Jin Tae Hong

Chonnam National University, Gwangju, Gwangju, South Korea

Are you Jin Tae Hong?

Claim your profile

Publications (379)1085.47 Total impact

  • Source
    Dong Ju Son · Jae Chul Jung · Jin Tae Hong
    [Show abstract] [Hide abstract] ABSTRACT: Microtubule stabilizing agents (MTSA) are known to inhibit vascular smooth muscle cell (VSMC) proliferation and migration, and effectively reduce neointimal hyperplasia and restenosis. Epothilones (EPOs), non-taxane MTSA, have been found to be effective in the inhibition of VSMC proliferation and neointimal formation by cell cycle arrest. However, effect of EPOs on apoptosis in hyper-proliferated VSMCs as a possible way to reduce neointimal formation and its action mechanism related to VSMC viability has not been suited yet. Thus, the purposes of the present study was to investigate whether EPOs are able to inhibit neointimal formation by inducing apoptosis within the region of neointimal hyperplasia in balloon-injured rat carotid artery, as well as underlying action mechanism. Treatment of EPO-B and EPO-D significantly induced apoptotic cell death and mitotic catastrophe in hyper-proliferated VSMCs, resulting in cell growth inhibition. Further, EPOs significantly suppressed VSMC proliferation and induced apoptosis by activation of p53-dependent apoptotic signaling pathway, Bax/cytochrome c/caspase-3. We further demonstrated that the local treatment of carotid arteries with EPOs potently inhibited neointimal lesion formation by induction of apoptosis in rat carotid injury model. Our findings demonstrate a potent anti-neointimal hyperplasia property of EPOs by inducing p53-depedent apoptosis in hyper-proliferated VSMCs.
    Preview · Article · May 2016 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Piperlongumine has anti-cancer activity in numerous cancer cell lines via various signaling pathways. But there has been no study regarding the mechanisms of PL on the lung cancer yet. Thus, we evaluated the anti-cancer effects and possible mechanisms of PL on non-small cell lung cancer (NSCLC) cells in vivo and in vitro. Our findings showed that PL induced apoptotic cell death and suppressed the DNA binding activity of NF-κB in a concentration dependent manner (0–15 μM) in NSCLC cells. Docking model and pull down assay showed that PL directly binds to the DNA binding site of nuclear factor-κB (NF-κB) p50 subunit, and surface plasmon resonance (SPR) analysis showed that PL binds to p50 concentration-dependently. Moreover, co-treatment of PL with NF-κB inhibitor phenylarsine oxide (0.1 μM) or p50 siRNA (100 nM) augmented PL-induced inhibitory effect on cell growth and activation of Fas and DR4. Notably, co-treatment of PL with p50 mutant plasmid (C62S) partially abolished PL-induced cell growth inhibition and decreased the enhanced expression of Fas and DR4. In xenograft mice model, PL (2.5–5 mg/kg) suppressed tumor growth of NSCLC dose-dependently. Therefore, these results indicated that PL could inhibit lung cancer cell growth via inhibition of NF-κB signaling pathway in vitro and in vivo.
    Preview · Article · May 2016 · Scientific Reports
  • [Show abstract] [Hide abstract] ABSTRACT: Bioactivity-guided fractionation of the MeOH extract from the roots of Euphorbia kansui resulted in the isolation of two new jatrophane-type diterpenoids, kanesulones A (1) and B (2), together with six known jatrophane-type diterpenoids (3-8) and ten known ingenane-type diterpenoids (9-18). Their chemical structures were elucidated on the basis of spectroscopic data interpretation, especially 1D and 2D NMR such as HMQC, HMBC, COSY and NOESY, and HRESIMS data as well as CD analysis. Compounds 1-8 and 11-18 exhibited the inhibitory effects on LPS-induced nitric oxide production with IC50 values ranging from 0.7 to 46.5 μM in RAW 264.7 macrophages.
