Are you Chantal Bauvy?

Claim your profile

Publications (67)

  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Autophagy plays key roles in development, oncogenesis, cardiovascular, metabolic, and neurodegenerative diseases. Hence, understanding how autophagy is regulated can reveal opportunities to modify autophagy in a disease-relevant manner. Ideally, one would want to functionally define autophagy regulators whose enzymatic activity can potentially be modulated. Here, we describe the STK38 protein kinase (also termed NDR1) as a conserved regulator of autophagy. Using STK38 as bait in yeast-two-hybrid screens, we discovered STK38 as a novel binding partner of Beclin1, a key regulator of autophagy. By combining molecular, cell biological, and genetic approaches, we show that STK38 promotes autophagosome formation in human cells and in Drosophila. Upon autophagy induction, STK38-depleted cells display impaired LC3B-II conversion; reduced ATG14L, ATG12, and WIPI-1 puncta formation; and significantly decreased Vps34 activity, as judged by PI3P formation. Furthermore, we observed that STK38 supports the interaction of the exocyst component Exo84 with Beclin1 and RalB, which is required to initiate autophagosome formation. Upon studying the activation of STK38 during autophagy induction, we found that STK38 is stimulated in a MOB1- and exocyst-dependent manner. In contrast, RalB depletion triggers hyperactivation of STK38, resulting in STK38-dependent apoptosis under prolonged autophagy conditions. Together, our data establish STK38 as a conserved regulator of autophagy in human cells and flies. We also provide evidence demonstrating that STK38 and RalB assist the coordination between autophagic and apoptotic events upon autophagy induction, hence further proposing a role for STK38 in determining cellular fate in response to autophagic conditions.
    Full-text Article · Sep 2015 · Current biology: CB
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: To obtain mechanistic insights into the cross talk between lipolysis and autophagy, two key metabolic responses to starvation, we screened the autophagy-inducing potential of a panel of fatty acids in human cancer cells. Both saturated and unsaturated fatty acids such as palmitate and oleate, respectively, triggered autophagy, but the underlying molecular mechanisms differed. Oleate, but not palmitate, stimulated an autophagic response that required an intact Golgi apparatus. Conversely, autophagy triggered by palmitate, but not oleate, required AMPK, PKR and JNK1 and involved the activation of the BECN1/PIK3C3 lipid kinase complex. Accordingly, the downregulation of BECN1 and PIK3C3 abolished palmitate-induced, but not oleate-induced, autophagy in human cancer cells. Moreover, Becn1+/− mice as well as yeast cells and nematodes lacking the ortholog of human BECN1 mounted an autophagic response to oleate, but not palmitate. Thus, unsaturated fatty acids induce a non-canonical, phylogenetically conserved, autophagic response that in mammalian cells relies on the Golgi apparatus.
    Full-text Article · Jan 2015 · The EMBO Journal
  • Nicolas Dupont · Idil Orhon · Chantal Bauvy · Patrice Codogno
    [Show abstract] [Hide abstract] ABSTRACT: Macroautophagy (hereafter referred to as autophagy), a central mechanism mediating the lysosomal degradation of cytoplasmic components, can be stimulated by a wide panel of adverse stimuli, including a panoply of anticancer agents. The central autophagic organelle is the autophagosome, a double membrane-bound vacuole that sequesters the cytoplasmic material destined to disposal. The ultimate destiny of the autophagosome is to fuse with a lysosome, resulting in the degradation of the autophagic cargo. In this setting, it is important to discriminate whether a particular stimulus actually promotes autophagy or it simply blocks the fusion of autophagosomes with lysosomes. To this aim, the methods that assess autophagy should assess not only the number of autophagosomes but also the so-called autophagic flux, that is, the clearance of the autophagy cargo from the lysosomal compartment. Here, we present a compendium of methods to assess the autophagic flux in cultured malignant cells. This approach should allow for the study of the intimate link between autophagy and oncometabolism in several experimental paradigms.
