages that are important for trapping Ag, which, in turn, is required for Ag capture by the B cells.
    Preview · Article · Feb 2011 · The Journal of Immunology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The outermost layer of the Bacillus anthracis spore, the exosporium, is composed of a paracrystalline basal layer and an external hair-like nap. The nap is formed from a single collagen-like glycoprotein, while the basal layer contains many different proteins, including a 186-amino acid protein called ExsB. In this study, we discovered that ExsB is unusually highly phosphorylated, with at least 14 of its 19 threonine residues modified. The phosphorylated threonines are included in seven contiguous approximately 12-residue imperfect repeats, which presumably contain kinase recognition sequences. We demonstrated that a B. anthracis DeltaexsB mutant unable to synthesize ExsB produced spores with an exosporium that was readily sloughed, indicating that ExsB was required for stable exosporium attachment. This unstable exosporium also lacked the enzyme alanine racemase, which is normally tightly associated with the exosporium. Additionally, purified DeltaexsB spores lacking a visible exosporium were devoid of most exosporium proteins but, surprisingly, retained the putative exosporium proteins BxpC and CotB-1. Finally, we showed that transcription of the exsB gene occurred only during the late stages of sporulation, and we used an active and phosphorylated ExsB-EGFP fusion protein to monitor ExsB localization to wild-type and DeltabxpB mutant exosporia.
    Preview · Article · Apr 2010 · Molecular Microbiology
  • Source
    Tamer I Mahmoud · John F Kearney
    [Show abstract] [Hide abstract]
    ABSTRACT: An understanding of Ab responses to polysaccharides associated with pathogenic microorganisms is of importance for improving vaccine design, especially in neonates that respond poorly to these types of Ags. In this study, we have investigated the role of the lymphoid-specific enzyme TdT in generating B cell clones responsive to alpha-1,3 dextran (DEX). TdT is a DNA polymerase that plays a major role in generating diversity of lymphocyte AgRs during V(D)J recombination. In this study, we show that the DEX-specific Ab response is lower, and the dominant DEX-specific J558 idiotype (Id) is not detected in TdT(-/-) mice when compared with wild-type (WT) BALB/c mice. Nucleotide sequencing of H chain CDR3s of DEX-specific plasmablasts, sorted postimmunization, showed that TdT(-/-) mice generate a lower frequency of the predominant adult molecularly determined clone J558. Complementation of TdT expression in TdT(-/-) mice by early forced expression of the short splice variant of TdT-restored WT proportions of J558 Id+ clones and also abrogated the development of the minor M104E Id+ clones. J558 Id V(D)J rearrangements are detected as early as 7 d after birth in IgM-negative B cell precursors in the liver and spleen of WT and TdT-transgenic mice but not in TdT(-/-) mice. These data show that TdT is essential for the generation of the predominant higher-affinity DEX-responsive J558 clone.
    Full-text · Article · Dec 2009 · The Journal of Immunology

Publication Stats

13k Citations
1,497.92 Total Impact Points


  • 1975-2015
    • University of Alabama at Birmingham
      • • Department of Microbiology
      • • Comprehensive Cancer Center
      • • Department of Surgery
      • • Division of Clinical Immunology and Rheumatology
      Birmingham, Alabama, United States
  • 1980-1992
    • University of Alabama
      • Department of Pediatrics
      Tuscaloosa, Alabama, United States
  • 1988
    • United States Department of Veterans Affairs
      Бедфорд, Massachusetts, United States
  • 1986
    • Shimane University
      • Department of Microbiology and Immunology
      Matsu, Shimane Prefecture, Japan
  • 1977
    • Lurleen B. Wallace Community College
      أندالوسيا، ألاباما, Alabama, United States