    No preview · Article · May 2016
  • [Show abstract] [Hide abstract] ABSTRACT: Antitumor activity of cytokine-induced killer (CIK) cells can be increased by co-culturing them with tumor lysate-pulsed dendritic cells (tDCs); this phenomenon has been studied mainly at the population level. Using time-lapse imaging, we examined how CIK cells gather information from tDCs at the single-cell level. tDCs highly expressed CCL5, which bound CCR5 expressed on CIK cells. tDCs strongly induced migration of Ccr5(+/+) CIK cells, but not that of Ccr5(-/-) CIK cells or Ccr5(+/+) CIK cells treated with the CCR5 antagonist Maraviroc. Individual tDCs contacted Ccr5(+/+) CIK cells more frequently and lengthily than with Ccr5(-/-) CIK cells. Consequently, tDCs increased the antitumor activity of Ccr5(+/+) CIK cells in vitro and in vivo, but did not increase that of Ccr5(-/-) CIK cells. Taken together, our data provide insight into the mechanism of CIK cell activation by tDCs at the single-cell level.
    No preview · Article · May 2016 · Cancer letters
  • Source
    Dataset: 3
    Full-text · Dataset · Apr 2016
  • Mi Hee Park · MiRan Jo · Yu Ri Kim · Chong-Kil Lee · Jin Tae Hong
    [Show abstract] [Hide abstract] ABSTRACT: Peroxiredoxins (PRDXs) are antioxidant enzymes, known to catalyze peroxide reduction to balance cellular hydrogen peroxide (H2O2) levels, which are essential for cell signaling and metabolism and act as a regulator of redox signaling. Redox signaling is a critical component of cell signaling pathways that are involved in the regulation of cell growth, metabolism, hormone signaling, immune regulation and variety of other physiological functions. Early studies demonstrated that PRDXs regulates cell growth, metabolism and immune regulation and therefore involved in the pathologic regulator or protectant of several cancers, neurodegenerative diseases and inflammatory diseases. Oxidative stress and antioxidant systems are important regulators of redox signaling regulated diseases. In addition, thiol-based redox systems through peroxiredoxins have been demonstrated to regulate several redox-dependent process related diseases. In this review article, we will discuss recent findings regarding PRDXs in the development of diseases and further discuss therapeutic approaches targeting PRDXs. Moreover, we will suggest that PRDXs could be targets of several diseases and the therapeutic agents for targeting PRDXs may have potential beneficial effects for the treatment of cancers, neurodegenerative diseases and inflammatory diseases. Future research should open new avenues for the design of novel therapeutic approaches targeting PRDXs.
    No preview · Article · Apr 2016 · Pharmacology [?] Therapeutics
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Colorectal cancer is the third leading cancer worldwide. Although incidence and mortality of colorectal cancer are gradually decreasing in the US, patients with metastatic colorectal cancer have poor prognosis with an estimated 5-year survival rate of less than 10%. Over the past decade, advances in combination chemotherapy regimens for colorectal cancer have led to significant improvement in progression-free and overall survival. However, patients with metastatic disease gain little clinical benefit from conventional therapy, which is associated with grade 3~4 toxicity with negative effects on quality of life. In previous clinical studies, cell-based immunotherapy using dendritic cell vaccines and sentinel lymph node T cell therapy showed promising therapeutic results for metastatic colorectal cancer. In our preclinical and previous clinical studies, cytokine-induced killer (CIK) cells treatment for colorectal cancer showed favorable responses without toxicities. Here, we review current treatment options for colorectal cancer and summarize available clinical studies utilizing cell-based immunotherapy. Based on these studies, we recommend the use CIK cell therapy as a promising therapeutic strategy for patients with metastatic colorectal cancer.
    Preview · Article · Apr 2016 · Immune Network
  • Source
    Mi Hee Park · Jin Tae Hong
    [Show abstract] [Hide abstract] ABSTRACT: Nuclear factor-κB (NF-κB) is a transcription factor that plays a crucial role in various biological processes, including immune response, inflammation, cell growth and survival, and development. NF-κB is critical for human health, and aberrant NF-κB activation contributes to development of various autoimmune, inflammatory and malignant disorders including rheumatoid arthritis, atherosclerosis, inflammatory bowel diseases, multiple sclerosis and malignant tumors. Thus, inhibiting NF-κB signaling has potential therapeutic applications in cancer and inflammatory diseases.
