Andreas Lingel

Max Planck Institute for Developmental Biology, Tübingen, Baden-Württemberg, Germany

Are you Andreas Lingel?

Claim your profile

Publications (17)160.79 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Jumping Translocation Breakpoint (JTB) is an orphan receptor that is conserved from nematodes to humans and whose gene expression in humans is strikingly upregulated in diverse types of cancers. Translocations occur frequently at the hJTB genomic locus, leading to multiple copies of a truncated JTB gene, which potentially encodes a soluble secreted ectodomain. In addition, JTB and its orthologs likely represent a unique and ancient protein family since homologs could not be identified by direct sequence comparison. In the present study, we have determined the NMR solution structure of the N-terminal ectodomain of human JTB, showing that its fold architecture is a new variant of a three-β-strand antiparallel β-meander. The JTB structure has a distant relationship to the midkine/pleiotrophin fold, particularly in the conservation of distinctive disulfide bridge patterns. The structure of this newly characterized small cysteine-rich domain suggests potential involvement of JTB in interactions with proteins or extracellular matrix and may help to uncover the elusive biological functions of this protein.
    No preview · Article · Nov 2011 · Journal of Molecular Biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inhibitor of apoptosis (IAP) proteins are negative regulators of cell death. IAP family members contain RING domains that impart E3 ubiquitin ligase activity. Binding of endogenous or small-molecule antagonists to select baculovirus IAP repeat (BIR) domains within cellular IAP (cIAP) proteins promotes autoubiquitination and proteasomal degradation and so releases inhibition of apoptosis mediated by cIAP. Although the molecular details of antagonist-BIR domain interactions are well understood, it is not clear how this binding event influences the activity of the RING domain. Here biochemical and structural studies reveal that the unliganded, multidomain cIAP1 sequesters the RING domain within a compact, monomeric structure that prevents RING dimerization. Antagonist binding induces conformational rearrangements that enable RING dimerization and formation of the active E3 ligase.
    No preview · Article · Oct 2011 · Science
  • [Show abstract] [Hide abstract]
    ABSTRACT: One goal of the CASP community wide experiment on the critical assessment of techniques for protein structure prediction is to identify the current state of the art in protein structure prediction and modeling. A fundamental principle of CASP is blind prediction on a set of relevant protein targets, that is, the participating computational methods are tested on a common set of experimental target proteins, for which the experimental structures are not known at the time of modeling. Therefore, the CASP experiment would not have been possible without broad support of the experimental protein structural biology community. In this article, several experimental groups discuss the structures of the proteins which they provided as prediction targets for CASP9, highlighting structural and functional peculiarities of these structures: the long tail fiber protein gp37 from bacteriophage T4, the cyclic GMP-dependent protein kinase Iβ dimerization/docking domain, the ectodomain of the JTB (jumping translocation breakpoint) transmembrane receptor, Autotaxin in complex with an inhibitor, the DNA-binding J-binding protein 1 domain essential for biosynthesis and maintenance of DNA base-J (β-D-glucosyl-hydroxymethyluracil) in Trypanosoma and Leishmania, an so far uncharacterized 73 residue domain from Ruminococcus gnavus with a fold typical for PDZ-like domains, a domain from the phycobilisome core-membrane linker phycobiliprotein ApcE from Synechocystis, the heat shock protein 90 activators PFC0360w and PFC0270w from Plasmodium falciparum, and 2-oxo-3-deoxygalactonate kinase from Klebsiella pneumoniae.
    No preview · Article · Jan 2011 · Proteins Structure Function and Bioinformatics
  • [Show abstract] [Hide abstract]