    Article · Jun 2014 · Methods in Enzymology
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: We recently reported that BAG6/BAT3 (BCL2-associated athanogene 6) is essential for basal and starvation-induced autophagy in E18.5 bag6(-/-) mouse embryos and in mouse embryonic fibroblasts (MEFs) through the modulation of the EP300/p300-dependent acetylation of TRP53 and autophagy-related (ATG) proteins. We observed that BAG6 increases TRP53 acetylation during starvation and pro-autophagic TRP53-target gene expression. BAG6 also decreases the EP300 dependent-acetylation of ATG5, ATG7, and LC3-I, posttranslational modifications that inhibit autophagy. In addition, in the absence of BAG6 or when using a mutant of BAG6 exclusively located in the cytoplasm, autophagy is inhibited, ATG7 is hyperacetylated, TRP53 acetylation is abrogated, and EP300 accumulates in the cytoplasm indicating that BAG6 is involved in the regulation of the nuclear localization of EP300. We also reported that the interaction between BAG6 and EP300 occurs in the cytoplasm rather than the nucleus. Moreover, during starvation, EP300 is transported to the nucleus in a BAG6-dependent manner. We concluded that BAG6 regulates autophagy by controlling the localization of EP300 and its accessibility to nuclear (TRP53) and cytoplasmic (ATGs) substrates.
    Full-text Article · May 2014 · Autophagy
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Autophagy is regulated by posttranslational modifications, including acetylation. Here we show that HLA-B-associated transcript 3 (BAT3) is essential for basal and starvation-induced autophagy in embryonic day 18.5 BAT3(-/-) mouse embryos and in mouse embryonic fibroblasts (MEFs) through the modulation of p300-dependent acetylation of p53 and ATG7. Specifically, BAT3 increases p53 acetylation and proautophagic p53 target gene expression, while limiting p300-dependent acetylation of ATG7, a mechanism known to inhibit autophagy. In the absence of BAT3 or when BAT3 is located exclusively in the cytosol, autophagy is abrogated, ATG7 is hyperacetylated, p53 acetylation is abolished, and p300 accumulates in the cytosol, indicating that BAT3 regulates the nuclear localization of p300. In addition, the interaction between BAT3 and p300 is stronger in the cytosol than in the nucleus and, during starvation, the level of p300 decreases in the cytosol but increases in the nucleus only in the presence of BAT3. We conclude that BAT3 tightly controls autophagy by modulating p300 intracellular localization, affecting the accessibility of p300 to its substrates, p53 and ATG7.
    Full-text Article · Mar 2014 · Proceedings of the National Academy of Sciences
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: cetyl-coenzyme A (AcCoA) is a major integrator of the nutritional status at the crossroads of fat, sugar, and protein catabolism. Here we show that nutrient starvation causes rapid depletion of AcCoA. AcCoA depletion entailed the commensurate reduction in the overall acetylation of cytoplasmic proteins, as well as the induction of autophagy, a homeostatic process of self-digestion. Multiple distinct mani- pulations designed to increase or reduce cytosolic AcCoA led to the suppression or induction of auto- phagy, respectively, both in cultured human cells and in mice. Moreover, maintenance of high AcCoA levels inhibited maladaptive autophagy in a model of cardiac pressure overload. Depletion of AcCoA reduced the activity of the acetyltransferase EP300, and EP300 was required for the suppression of auto- phagy by high AcCoA levels. Altogether, our results indicate that cytosolic AcCoA functions as a central metabolic regulator of autophagy, thus delineating AcCoA-centered pharmacological strategies that allow for the therapeutic manipulation of autophagy.
    Full-text Article · Feb 2014 · Molecular cell
  • Source
    Séverine Lorin · Marc J Tol · Chantal Bauvy · [...] · Alfred J Meijer
    [Show abstract] [Hide abstract] ABSTRACT: Amino acids, leucine in particular, are known to inhibit autophagy, at least in part by their ability to stimulate MTOR-mediated signaling. Evidence is presented showing that glutamate dehydrogenase, the central enzyme in amino acid catabolism, contributes to leucine sensing in the regulation of autophagy. The data suggest a dual mechanism by which glutamate dehydrogenase activity modulates autophagy, i.e., by activating MTORC1 and by limiting the formation of reactive oxygen species.