    Preview · Article · Mar 2016
  • [Show abstract] [Hide abstract] ABSTRACT: The purpose of this study was to evaluate the enhancing potency of tectochrysin, a flavonoid isolated from Alpinia oxyphylla Miquel by combining cetuximab, an anti-EGFR monoclonal antibody, on human colon cancer cell growth through further inhibition of EGFR pathway. HCT116 and SW480 colon cancer cells were treated with cetuximab (30 μg/mL, 1/10 of IC50), tectochrysin (5 μg/mL, 1/3 of IC50), or the combination of both agents. The growth inhibitory effect was examined using the MTT assay while apoptotic cell death was performed using TUNEL staining assays. The DNA binding activity of NF-kappa B and AP-1 was investigated by electrophoretic mobility shift assay. Protein expression was determined by Western blot. Cell proliferation was significantly inhibited by the combination of cetuximab and tectochrysin than treatment with cetuximab or tectochrysin alone (combination index: 0.572 and 0.533, respectively). Combination treatment of cells with cetuximab and tectochrysin significantly reduced the expressions of p-EGFR and COX-2 in both cell lines. Combination treatment also significantly inhibited activities of NF-kB and AP-1 compared to the single agent treatment. Our results indicate that combined therapy with lower concentration of cetuximab and tectochrysin could significantly enhance the cancer cell growth inhibitory effect through the inhibition of EGFR signaling.
    No preview · Article · Mar 2016 · Archives of Pharmacal Research
  • [Show abstract] [Hide abstract] ABSTRACT: A series of 2,3-dihydro- and 5-chloro-2,3-dihydro-naphtho-[1,2-b]furan-2-carboxylic acid N-(substitutedphenyl)amide analogs (1a-k and 2a-i) were designed and synthesized for developing novel naphthofuran scaffolds as anticancer agents and inhibitors of NF-κB activity. Compound 1d, which had a 4'-chloro group on the N-phenyl ring, exhibited inhibitory activity of NF-κB. Compound 2g, which had a 5'-chloro group on the naphthofuran ring and a 3',5'-bistrifluoromethane group on the N-phenyl ring, had the best NF-κB inhibitory activity. In addition, the novel analogs exhibited potent cytotoxicity at low concentrations against HCT-116, NCI-H23, and PC-3 cell lines. The two electron-withdrawing groups, especially at the 3',5'-position on the N-phenyl ring, increased anticancer activity and NF-κB inhibitory activity. However, only 5-chloro-2,3-dihydronaphtho[1,2-b]furan-2-carboxylic N-(3',5'-bis(trifluoromethyl)phenyl)amide (2g) exhibited both outstanding cytotoxicity and NF-κB inhibitory activities. This novel lead scaffold may be helpful for investigation of new anticancer agents by inactivation of NF-κB.
    No preview · Article · Mar 2016 · Archives of Pharmacal Research
  • [Show abstract] [Hide abstract] ABSTRACT: To quantitatively evaluate the therapeutic effects of diosgenin (DG) and investigate the role of IL-4 on skin inflammation, alterations in luciferase-derived signal and general phenotype biomarkers were measured in IL-4/Luc/CNS-1 transgenic mice with phthalic anhydride (PA)-induced skin inflammation after treatment with DG for 4 weeks. High levels of luciferase-derived signal detected in the abdominal region and submandibular lymph node (SL) of the PA treated group was significantly decreased by 67-88% in the PA + DG cotreated group. Furthermore, the weight of the lymph node and spleen, IgE concentration, epidermis thickness, and number of infiltrated mast cells were lower in the PA + DG treated group than the PA + Vehicle treated group. Moreover, expression of IL-6 and vascular endothelial growth factor (VEGF) also decreased in the PA + DG cotreated group. These results suggest that PA-induced skin inflammation could be successfully suppressed by DG treatment in IL-4/Luc/CNS-1 Tg mice through attenuation of IL-4 and IL-6 expression, as well as decreased IgE concentration and mast cells infiltration.
