Sven Dänicke

Friedrich Loeffler Institute, Griefswald, Mecklenburg-Vorpommern, Germany

Are you Sven Dänicke?

Claim your profile

Publications (394)500.03 Total impact

  • Sven Dänicke
    [Show abstract] [Hide abstract]
    ABSTRACT: Ergot alkaloids (EA) are mycotoxins formed by Claviceps purpurea. Due to the large variation in EA content, the mass proportion of ergot (hardened sclerotia) in animal diets is not suited to establish safe levels of EA. Therefore, the aim of the present study was to examine the dose-dependent effects of dietary EA on laying hens. Ergoty rye or ergot-free rye (control diet) was included in the diets either untreated or after hydrothermal treatment (“expansion”). The total EA levels in five different diets containing 0–3 % of untreated or expanded rye were 0.1–14.56 mg/kg (untreated rye) and 0.08–13.03 mg/kg (expanded rye). The average EA reduction amounted to 11 % due to expanding. The proportions of the sum of all -inine isomers however were consistently higher (19.5–48.4 %) compared to the sum of their -ine isomer counterparts which decreased at the same time. Most of the laying performance and reproductive traits were significantly compromised during the test period between weeks 22 and 42 of age when the diet with the highest EA content was fed. Toxic effects were less pronounced due to expanding. Relative weights of liver, proventriculus, and gizzard as well as the aspartate aminotransferase activity, the antibody titers to Newcastle disease virus, albumin, and total bilirubin concentrations were all significantly increased in hens fed at the highest dietary ergot level whereby expanding additionally modified the albumin and total bilirubin responses. No carry-over of EA into egg yolk and albumen, blood, liver, and breast muscle was found, but bile contained quantifiable levels of ergometrine and ergometrinine. Biological recovery of ingested individual alkaloids with the excreta varied from 2 to 22 % and was strongly positive linearly related to the octanol to water partition coefficient (logkOW). This suggests the lipophilicity of alkaloids as a factor influencing their metabolism and elimination. Based on the overall results of this study, a lowest observed adverse effect level (LOAEL) of 14.56 mg EA/kg for laying hen diets can be proposed, while the no observed adverse effect level (NOAEL) corresponds to a dietary EA level of 3.72 mg/kg. However, it must be stressed that these critical levels apply for the specific EA pattern tested in the present experiment, while batches of ergot containing a less typical alkaloid composition, or other expanding conditions, might contribute to variations in the LOAEL/NOAEL.
    No preview · Article · Jan 2016 · Mycotoxin Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Forkhead box protein O1 (FoxO1) is a transcription factor which promotes hepatic glucose production (HGP) by up-regulating the transcription of gluconeogenic enzymes in monogastric species. The activity of FoxO1 is inhibited by insulin-induced phosphorylation. The aims of the present study were to find associations between FoxO1 expression and variables associated with HGP as affected by feeding regimen in dairy cows during the transition period. Twenty one healthy German Holstein cows were allocated to four groups (LC-CON, HC-CON, LC-NA with 5 cows/group and HC-NA with 6 cows/group, respectively). Cows received 0 (LC-CON and HC-CON) or 24 (LC-NA and HC-NA) g/d nicotinic acid with high (HC) or low (LC) concentrate proportion from -42 days (-41.8 + 4.8; mean + standard deviation) relative to expected calving date (d-42) to d24. Liver biopsy was taken at d-42, 1, 21, and 100. The total protein expression of FoxO1 (tFoxO1) and the extent of phosphorylation of FoxO1 at serine 256 (pFoxO1) were analysed semiquantitatively by Western Blotting. The expression of hepatic mRNA of FoxO1 and seven genes associated with HGP was measured by real-time RT-PCR. Mixed model and Pearson's correlation were used for statistical evaluation with the level of significance at P<0.05. No dietary effect was observed either on feed intake, energy balance, or on the concentration of blood metabolites. Neither time nor diet affected the expression of FoxO1 total protein and mRNA. A NA × concentrate interaction was found in pFoxO1. However, no corresponding dietary effect was found in the mRNA expression of investigated genes. Different patterns of correlations between FoxO1-related variables and investigated indicators for HGP were found at d21 and 100. The results indicated that the regulation of HGP did not take place on the levels of mRNA and protein expression and the phosphorylation of FoxO1 in dairy cows in early lactation.
