Roger J Colbran

Vanderbilt University, Нашвилл, Michigan, United States

Are you Roger J Colbran?

Claim your profile

Publications (134)800.16 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: N-Methyl-d-aspartate receptors (NMDARs) are major targets of both acute and chronic alcohol, as well as regulators of plasticity in a number of brain regions. Aberrant plasticity may contribute to the treatment resistance and high relapse rates observed in alcoholics. Recent work suggests that chronic alcohol treatment preferentially modulates both the expression and subcellular localization of NMDARs containing the GluN2B subunit. Signaling through synaptic and extrasynaptic GluN2B-NMDARs has already been implicated in the pathophysiology of various other neurological disorders. NMDARs interact with a large number of proteins at the glutamate synapse, and a better understanding of how alcohol modulates this proteome is needed. We employed a discovery-based proteomic approach in subcellular fractions of hippocampal tissue from chronic intermittent alcohol (CIE)-exposed C57Bl/6J mice to gain insight into alcohol-induced changes in GluN2B signaling complexes. Protein enrichment analyses revealed changes in the association of post-synaptic proteins, including scaffolding, glutamate receptor and PDZ-domain binding proteins with GluN2B. In particular, GluN2B interaction with metabotropic glutamate (mGlu)1/5 receptor-dependent long-term depression (LTD)-associated proteins such as Arc and Homer 1 was increased, while GluA2 was decreased. Accordingly, we found a lack of mGlu1/5 -induced LTD while α1 -adrenergic receptor-induced LTD remained intact in hippocampal CA1 following CIE. These data suggest that CIE specifically disrupts mGlu1/5 -LTD, representing a possible connection between NMDAR and mGlu receptor signaling. These studies not only demonstrate a new way in which alcohol can modulate plasticity in the hippocampus but also emphasize the utility of this discovery-based proteomic approach to generate new hypotheses regarding alcohol-related mechanisms.
    No preview · Article · Nov 2015 · Addiction Biology
  • Roger J Colbran
    [Show abstract] [Hide abstract]
    ABSTRACT: The human brain contains ∼86 billion neurons, which are precisely organized in specific brain regions and nuclei. High fidelity synaptic communication between subsets of neurons in specific circuits is required for most human behaviors, and is often disrupted in neuropsychiatric disorders. The presynaptic axon terminals of one neuron release neurotransmitters that activate receptors on multiple postsynaptic neuron targets to induce electrical and chemical responses. Typically, postsynaptic neurons integrate signals from multiple presynaptic neurons at thousands of synaptic inputs to control downstream communication to the next neuron in the circuit. Importantly, the strength (or efficiency) of signal transmission at each synapse can be modulated on time scales ranging up to the lifetime of the organism. This “synaptic plasticity” leads to changes in overall neuronal circuit activity, resulting in behavioral modifications. This series of minireviews will focus on recent advances in our understanding of the molecular and cellular mechanisms that control synaptic plasticity.
    No preview · Article · Oct 2015 · Journal of Biological Chemistry
  • Johanna G Pasek · Xiaohan Wang · Roger J Colbran
    [Show abstract] [Hide abstract]
    ABSTRACT: Calcium signaling regulates synaptic plasticity and many other functions in striatal medium spiny neurons to modulate basal ganglia function. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is a major calcium-dependent signaling protein that couples calcium entry to diverse cellular changes. CaMKII activation results in autophosphorylation at Thr286 and sustained calcium-independent CaMKII activity after calcium signals dissipate. However, little is known about the mechanisms regulating striatal CaMKII. To address this, mouse brain slices were treated with pharmacological modulators of calcium channels and punches of dorsal striatum were immunoblotted for CaMKII Thr286 autophosphorylation as an index of CaMKII activation. KCl depolarization increased levels of CaMKII autophosphorylation ~2-fold; this increase was blocked by an LTCC antagonist and was mimicked by treatment with pharmacological LTCC activators. The chelation of extracellular calcium robustly decreased basal CaMKII autophosphorylation within 5min and increased levels of total CaMKII in cytosolic fractions, in addition to decreasing the phosphorylation of CaMKII sites in the GluN2B subunit of NMDA receptors and the GluA1 subunit of AMPA receptors. We also found that the maintenance of basal levels of CaMKII autophosphorylation requires low-voltage gated T-type calcium channels, but not LTCCs or R-type calcium channels. Our findings indicate that CaMKII activity is dynamically regulated by multiple calcium channels in the striatum thus coupling calcium entry to key downstream substrates. Copyright © 2015. Published by Elsevier Inc.
    No preview · Article · Aug 2015 · Molecular and Cellular Neuroscience