    No preview · Article · Mar 2016 · Bioscience Biotechnology and Biochemistry
  • [Show abstract] [Hide abstract] ABSTRACT: To evaluate the significance of interleukin 4 (IL-4) in tumor development, we compared B16F10 melanoma growth in IL-4-overespressing transgenic mice (IL-4 mice) and non-transgenic mice. In IL-4 mice, reduced tumor volume and weight were observed when compared with those of non-transgenic mice. Significant activation of DNA binding activity of STAT6, phosphorylation of STAT6 as well as IL-4, IL-4Rα and p21 expression were found in the tumor tissues of IL-4 mice compared to non-transgenic mice. Higher expression of IL-4, STAT6 and p21 in human melanoma tissue compared to normal human skin tissue was also found. Higher expression of apoptotic protein such as cleaved caspase-3, cleaved caspase-8, cleaved caspase-9, Bax, p53 and p21, but lower expression levels of survival protein such as Bcl-2 were found in the tumor of IL-4 mice. In vitro study, we found that overexpression of IL-4 significantly inhibited SK-MEL-28 human melanoma cell and B16F10 murine melanoma cell growth via p21-mediated activation of STAT6 pathway as well as increased expression of apoptotic cell death proteins. Moreover, p21 knockdown with siRNA abolished IL-4 induced activation of STAT6 and expression of p53 and p21 accompanied with reduced IL-4 expression as well as melanoma cell growth inhibition. Therefore, these results showed that IL-4 overexpression suppressed tumor development through p21-mediated activation of STAT6 pathways in melanoma models.
    No preview · Article · Mar 2016 · Oncotarget
  • [Show abstract] [Hide abstract] ABSTRACT: Multiple sclerosis (MS) is an inflammatory disease in which myelin in the spinal cord is damaged. C-C chemokine receptor type 5 (CCR5) is implicated in immune cell migration and cytokine release in central nervous system (CNS). We investigated whether CCR5 plays a role in MS progression using a murine model, experimental autoimmune encephalomyelitis (EAE), in CCR5 deficient (CCR5-/-) mice. CCR5-/- and CCR5+/+ (wild-type) mice were immunized with myelin oligodendrocyte glycoprotein 35-55 (MOG35-55) followed by pertussis toxin, after which EAE paralysis was scored for 28 days. We found that clinical scoring and EAE neuropathology were lower in CCR5-/- mice than CCR5+/+ mice. Immune cells (CD3+, CD4+, CD8+, B cell, NK cell and macrophages) infiltration and astrocytes/microglial activation were attenuated in CCR5-/- mice. Moreover, levels of IL-1β, TNF-α, IFN-γ and MCP-1 cytokine levels were decreased in CCR5-/- mice spinal cord. Myelin basic protein (MBP) and CNPase were increased while NG2 and O4 were decreased in CCR5-/- mice, indicating that demyelination was suppressed by CCR5 gene deletion. These findings suggest that CCR5 is likely participating in demyelination in the spinal cord the MS development, and that it could serve as an effective therapeutic target for the treatment of MS.
    No preview · Article · Mar 2016 · Oncotarget
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: The focus of this study is the anti-cancer effects of Cudrania tricuspidata stem (CTS) extract on cervical cancer cells. The effect of CTS on cell viability was investigated in HPV-positive cervical cancer cells and HaCaT human normal keratinocytes. CTS showed significant dose-dependent cytotoxic effects in cervical cancer cells. However, there was no cytotoxic effect of CTS on HaCaT keratinocytes at concentrations of 0.125-0.5 mg/mL. Based on this cytotoxic effect, we demonstrated that CTS induced apoptosis by down-regulating the E6 and E7 viral oncogenes. Apoptosis was detected by DAPI staining, annexin V-FITC/PI staining, cell cycle analysis, western blotting, RT-PCR, and JC-1 staining in SiHa cervical cancer cells. The mRNA expression levels of extrinsic pathway molecules such as Fas, death receptor 5 (DR5), and TNF-related apoptosis-inducing ligand (TRAIL) were increased by CTS. Furthermore, CTS treatment activated caspase-3/caspase-8 and cleavage of poly (ADP-ribose) polymerase (PARP). However, the mitochondrial membrane potential and expression levels of intrinsic pathway molecules such as Bcl-2, Bcl-xL, Bax, and cytochrome C were not modulated by CTS. Taken together, these results indicate that CTS induced apoptosis by activating the extrinsic pathway, but not the intrinsic pathway, in SiHa cervical cancer cells. These results suggest that CTS can be used as a modulating agent in cervical cancer.