    Full-text Article · Apr 2013 · Autophagy
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Breast cancer tissue contains a small population of cells that have the ability to self-renew; these cells are known as cancer stem-like cells (CSCs). We have recently shown that autophagy is essential for the tumorigenicity of these CSCs. Salinomycin (Sal), a K (+) /H (+) ionophore, has recently been shown to be at least 100 times more effective than paclitaxel in reducing the proportion of breast CSCs. However, its mechanisms of action are still unclear. We show here that Sal blocked both autophagy flux and lysosomal proteolytic activity in both CSCs and non-CSCs derived from breast cancer cells. GFP-LC3 staining combined with fluorescent dextran uptake and LysoTracker-Red staining showed that autophagosome/lysosome fusion was not altered by Sal treatment. Acridine orange staining provided evidence that lysosomes display the characteristics of acidic compartments in Sal-treated cells. However, tandem mCherry-GFP-LC3 assay indicated that the degradation of mCherry-GFP-LC3 is blocked by Sal. Furthermore, the protein degradation activity of lysosomes was inhibited, as demonstrated by the rate of long-lived protein degradation, DQ-BSA assay and measurement of cathepsin activity. Our data indicated that Sal has a relatively greater suppressant effect on autophagic flux in the ALDH (+) population in HMLER cells than in the ALDH (-) population; moreover, this differential effect on autophagic flux correlated with an increase in apoptosis in the ALDH (+) population. ATG7 depletion accelerated the proapoptotic capacity of Sal in the ALDH (+) population. Our findings provide new insights into how the autophagy-lysosomal pathway contributes to the ability of Sal to target CSCs in vitro.
    Full-text Article · Mar 2013 · Autophagy
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Lysosome is a key subcellular organelle in the execution of the autophagic process and at present little is known whether lysosomal function is controlled in the process of autophagy. In this study, we first found that suppression of mammalian target of rapamycin (mTOR) activity by starvation or two mTOR catalytic inhibitors (PP242 and Torin1), but not by an allosteric inhibitor (rapamycin), leads to activation of lysosomal function. Second, we provided evidence that activation of lysosomal function is associated with the suppression of mTOR complex 1 (mTORC1), but not mTORC2, and the mTORC1 localization to lysosomes is not directly correlated to its regulatory role in lysosomal function. Third, we examined the involvement of transcription factor EB (TFEB) and demonstrated that TFEB activation following mTORC1 suppression is necessary but not sufficient for lysosomal activation. Finally, Atg5 or Atg7 deletion or blockage of the autophagosome-lysosome fusion process effectively diminished lysosomal activation, suggesting that lysosomal activation occurring in the course of autophagy is dependent on autophagosome-lysosome fusion. Taken together, this study demonstrates that in the course of autophagy, lysosomal function is upregulated via a dual mechanism involving mTORC1 suppression and autophagosome-lysosome fusion.Cell Research advance online publication 22 January 2013; doi:10.1038/cr.2013.11.
    Full-text Article · Jan 2013 · Cell Research
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Using cultured cortical neurons, we show that the blockade of protein phosphatase 2A (PP2A), either pharmacologically by okadaic acid or by short hairpin RNA (shRNA)-mediated silencing of PP2A catalytic subunit, inhibited basal autophagy and autophagy induced in several experimental settings (including serum deprivation, endoplasmic reticulum stress, rapamycin, and proteasome inhibition) at early stages before autophagosome maturation. Conversely, PP2A upregulation by PP2A catalytic subunit overexpression stimulates neuronal autophagy. In addition, PP2A blockade resulted in the activation of the negative regulator of autophagy mammalian target of rapamycin complex 1 and 5' adenosine monophosphate (AMP)-activated protein kinase (AMPK) and led to intraneuronal accumulation of p62- and ubiquitin-positive protein inclusions, likely due to autophagy downregulation. These data are consistent with previous findings showing that specific invalidation of the autophagy process in the nervous system of mouse resulted in the accumulation of p62- and ubiquitin-positive protein inclusion bodies. Furthermore, we showed that PP2A inhibition alters the distribution of the microtubule-associated protein 1 light chain(LC) 3-I (MAP LC3-I), a key component of the autophagy molecular machinery. Whether MAP LC3-I distribution in the cell accounts for autophagy regulation remains to be determined. These data are important to human neurodegenerative diseases, especially Alzheimer's disease, because they provide links for the first time between the pathological features of Alzheimer's disease:PP2A downregulation, autophagy disruption, and protein aggregation.