    ABSTRACT: Engineered antibody paratopes with limited sequence diversity permit assessment of the roles played by different amino acid side chains in creating the high-affinity, high-specificity interactions characteristic of antibodies. We describe a paratope raised against the human ErbB family member HER2, using a binary diversity tryptophan/serine library displayed on phage. Fab37 binds to the extracellular domain of HER2 with sub-nanomolar affinity. An X-ray structure at 3.2 A resolution reveals a contact paratope composed almost entirely of tryptophan and serine residues. Mutagenesis experiments reveal which of these side chains are more important for direct antigen interactions and which are more important for conformational flexibility. The crystal lattice contains an unprecedented trimeric arrangement of HER2 closely related to previously observed homodimers of the related epidermal growth factor receptor.
    No preview · Article · Sep 2010 · Journal of Molecular Biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proper hedgehog (Hh) signaling is crucial for embryogenesis and tissue regeneration. Dysregulation of this pathway is associated with several types of cancer. The monoclonal antibody 5E1 is a Hh pathway inhibitor that has been extensively used to elucidate vertebrate Hh biology due to its ability to block binding of the three mammalian Hh homologs to the receptor, Patched1 (Ptc1). Here, we engineered a murine:human chimeric 5E1 (ch5E1) with similar Hh-binding properties to the original murine antibody. Using biochemical, biophysical, and x-ray crystallographic studies, we show that, like the regulatory receptors Cdon and Hedgehog-interacting protein (Hhip), ch5E1 binding to Sonic hedgehog (Shh) is enhanced by calcium ions. In the presence of calcium and zinc ions, the ch5E1 binding affinity increases 10-20-fold to tighter than 1 nm primarily because of a decrease in the dissociation rate. The co-crystal structure of Shh bound to the Fab fragment of ch5E1 reveals that 5E1 binds at the pseudo-active site groove of Shh with an epitope that largely overlaps with the binding site of its natural receptor antagonist Hhip. Unlike Hhip, the side chains of 5E1 do not directly coordinate the Zn(2+) cation in the pseudo-active site, despite the modest zinc-dependent increase in 5E1 affinity for Shh. Furthermore, to our knowledge, the ch5E1 Fab-Shh complex represents the first structure of an inhibitor antibody bound to a metalloprotease fold.
    No preview · Article · Aug 2010 · Journal of Biological Chemistry
  • Andreas Lingel · Wayne J Fairbrother
    [Show abstract] [Hide abstract]
    ABSTRACT: We report near complete NMR backbone and side chain assignments of the human cytokine interleukin-33 (IL-33) in solution. IL-33 is the latest addition to the family of interleukin-1 homologous cytokines and was shown to be involved in inflammation and autoimmune diseases.
    No preview · Article · Dec 2009 · Biomolecular NMR Assignments
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Members of the interleukin-1 (IL-1) family of cytokines play major roles in host defense and immune system regulation in infectious and inflammatory diseases. IL-1 cytokines trigger a biological response in effector cells by assembling a heterotrimeric signaling complex with two IL-1 receptor chains, a high-affinity primary receptor and a low-affinity coreceptor. To gain insights into the signaling mechanism of the novel IL-1-like cytokine IL-33, we first solved its solution structure and then performed a detailed biochemical and structural characterization of the interaction between IL-33, its primary receptor ST2, and the coreceptor IL-1RAcP. Using nuclear magnetic resonance data, we obtained a model of the IL-33/ST2 complex in solution that is validated by small-angle X-ray scattering (SAXS) data and is similar to the IL-1beta/IL-1R1 complex. We extended our SAXS analysis to the IL-33/ST2/IL-1RAcP and IL-1beta/IL-1R1/IL-1RAcP complexes and propose a general model of the molecular architecture of IL-1 ternary signaling complexes.
    Full-text · Article · Oct 2009 · Structure
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hedgehog (Hh) signaling is crucial for many aspects of embryonic development, whereas dysregulation of this pathway is associated with several types of cancer. Hedgehog-interacting protein (Hhip) is a surface receptor antagonist that is equipotent against all three mammalian Hh homologs. The crystal structures of human HHIP alone and bound to Sonic hedgehog (SHH) now reveal that HHIP is comprised of two EGF domains and a six-bladed beta-propeller domain. In the complex structure, a critical loop from HHIP binds the pseudo active site groove of SHH and directly coordinates its Zn2+ cation. Notably, sequence comparisons of this SHH binding loop with the Hh receptor Patched (Ptc1) ectodomains and HHIP- and PTC1-peptide binding studies suggest a 'patch for Patched' at the Shh pseudo active site; thus, we propose a role for Hhip as a structural decoy receptor for vertebrate Hh.