  • No preview · Article · Jul 2015 · Biological psychiatry

  • No preview · Article · Apr 2015 · Molecular Cell
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ca(2+)/calmodulin-dependent protein kinase IIα (CaMKIIα) autophosphorylation at Thr286 and Thr305/Thr306 regulates kinase activity, modulates subcellular targeting, and is critical for normal synaptic plasticity and learning and memory. Here, a mass spectrometry-based approach was used to identify Ca2+-dependent and -independent in vitro autophosphorylation sites in recombinant CaMKIIα and CaMKIIβ. CaMKII holoenzymes were then immunoprecipitated from subcellular fractions of forebrains isolated from either wildtype (WT) mice or mice with a Thr286 to Ala knock-in mutation of CaMKIIα (T286A-KI mice) and analyzed using the same approach in order to characterize in vivo phosphorylation sites in both CaMKII isoforms and identify CaMKII associated proteins (CaMKAPs). A total of 6 and 7 autophosphorylation sites in CaMKIIα and CaMKIIβ, respectively, were detected in WT mice. Thr286-phosphorylated CaMKIIα and Thr287-phosphorylated CaMKIIβ were selectively enriched in WT Triton-insoluble (synaptic) fractions compared to Triton-soluble (membrane) and cytosolic fractions. In contrast, Thr306-phosphorylated CaMKIIα and Ser315- and Thr320/Thr321-phosphorylated CaMKIIβ were selectively enriched in WT cytosolic fractions. The T286A-KI mutation significantly reduced levels of phosphorylation of CaMKIIα at Ser275 across all subcellular fractions, and of cytosolic CaMKIIβ at Ser315 and Thr320/Thr321. Significantly more CaMKAPs co-precipitated with WT CaMKII holoenzymes in the synaptic fraction compared to the membrane fraction, with functions including scaffolding, microtubule organization, actin organization, ribosomal function, vesicle trafficking, and others. The T286A-KI mutation altered the interactions of multiple CaMKAPs with CaMKII, including several proteins linked to autism spectrum disorders. These data identify CaMKII isoform phosphorylation sites and a network of synaptic protein interactions that are sensitive to the abrogation of Thr286 autophosphorylation of CaMKIIα, likely contributing to the diverse synaptic and behavioral deficits of T286A-KI mice.
    No preview · Article · Feb 2015 · ACS Chemical Neuroscience
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hetero-oligomers of G-protein-coupled receptors have become the subject of intense investigation, because their purported potential to manifest signaling and pharmacological properties that differ from the component receptors makes them highly attractive for the development of more selective pharmacological treatments. In particular, dopamine D1 and D2 receptors have been proposed to form hetero-oligomers that couple to Gαq proteins, and SKF83959 has been proposed to act as a biased agonist that selectively engages these receptor complexes to activate Gαq and thus phospholipase C. D1/D2 heteromers have been proposed as relevant to the pathophysiology and treatment of depression and schizophrenia. We used in vitro bioluminescence resonance energy transfer, ex vivo analyses of receptor localization and proximity in brain slices, and behavioral assays in mice to characterize signaling from these putative dimers/oligomers. We were unable to detect Gαq or Gα11 protein coupling to homomers or heteromers of D1 or D2 receptors using a variety of biosensors. SKF83959-induced locomotor and grooming behaviors were eliminated in D1 receptor knockout (KO) mice, verifying a key role for D1-like receptor activation. In contrast, SKF83959-induced motor responses were intact in D2 receptor and Gαq KO mice, as well as in knock-in mice expressing a mutant Ala(286)-CaMKIIα that cannot autophosphorylate to become active. Moreover, we found that, in the shell of the nucleus accumbens, even in neurons in which D1 and D2 receptor promoters are both active, the receptor proteins are segregated and do not form complexes. These data are not compatible with SKF83959 signaling through Gαq or through a D1/D2 heteromer and challenge the existence of such a signaling complex in the adult animals that we used for our studies.Molecular Psychiatry advance online publication, 6 January 2015; doi:10.1038/mp.2014.166.
    No preview · Article · Jan 2015 · Molecular Psychiatry
  • Source
    Brian C Shonesy · Danny G Winder · Sachin Patel · Roger J Colbran
    [Show abstract] [Hide abstract]
    ABSTRACT: On-demand postsynaptic synthesis and release of endocannabinoid lipids and subsequent binding to presynaptic CB1 receptors (CB1Rs) mediates short and long-term depression (LTD) of excitatory transmission in many brain regions. However, mechanisms involved in the synthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG) by diacylglycerol lipase α (DGLα) are poorly understood. Since Gq-coupled receptor activation can stimulate production of a major DGL substrate 1-stearoyl-2-arachidonoyl-sn-glycerol (SAG) by PLCβ, we sought to determine if 2-AG biosynthesis was limited only by a lack of substrate availability, or if other pathways, such as Ca(2+) signaling, also need to be simultaneously engaged. To address this question, we loaded medium spiny neurons of the dorsolateral striatum with SAG while monitoring excitatory synaptic inputs. SAG-loading had no significant effect on evoked excitatory synaptic currents when cells were voltage-clamped at -80 mV. However, depolarization of MSNs to -50 mV revealed a SAG-loading dependent decrease in the amplitude of excitatory currents that was accompanied by an increase in paired pulse ratio, consistent with decreased glutamate release. Both effects of loading SAG at -50 mV were blocked by chelation of postsynaptic Ca(2+) using BAPTA or by bath application of tetrahydrolipstatin (THL), a DGL inhibitor. Loading of SAG into glutamatergic pyramidal neurons of the amygdala similarly inhibited excitatory synaptic inputs and increased the PPR. SAG-induced depression was absent in both regions from mice lacking CB1Rs. These data show that increasing substrate availability alone is insufficient to drive 2-AG mobilization and that DGL-dependent synaptic depression via CB1R activation requires postsynaptic Ca(2+) signals. Copyright © 2014. Published by Elsevier Ltd.
    Full-text · Article · Dec 2014 · Neuropharmacology