    Full-text · Article · Mar 2016 · PLoS ONE
  • [Show abstract] [Hide abstract] ABSTRACT: Chemokine receptors are implicated in inflammation and immune responses. Neuro-inflammation is associated with activation of astrocyte and amyloid-beta (Aβ) generations that lead to pathogenesis of Alzheimer disease (AD). Previous our study showed that deficiency of CC chemokine receptor 5 (CCR5) results in activation of astrocytes and Aβ deposit, and thus memory dysfunction through increase of CC chemokine receptor 2 (CCR2) expression. CCR5 knockout mice were used as an animal model with memory dysfunction. For the purpose LPS was injected i.p. daily (0.25 mg/kg/day). The memory dysfunctions were much higher in LPS-injected CCR5 knockout mice compared to CCR5 wild type mice as well as non-injected CCR5 knockout mice. Associated with severe memory dysfuction in LPS injected CCR5 knockout mice, LPS injection significant increase expression of inflammatory proteins, astrocyte activation, expressions of β-secretase as well as Aβ deposition in the brain of CCR5 knockout mice as compared with that of CCR5 wild type mice. In CCR5 knockout mice, CCR2 expressions were high and co-localized with GFAP which was significantly elevated by LPS. Expression of monocyte chemoattractant protein-1 (MCP-1) which ligands of CCR2 also increased by LPS injection, and increment of MCP-1 expression is much higher in CCR5 knockout mice. BV-2 cells treated with CCR5 antagonist, D-ala-peptide T-amide (DAPTA) and cultured astrocytes isolated from CCR5 knockout mice treated with LPS (1 μg/ml) and CCR2 antagonist, decreased the NF-ĸB activation and Aβ level. These findings suggest that the deficiency of CCR5 enhances response of LPS, which accelerates to neuro-inflammation and memory impairment.
    No preview · Article · Feb 2016 · Oncotarget
  • [Show abstract] [Hide abstract] ABSTRACT: Approximately, 7-10 million people in the world suffer from Parkinson's disease (PD). Recently, increasing evidence has suggested the protective effect of estrogens against nigrostriatal dopaminergic damage in PD. In this study, we investigated whether estrogen affects 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced behavioral impairment in estrogen receptor alpha (ERα)-deficient mice. MPTP (15mg/kg, four times with 1.5-h interval)-induced dopaminergic neurodegeneration was evaluated in ERα wild-type (WT) and knockout (KO) mice. Larger dopamine depletion, behavioral impairments (Rotarod test, Pole test, and Gait test), activation of microglia and astrocytes, and neuroinflammation after MPTP injection were observed in ERα KO mice compared to those in WT mice. Immunostaining for tyrosine hydroxylase (TH) after MPTP injection showed fewer TH-positive neurons in ERα KO mice than WT mice. Levels of dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC, metabolite of dopamine) were also lowered in ERα KO mice after MPTP injection. Interestingly, a higher immunoreactivity for monoamine oxidase (MAO) B was found in the substantia nigra and striatum of ERα KO mice after MPTP injection. We also found an increased activation of p38 kinase (which positively regulates MAO B expression) in ERα KO mice. In vitro estrogen treatment inhibited neuroinflammation in 1-methyl-4-phenyl pyridium (MPP+)-treated cultured astrocyte cells; however, these inhibitory effects were removed by p38 inhibitor. These results indicate that ERα might be important for dopaminergic neuronal survival through inhibition of p38 pathway.