    Full-text Article · Aug 2012 · Neurobiology of aging
  • Source
    C Gong · C Bauvy · G Tonelli · [...] · M Mehrpour
    [Show abstract] [Hide abstract] ABSTRACT: Malignant breast tissue contains a rare population of multi-potent cells with the capacity to self-renew; these cells are known as cancer stem-like cells (CSCs) or tumor-initiating cells. Primitive mammary CSCs/progenitor cells can be propagated in culture as floating spherical colonies termed 'mammospheres'. We show here that the expression of the autophagy protein Beclin 1 is higher in mammospheres established from human breast cancers or breast cancer cell lines (MCF-7 and BT474) than in the parental adherent cells. As a result, autophagic flux is more robust in mammospheres. We observed that basal and starvation-induced autophagy flux is also higher in aldehyde dehydrogenase 1-positive (ALDH1(+)) population derived from mammospheres than in the bulk population. Beclin 1 is critical for CSC maintenance and tumor development in nude mice, whereas its expression limits the development of tumors not enriched with breast CSCs/progenitor cells. We found that decreased survival in autophagy-deficient cells (MCF-7 Atg7 knockdown cells) during detachment does not contribute to an ultimate deficiency in mammosphere formation. This study demonstrates that a prosurvival autophagic pathway is critical for CSC maintenance, and that Beclin 1 plays a dual role in tumor development.Oncogene advance online publication, 25 June 2012; doi:10.1038/onc.2012.252.
    Full-text Article · Jun 2012 · Oncogene
  • Source
    C Gong · C Bauvy · G Tonelli · [...] · M Mehrpour
    Full-text Dataset · Jun 2012
  • Source
    C Gong · C Bauvy · G Tonelli · [...] · M Mehrpour
    [Show abstract] [Hide abstract] ABSTRACT: Malignant breast tissue contains a rare population of multi-potent cells with the capacity to self-renew; these cells are known as cancer stem-like cells (CSCs) or tumor-initiating cells. Primitive mammary CSCs/progenitor cells can be propagated in culture as floating spherical colonies termed ‘mammospheres’. We show here that the expression of the autophagy protein Beclin 1 is higher in mammospheres established from human breast cancers or breast cancer cell lines (MCF-7 and BT474) than in the parental adherent cells. As a result, autophagic flux is more robust in mammospheres. We observed that basal and starvation-induced autophagy flux is also higher in aldehyde dehydrogenase 1-positive (ALDH1þ) population derived from mammospheres than in the bulk population. Beclin 1 is critical for CSC maintenance and tumor development in nude mice, whereas its expression limits the development of tumors not enriched with breast CSCs/progenitor cells. We found that decreased survival in autophagy-deficient cells (MCF-7 Atg7 knockdown cells) during detachment does not contribute to an ultimate deficiency in mammosphere formation. This study demonstrates that a prosurvival autophagic pathway is critical for CSC maintenance, and that Beclin 1 plays a dual role in tumor development.
    Full-text Article · Jan 2012 · Oncogene
  • Ping Gao · Chantal Bauvy · Sylvie Souquère · [...] · Maryam Mehrpour
    [Show abstract] [Hide abstract] ABSTRACT: Gossypol, a natural Bcl-2 homology domain 3 mimetic compound isolated from cottonseeds, is currently being evaluated in clinical trials. Here, we provide evidence that gossypol induces autophagy followed by apoptotic cell death in both the MCF-7 human breast adenocarcinoma and HeLa cell lines. We first show that knockdown of the Bcl-2 homology domain 3-only protein Beclin 1 reduces gossypol-induced autophagy in MCF-7 cells, but not in HeLa cells. Gossypol inhibits the interaction between Beclin 1 and Bcl-2 (B-cell leukemia/lymphoma 2), antagonizes the inhibition of autophagy by Bcl-2, and hence stimulates autophagy. We then show that knockdown of Vps34 reduces gossypol-induced autophagy in both cell lines, and consistent with this, the phosphatidylinositol 3-phosphate-binding protein WIPI-1 is recruited to autophagosomal membranes. Further, Atg5 knockdown also reduces gossypol-mediated autophagy. We conclude that gossypol induces autophagy in both a canonical and a noncanonical manner. Notably, we found that gossypol-mediated apoptotic cell death was potentiated by treatment with the autophagy inhibitor wortmannin or with small interfering RNA against essential autophagy genes (Vps34, Beclin 1, and Atg5). Our findings support the notion that gossypol-induced autophagy is cytoprotective and not part of the cell death process induced by this compound.