  • No preview · Conference Paper · Dec 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endocannabinoid (eCB) signaling has been heavily implicated in the modulation of anxiety and depressive behaviors and emotional learning. However, the role of the most-abundant endocannabinoid 2-arachidonoylglycerol (2-AG) in the physiological regulation of affective behaviors is not well understood. Here, we show that genetic deletion of the 2-AG synthetic enzyme diacylglycerol lipase α (DAGLα) in mice reduces brain, but not circulating, 2-AG levels. DAGLα deletion also results in anxiety-like and sex-specific anhedonic phenotypes associated with impaired activity-dependent eCB retrograde signaling at amygdala glutamatergic synapses. Importantly, acute pharmacological normalization of 2-AG levels reverses both phenotypes of DAGLα-deficient mice. These data suggest 2-AG deficiency could contribute to the pathogenesis of affective disorders and that pharmacological normalization of 2-AG signaling could represent an approach for the treatment of mood and anxiety disorders. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
    Full-text · Article · Nov 2014 · Cell Reports
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glucose stimulated insulin secretion (GSIS) from pancreatic β-cells is caused by Ca(2+) entry via voltage-dependent Ca(2+) channels (VDCCs). CaMKII is a key mediator and feedback regulator of Ca(2+) signaling in many tissues, but its role in β-cells is poorly understood, especially in vivo. Here we report that mice with conditional inhibition of CaMKII in β-cells show significantly impaired glucose tolerance due to decreased GSIS. Moreover, β-cell CaMKII inhibition dramatically exacerbates glucose intolerance following exposure to a high fat diet (HFD). The impairment of islet GSIS by β-cell CaMKII inhibition is not accompanied by changes in either glucose metabolism or the activities of KATP and voltage-gated potassium channels. However, glucose-stimulated Ca(2+) entry via VDCCs is reduced in islet β-cells with CaMKII inhibition, as well as in primary wild-type β-cells treated with a peptide inhibitor of CaMKII. The levels of basal β-cell cytoplasmic Ca(2+) and of endoplasmic reticulum Ca(2+) stores are also decreased by CaMKII inhibition. In addition, CaMKII inhibition suppresses glucose-stimulated action potential firing frequency. These results reveal that CaMKII is a Ca(2+) sensor with a key role as a feed-forward stimulator of β-cell Ca(2+) signals that enhance GSIS under physiological and pathological conditions.
    No preview · Article · Mar 2014 · Journal of Biological Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Learning and memory is widely believed to result from changes in connectivity within neuronal circuits due to synaptic plasticity. Work over the past two decades has shown that Ca(2+) influx during LTP induction triggers the activation of CaMKII in dendritic spines. CaMKII activation results in autophosphorylation of the kinase rendering it constitutively active long after the Ca(2+) dissipates within the spine. This "molecular switch"(1) mechanism is essential for LTP and learning and memory. Here, we discuss this key regulatory mechanism and the diversity of downstream targets that can be modulated by CaMKII to exert dynamic control of synaptic structure and function.
    No preview · Article · Feb 2014 · Progress in molecular biology and translational science