    No preview · Article · Feb 2016 · Hormones and Behavior
  • [Show abstract] [Hide abstract] ABSTRACT: I) and two new furanone glycosides, zabeliosides A and B (II)
    No preview · Article · Feb 2016 · ChemInform
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Excess adipogenesis is a characteristic of obesity, which is associated with serious health problem, including type 2 diabetes. Here, to better understand the mechanisms for the development of adipocytes, we investigated the regulatory role of 15-(S)-hydroxyeicosatetraenoic acid (15(S)-HETE) in adipogenesis by treating 3T3-L1 murine preadipocytes and human bone marrow mesenchymal stem cells (hBMSCs) with 15(S)-HETE. In the 3T3-L1 study, 15(S)-HETE stimulated lipid accumulation and enhanced expression of adipogenic markers such as peroxisome proliferator-activated receptor gamma (PPARγ), yet reduced the activity of factor negatively controlling adipogenesis, such as the 5'-AMP-activated protein kinase. In the early stage of adipogenesis, 15(S)-HETE increased activation of protein kinase B and expression of CCAAT/enhancer-binding protein (C/EBP)β and C/EBPδ. Finally, 15(S)-HETE promoted adipogenesis in hBMSCs, and resulted in increased lipid accumulation and expression of adipogenic markers. In conclusion, 15(S)-HETE functions as a natural PPARγ agonist and enhances adipogenesis. Our findings may provide the basis for the development of novel therapeutic measures to treat obesity.
    Full-text · Article · Feb 2016 · Prostaglandins & other lipid mediators
  • [Show abstract] [Hide abstract] ABSTRACT: Bioactivity-guided isolation of a methanolic extract of Euphorbia fischeriana led to the isolation of four new abietane-type diterpenoids, fischeriolides A-D (1-4), together with 11 known diterpenoids. Their structures were elucidated based on the interpretation of 1D and 2D NMR spectroscopic and HRESIMS data. The absolute configuration of compound 3 was determined by single-crystal X-ray diffraction analysis and electronic circular dichroism methods. Compounds 5-9 exhibited inhibitory effects on LPS-induced nitric oxide production in RAW 264.7 macrophages with IC50 values in the range 4.9-12.6 μM.
    No preview · Article · Dec 2015 · Journal of Natural Products
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Inflammation is the basis of severe acute and chronic diseases. This study investigated the anti-inflammatory property of a crude methanol extract (MeOH-ex) and the solvent fractions of Ixeris dentata Nakai (IDN) in LPS-stimulated murine macrophage-like cell line RAW264.7. Here, we showed that the ethyl acetate fraction (EtOAc-fr) had the most potent inhibitory activity on LPS-induced nitric oxide (NO) production among the tested samples, i.e., IDN MeOH-ex and the three different solvent fractions (chloroform, n-hexane, and EtOAc). We further found that the EtOAc-fr significantly inhibited LPS-induced prostaglandin PGE2 (PGE2) generation in RAW264.7 cells. Furthermore, the treatment with EtOAc-fr effectively suppressed the expression of inducible NO synthase (iNOS) and cyclooxygenase 2 (COX-2). These results suggest that the EtOAc-fr of IDN MeOH-ex exhibits an anti-inflammatory activity in vitro by inhibiting LPS-induced NO production and PGE2 generation via suppression of iNOS and COX-2 expression.
    Preview · Article · Dec 2015 · Immune Network

Publication Stats

6k Citations
1,085.47 Total Impact Points

Institutions

  • 2015
    • Chonnam National University
      • Department of Biochemistry
      Gwangju, Gwangju, South Korea
  • 2010
    • Konkuk University
      • Bio/Molecular Informatics Center
      Sŏul, Seoul, South Korea
  • 2006
    • Soonchunhyang University
      Onyang, Chungcheongnam-do, South Korea
  • 2003
    • Ewha Womans University
      Sŏul, Seoul, South Korea