    Article · Aug 2010 · Journal of Biological Chemistry
  • Ping Gao · Chantal Bauvy · Sylvie Souquère · [...] · Maryam Mehrpour
    [Show abstract] [Hide abstract] ABSTRACT: Gossypol, a natural Bcl-2 homology domain 3 mimetic compound isolated from cottonseeds, is currently being evaluated in clinical trials. Here, we provide evidence that gossypol induces autophagy followed by apoptotic cell death in both the MCF-7 human breast adenocarcinoma and HeLa cell lines. We first show that knockdown of the Bcl-2 homology domain 3-only protein Beclin 1 reduces gossypol-induced autophagy in MCF-7 cells, but not in HeLa cells. Gossypol inhibits the interaction between Beclin 1 and Bcl-2 (B-cell leukemia/lymphoma 2), antagonizes the inhibition of autophagy by Bcl-2, and hence stimulates autophagy. We then show that knockdown of Vps34 reduces gossypol-induced autophagy in both cell lines, and consistent with this, the phosphatidylinositol 3-phosphate-binding protein WIPI-1 is recruited to autophagosomal membranes. Further, Atg5 knockdown also reduces gossypol-mediated autophagy. We conclude that gossypol induces autophagy in both a canonical and a noncanonical manner. Notably, we found that gossypol-mediated apoptotic cell death was potentiated by treatment with the autophagy inhibitor wortmannin or with small interfering RNA against essential autophagy genes (Vps34, Beclin 1, and Atg5). Our findings support the notion that gossypol-induced autophagy is cytoprotective and not part of the cell death process induced by this compound.
    Article · Aug 2010 · Journal of Biological Chemistry
  • Ping Gao · Chantal Bauvy · Sylvie Souquere · [...] · Maryam Mehrpour
    [Show abstract] [Hide abstract] ABSTRACT: Gossypol, a natural BH3-mimetic compound isolated from cotton-seed, is currently being evaluated in clinical trials. Here, we provide evidence that gossypol induces autophagy followed by apoptotic cell death in both the MCF-7 human breast adenocarcinoma and HeLa cell lines. We first show that knockdown of the BH3-only protein Beclin 1 reduces gossypol-induced autophagy in MCF-7 cells, but not in HeLa cells. Gossypol inhibits the interaction between Beclin 1 and Bcl-2, antagonizes the inhibition of autophagy by Bcl-2, and hence stimulates autophagy. We then show that knockdown of Vps34 reduces gossypol-induced autophagy in both cell lines and consistent with this, the PI3P-binding protein WIPI-1 is recruited to autophagosomal membranes. Further, Atg5 knockdown also reduces gossypol-mediated autophagy. We conclude that gossypol induces autophagy in both a canonical and a non-canonical manner. Notably, we found that gossypol-mediated apoptotic cell death was potentiated by treatment with the autophagy inhibitor wortmannin or with small interfering RNA against essential autophagy genes (Vps34, Beclin 1 and Atg5). Our findings support the notion that gossypol-induced autophagy is cytoprotective, and not part of the cell death process induced by this compound.