  • No preview · Article · Jan 2014 · Molecular Psychiatry
  • Source

    Full-text · Dataset · Dec 2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Active metabolism regulates oocyte cell death via calcium/calmodulin-dependent protein kinase II (CaMKII)-mediated phosphorylation of caspase-2, but the link between metabolic activity and CaMKII is poorly understood. Here we identify coenzyme A (CoA) as the key metabolic signal that inhibits Xenopus laevis oocyte apoptosis by directly activating CaMKII. We found that CoA directly binds to the CaMKII regulatory domain in the absence of Ca(2+) to activate CaMKII in a calmodulin-dependent manner. Furthermore, we show that CoA inhibits apoptosis not only in X. laevis oocytes but also in Murine oocytes. These findings uncover a direct mechanism of CaMKII regulation by metabolism and further highlight the importance of metabolism in preserving oocyte viability.
    Full-text · Article · Oct 2013 · Molecular cell
  • Source
    Ariel Y Deutch · Peter Hedera · Roger J Colbran
    [Show abstract] [Hide abstract]
    ABSTRACT: The hereditary spastic paraplegias (HSPs) are characterized by spasticity of the leg muscles due to axonal degeneration of corticospinal neurons. Beetz et al. report that the core motor phenotype and axonal pathology of HSPs are recapitulated in mice lacking the HSP-associated gene Reep1. REEP1 is shown to regulate ER structure in motor cortex neurons. The Reep1 knockout mouse should be a very useful model in which to study the mechanisms of progressive axon loss in HSPs and other disorders.
    Preview · Article · Sep 2013 · The Journal of clinical investigation
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Augmentation of endogenous cannabinoid (eCB) signaling represents an emerging approach to the treatment of affective disorders. Cyclooxygenase-2 (COX-2) oxygenates arachidonic acid to form prostaglandins, but also inactivates eCBs in vitro. However, the viability of COX-2 as a therapeutic target for in vivo eCB augmentation has not been explored. Using medicinal chemistry and in vivo analytical and behavioral pharmacological approaches, we found that COX-2 is important for the regulation of eCB levels in vivo. We used a pharmacological strategy involving substrate-selective inhibition of COX-2 to augment eCB signaling without affecting related non-eCB lipids or prostaglandin synthesis. Behaviorally, substrate-selective inhibition of COX-2 reduced anxiety-like behaviors in mice via increased eCB signaling. Our data suggest a key role for COX-2 in the regulation of eCB signaling and indicate that substrate-selective pharmacology represents a viable approach for eCB augmentation with broad therapeutic potential.
    Full-text · Article · Aug 2013 · Nature Neuroscience
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The endocannabinoid 2-arachidonoylglycerol (2-AG) mediates activity-dependent depression of excitatory neurotransmission at central synapses, but the molecular regulation of 2-AG synthesis is not well understood. Here we identify a functional interaction between the 2-AG synthetic enzyme diacylglycerol lipase-α (DGLα) and calcium/calmodulin dependent protein kinase II (CaMKII). Activated CaMKII interacted with the C-terminal domain of DGLα, phosphorylated two serine residues and inhibited DGLα activity. Consistent with an inhibitory role for CaMKII in 2-AG synthesis, in vivo genetic inhibition of CaMKII increased striatal DGL activity and basal levels of 2-AG, and CaMKII inhibition augmented short-term retrograde endocannabinoid signaling at striatal glutamatergic synapses. Lastly, blockade of 2-AG breakdown using concentrations of JZL-184 that have no effect in wild-type mice produced a hypolocomotor response in mice with reduced CaMKII activity. These findings provide mechanistic insights into the molecular regulation of striatal endocannabinoid signaling with implications for physiological control of motor function.