    No preview · Article · Jul 2009 · Nature Structural & Molecular Biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: The chromosomal passenger complex (CPC) has been identified as a master regulator of mitosis. In particular, proper chromosome segregation and cytokinesis depend on the correct localization and function of the CPC. Within the complex, the kinase Aurora B associates with Incenp, Survivin, and Borealin. The stoichiometry of the complex as well as a complete understanding of how these four components interact with each other remains to be elucidated. Here, we identify a new domain of Borealin. We determined its structure using NMR spectroscopy and discovered a novel dimerization motif. Interestingly, we found that substitutions at Borealin T230, recently identified as an Mps1 phosphorylation site, can modulate the dimerization state of Borealin. Mutation of this single residue to alanine or valine impairs Aurora B activity during mitosis and causes chromosome segregation defects. This study reveals that Mps1 regulates the CPC through a novel Borealin domain.
    No preview · Article · Jul 2009 · Biochemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The removal of the 5' cap structure by the DCP1-DCP2 decapping complex irreversibly commits eukaryotic mRNAs to degradation. In human cells, the interaction between DCP1 and DCP2 is bridged by the Ge-1 protein. Ge-1 contains an N-terminal WD40-repeat domain connected by a low-complexity region to a conserved C-terminal domain. It was reported that the C-terminal domain interacts with DCP2 and mediates Ge-1 oligomerization and P-body localization. To understand the molecular basis for these functions, we determined the three-dimensional crystal structure of the most conserved region of the Drosophila melanogaster Ge-1 C-terminal domain. The region adopts an all alpha-helical fold related to ARM- and HEAT-repeat proteins. Using structure-based mutants we identified an invariant surface residue affecting P-body localization. The conservation of critical surface and structural residues suggests that the C-terminal region adopts a similar fold with conserved functions in all members of the Ge-1 protein family.
    Full-text · Article · Sep 2008 · RNA
  • Source
    Andreas Lingel · Bernd Simon · Elisa Izaurralde · Michael Sattler
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the structure of the flock house virus B2 protein, a potent suppressor of RNA interference (RNAi) in animals and plants. The B2 protein is a homodimer in solution and contains three alpha-helices per monomer. Chemical shift perturbation shows that an antiparallel arrangement of helices (alpha 2/alpha 2') forms an elongated binding interface with double-stranded RNA (dsRNA). This implies a novel mode of dsRNA recognition and provides insights into the mechanism of RNAi suppression by B2.
    Full-text · Article · Jan 2006 · EMBO Reports
  • Source
    Andreas Lingel · Michael Sattler
    [Show abstract] [Hide abstract]
    ABSTRACT: Gene silencing mediated by RNA interference (RNAi) depends on short interfering RNAs (siRNAs) and micro RNAs (miRNAs). These RNAs have unique features, namely a defined size of 19-21 base pairs, and characteristic two-nucleotide single-stranded 3' overhangs and 5' monophosphate groups. These molecular features of siRNAs and miRNAs are produced by RNase III enzymes, which are a hallmark of gene silencing induced by double-stranded RNA. Recent structural studies of components of the RNAi pathway, including PAZ, Piwi and RNase III domains, as well as full-length Argonaute and viral p19 proteins, have revealed distinct and novel modes of sequence-independent recognition of the characteristic features of siRNAs and miRNAs in the RNAi pathway.
    Preview · Article · Mar 2005 · Current Opinion in Structural Biology
  • Source
    Andreas Lingel · Elisa Izaurralde
    [Show abstract] [Hide abstract]
    ABSTRACT: RNA interference involves endonucleolytic cleavage of mRNAs at a site determined by complementary siRNAs. Initial cleavage leads to rapid degradation of the message, resulting in a corresponding reduction in the level of the encoded protein. Despite intensive study, the identity of the endonucleolytic activity (designated slicer) has remained obscure. Now, a combination of structural and biochemical analyses provide compelling evidence that human Argonaute2 (Ago2), a protein already known to be a key player in the RNAi pathway, is in fact the missing endonuclease.
    Full-text · Article · Dec 2004 · RNA
  • Andreas Lingel · Bernd Simon · Elisa Izaurralde · Michael Sattler