    Article · Jun 2010 · Journal of Biological Chemistry
  • [Show abstract] [Hide abstract] ABSTRACT: A group of phosphoinositide 3-kinase (PI3K) inhibitors, such as 3-methyladenine (3-MA) and wortmannin, have been widely used as autophagy inhibitors based on their inhibitory effect on class III PI3K activity, which is known to be essential for induction of autophagy. In this study, we systematically examined and compared the effects of these two inhibitors on autophagy under both nutrient-rich and deprivation conditions. To our surprise, 3-MA is found to promote autophagy flux when treated under nutrient-rich conditions with a prolonged period of treatment, whereas it is still capable of suppressing starvation-induced autophagy. We first observed that there are marked increases of the autophagic markers in cells treated with 3-MA in full medium for a prolonged period of time (up to 9 h). Second, we provide convincing evidence that the increase of autophagic markers is the result of enhanced autophagic flux, not due to suppression of maturation of autophagosomes or lysosomal function. More importantly, we found that the autophagy promotion activity of 3-MA is due to its differential temporal effects on class I and class III PI3K; 3-MA blocks class I PI3K persistently, whereas its suppressive effect on class III PI3K is transient. Because 3-MA has been widely used as an autophagy inhibitor in the literature, understanding the dual role of 3-MA in autophagy thus suggests that caution should be exercised in the application of 3-MA in autophagy study.
    Article · Apr 2010 · Journal of Biological Chemistry
  • [Show abstract] [Hide abstract] ABSTRACT: A group of phosphoinositide 3-kinase (PI3K) inhibitors, such as 3-methyladenine (3-MA) and wortmannin, have been widely used as autophagy inhibitors based on their inhibitory effect on class III PI3K activity, which is known to be essential for induction of autophagy. In this study, we systematically examined and compared the effects of these two inhibitors on autophagy under both nutrient-rich and deprivation conditions. To our surprise, 3-MA is found to promote autophagy flux when treated under nutrient-rich conditions with a prolonged period of treatment, whereas it is still capable of suppressing starvation-induced autophagy. We first observed that there are marked increases of the autophagic markers in cells treated with 3-MA in full medium for a prolonged period of time (up to 9 h). Second, we provide convincing evidence that the increase of autophagic markers is the result of enhanced autophagic flux, not due to suppression of maturation of autophagosomes or lysosomal function. More importantly, we found that the autophagy promotion activity of 3-MA is due to its differential temporal effects on class I and class III PI3K; 3-MA blocks class I PI3K persistently, whereas its suppressive effect on class III PI3K is transient. Because 3-MA has been widely used as an autophagy inhibitor in the literature, understanding the dual role of 3-MA in autophagy thus suggests that caution should be exercised in the application of 3-MA in autophagy study.
    Article · Apr 2010 · Journal of Biological Chemistry
  • Source
    Full-text Article · Dec 2009
  • Sandra Colié · Paul P Van Veldhoven · Blandine Kedjouar · [...] · Nathalie Andrieu-Abadie
    [Show abstract] [Hide abstract] ABSTRACT: Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid metabolite involved in cancer development through stimulation of cell survival, proliferation, migration, and angiogenesis. Irreversible degradation of S1P is catalyzed by S1P lyase (SPL). The human SGPL1 gene that encodes SPL maps to a region often mutated in cancers. To investigate the effect of SPL deficiency on cell survival and transformation, the susceptibility to anticancer drugs of fibroblasts generated from SPL-deficient mouse embryos (Sgpl1(-/-)) was compared with that of cells from heterozygous (Sgpl1(+/-)) or wild-type (Sgpl1(+/+)) embryos. First, loss of SPL caused resistance to the toxic effects of etoposide and doxorubicin. Interestingly, heterozygosity for the Sgpl1 gene resulted in partial resistance to apoptosis. Secondly, doxorubicin-induced apoptotic signaling was strongly inhibited in Sgpl1(-/-) cells (phosphatidylserine externalization, caspase activation, and cytochrome c release). This was accompanied by a strong increase in Bcl-2 and Bcl-xL protein content. Whereas correction of SPL deficiency in Sgpl1(-/-) cells led to downregulation of antiapoptotic proteins, Bcl-2 and Bcl-xL small interfering RNA-mediated knockdown in SPL-deficient cells resulted in increased sensitivity to doxorubicin, suggesting that Bcl-2 upregulation mediates SPL protective effects. Moreover, SPL deficiency led to increased cell proliferation, anchorage-independent cell growth, and formation of tumors in nude mice. Finally, transcriptomic studies showed that SPL expression is downregulated in human melanoma cell lines. Thus, by affecting S1P metabolism and the expression of Bcl-2 members, the loss of SPL enhances cell resistance to anticancer regimens and results in an increased ability of cells to acquire a transformed phenotype and become malignant.
    Article · Nov 2009 · Cancer Research