    Full-text · Article · Mar 2013 · Nature Neuroscience
  • [Show abstract] [Hide abstract]
    ABSTRACT: The abnormal metabolism of the Xenopus laevis egg provides a cell survival signal. We previously found that increased carbon flux from glucose-6-phosphate through the pentose phosphate pathway in egg extracts maintains NADPH levels and CaMKII activity to phosphorylate caspase-2 and suppress cell-death pathways. Here we show that the addition of glucose-6-phosphate (G6P) to oocyte extracts inhibits the dephosphorylation/inactivation of CaMKII bound to caspase-2 by protein phosphatase 1 (PP1). Thus, G6P sustains the phosphorylation of caspase-2 by CaMKII at Ser-135, preventing the induction of caspase-2 mediated apoptotic pathways. These findings expand our understanding of oocyte biology and clarify mechanisms underlying the metabolic regulation of CaMKII and apoptosis. Furthermore, these findings suggest novel approaches to disrupt the suppressive effects of the abnormal metabolism on cell death pathways.
    No preview · Article · Feb 2013 · Journal of Biological Chemistry
  • Anthony J Baucum · Abigail M Brown · Roger J Colbran
    [Show abstract] [Hide abstract]
    ABSTRACT: Distinct physiological stimuli are required for bidirectional synaptic plasticity in striatum and hippocampus, but differences in the underlying signaling mechanisms are poorly understood. We have begun to compare levels and interactions of key excitatory synaptic proteins in whole extracts and subcellular fractions isolated from micro-dissected striatum and hippocampus. Levels of multiple glutamate receptor subunits, calcium/calmodulin-dependent protein kinase II (CaMKII), a highly abundant serine/threonine kinase, and spinophilin, a F-actin and protein phosphatase 1 (PP1) binding protein, were significantly lower in striatal extracts, as well as in synaptic and/or extrasynaptic fractions, compared to similar hippocampal extracts/fractions. However, CaMKII interactions with spinophilin were more robust in striatum compared to hippocampus, and this enhanced association was restricted to the extrasynaptic fraction. NMDAR GluN2B subunits associate with both spinophilin and CaMKII, but spinophilin-GluN2B complexes were enriched in extrasynaptic fractions whereas CaMKII-GluN2B complexes were enriched in synaptic fractions. Notably, the association of GluN2B with both CaMKII and spinophilin was more robust in striatal extrasynaptic fractions compared to hippocampal extrasynaptic fractions. Selective differences in the assembly of synaptic and extrasynaptic signaling complexes may contribute to differential physiological regulation of excitatory transmission in striatum and hippocampus. © 2012 International Society for Neurochemistry, J. Neurochem. (2012) 10.1111/jnc.12101.
    No preview · Article · Nov 2012 · Journal of Neurochemistry

Publication Stats

8k Citations
800.16 Total Impact Points

Institutions

  • 1989-2015
    • Vanderbilt University
      • • Department of Molecular Physiology and Biophysics
      • • Department of Internal Medicine
      • • Department of Medicine
      Нашвилл, Michigan, United States
  • 2006
    • Huazhong University of Science and Technology
      Wu-han-shih, Hubei, China
  • 2005
    • University of Pittsburgh
      • Department of Cell Biology and Physiology
      Pittsburgh, Pennsylvania, United States
    • The Rockefeller University
      • Laboratory of Molecular and Cellular Neuroscience
      New York City, New York, United States
  • 2004
    • Indiana University-Purdue University Indianapolis
      • Department of Biochemistry and Molecular Biology
      Indianapolis, Indiana, United States
  • 1988-1990
    • Howard Hughes Medical Institute
      Ашбърн, Virginia, United States
    • Baylor College of Medicine
      Houston, Texas, United States
  • 1986
    • Newcastle University
      Newcastle-on-Tyne, England, United Kingdom