    No preview · Article · Aug 2004 · Journal of Biomolecular NMR
  • Andreas Lingel · Bernd Simon · Elisa Izaurralde · Michael Sattler
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe the solution structures of the Argonaute2 PAZ domain bound to RNA and DNA oligonucleotides. The structures reveal a unique mode of single-stranded nucleic acid binding in which the two 3'-terminal nucleotides are buried in a hydrophobic cleft. We propose that the PAZ domain contributes to the specific recognition of siRNAs by providing a binding pocket for their characteristic two-nucleotide 3' overhangs.
    No preview · Article · Jul 2004 · Nature Structural & Molecular Biology
  • Andreas Lingel · Bernd Simon · Elisa Izaurralde · Michael Sattler
    [Show abstract] [Hide abstract]
    ABSTRACT: RNA interference is a conserved mechanism that regulates gene expression in response to the presence of double-stranded (ds)RNAs. The RNase III-like enzyme Dicer first cleaves dsRNA into 21-23-nucleotide small interfering RNAs (siRNAs). In the effector step, the multimeric RNA-induced silencing complex (RISC) identifies messenger RNAs homologous to the siRNAs and promotes their degradation. The Argonaute 2 protein (Ago2) is a critical component of RISC. Both Argonaute and Dicer family proteins contain a common PAZ domain whose function is unknown. Here we present the three-dimensional nuclear magnetic resonance structure of the Drosophila melanogaster Ago2 PAZ domain. This domain adopts a nucleic-acid-binding fold that is stabilized by conserved hydrophobic residues. The nucleic-acid-binding patch is located in a cleft between the surface of a central beta-barrel and a conserved module comprising strands beta3, beta4 and helix alpha3. Because critical structural residues and the binding surface are conserved, we suggest that PAZ domains in all members of the Argonaute and Dicer families adopt a similar fold with nucleic-acid binding function, and that this plays an important part in gene silencing.
    No preview · Article · Dec 2003 · Nature
  • Source
    Hideo Iwai · Andreas Lingel · A Pluckthun
    [Show abstract] [Hide abstract]
    ABSTRACT: A cyclic protein was produced in vivousing the intein from Pyrococcus furiosusPI-PfuI in a novel approach to create a circular permutation of the precursor protein by introducing new termini in the intein domain. Green fluorescent protein (GFP) was cyclized with this method in vivo on milligram scales. There was no by-product of linear or polymerized species isolated, unlike with other in vitro or in vivo cyclization methods utilizing inteins. Cyclized GFP unfolded at half the rate of the linear form upon chemical denaturation and required >2 days in 7m guanidine hydrochloride until a residual fast folding phase (consistent with a persistent cis-proline) had disappeared. Cyclic GFP might become a novel tool for studying the role of termini and backbone topology in various biological processes such as protein degradation and translocation in vivo as well asin vitro.
    Full-text · Article · May 2001 · Journal of Biological Chemistry

Publication Stats

1k Citations
160.79 Total Impact Points


  • 2008
    • Max Planck Institute for Developmental Biology
      • Department of Biochemistry
      Tübingen, Baden-Württemberg, Germany
  • 2004-2006
    • European Molecular Biology Laboratory
      • Structural and Computational Biology Unit (Heidelberg)
      Heidelburg, Baden-Württemberg, Germany
  • 2001
    • University of Zurich
      • Biochemisches Institut
      Zürich, Zurich, Switzerland