    Preview · Article · Jan 2016 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The glucose homeostasis in dairy cattle is very well controlled, in line with the metabolic adaptation during the periparturient period. Former studies showed that nicotinic acid (NA) lowered plasma non-esterified fatty acids (NEFA) concentrations and increased insulin sensitivity in dairy cows. Thus, the purpose of this study was to investigate whether the expression of proteins involved in hepatic and adipose insulin signaling and protein expression of hepatic glucose transporter 2 (GLUT2) were affected by dietary NA and dietary concentrate intake in periparturient dairy cows. Twenty pluriparous German Holstein cows were fed with the same diet from about 21 days before the expected calving date (d-21) to calving. After calving, cows were randomly assigned in 4 groups and fed with diets different in concentrate proportion ("HC" with 60:40% or "LC" with 30:70% concentrate-to-roughage ratio) and supplemented with NA (24 g/day) (NA) or without (CON) until d21. Biopsy samples were taken from the liver, subcutaneous (SCAT) and retroperitoneal (RPAT) adipose tissues at d-21 and d21. Protein expression of insulin signaling molecules (insulin receptor (INSR), phosphatidylinositol-3-kinase (PI3K), protein kinase Cζ (PKCζ)) and hepatic GLUT2 was measured by Western Blotting. The ratio of protein expression at d21/at d-21 was calculated and statistically evaluated for the effects of time and diet. Cows in HC had significantly higher dietary energy intake than cows in LC. In RPAT a decrease in PI3K and PKCζ expression was found in all groups, irrespectively of diet. In the liver, the GLUT2 expression was significantly lower in cows in NA compared with cows in CON. In conclusion, insulin signaling might be decreased in RPAT over time without any effect of diet. NA was able to modulate hepatic GLUT2 expression, but its physiological role is unclear.
    Preview · Article · Jan 2016 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: L-arginine (Arg) is an essential amino acid in birds that plays a decisive role in avian protein synthesis and immune response. Effects of graded dietary Arg supply on metabolic and clinical response to Escherichia coli lipopolysaccharide (LPS) were studied over 48 hours after a single intramuscular LPS injection in 18-week-old genetically diverse purebred pullets. LPS induced a genotype-specific fever response within 4 hours post injectionem. Whereas brown genotypes showed an initial hypothermia followed by longer-lasting moderate hyperthermia, white genotypes exhibited a biphasic hyperthermia without initial hypothermia. Furthermore, within 2 hours after LPS injection, sickness behavior characterized by lethargy, anorexia, intensified respiration, and ruffled feathers appeared, persisted for 3 to 5 hours and recovered 12 hours post injectionem. The varying grades of Arg did not alter the examined traits named above, whereas insufficient Arg reduced body growth and increased relative weights of liver and pancreas significantly. At 48 hours post injectionem, increased relative weights of liver and spleen were also found in LPS treated pullets, whereas LPS decreased those of pancreas, bursa, thymus, and cecal tonsils. Moreover, LPS lowered the sum of plasma amino acids and decreased plasma concentrations of Arg, citrulline, glutamate, methionine, ornithine, phenylalanine, proline, tryptophan, and tyrosine, and increased those of aspartate, glutamine, lysine, 1- and 3-methyl-histidine. Elevating concentrations of dietary Arg led to increasing plasma concentrations of Arg, citrulline, ornithine, and 3-methyl-histidine subsequently. As quantitative expression of LPS-induced anorexia, proteolysis, and the following changes in plasma amino acids, pullets showed a significant decrease of feed and nitrogen intake and catabolic metabolism characterized by negative nitrogen balance and body weight loss in the first 24 hours post injectionem. Pullets recovered from the challenge within the second 24 hours post injectionem and changed to anabolism with re-increased feed and nitrogen intake, positive nitrogen retention, and weight gain. To conclude, present results confirmed that LPS induced numerous metabolic and physiological changes in pullet's genotypes, whereas dietary Arg affected the examined traits only slightly.
    No preview · Article · Jan 2016 · Poultry Science
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diet change and fatness are supposed to challenge the immune system of the cow. Therefore, immunological and haematological consequences of adaptation to and continued feeding of a high-energy diet were studied in eight non-pregnant, non-lactating Holstein cows over 16 weeks. Blood haptoglobin concentration remained unaltered, suggesting that an acute phase reaction was not induced. Stimulation ability of peripheral blood mononuclear cells and stimulated oxidative burst capacity of granulocytes increased significantly in the course of the experiment after an initial drop. While total leucocyte counts increased, the proportion of granulocytes increased and that of lymphocytes decreased at the same time as the ratio of CD4(+)/CD8(+) lymphocytes did. Capability of rumen microbes to detoxify the immune-modulating mycotoxin deoxynivalenol (DON) was not compromised as indicated by the exclusive presence of de-DON as the detoxified DON metabolite in blood. In conclusion, both diet change and prolonged positive energy balance influenced the bovine immune system.
    No preview · Article · Jan 2016 · Archives of animal nutrition
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Climate change will not only affect crop biomass production but also crop quality. While increasing atmospheric CO2 concentrations are known to enhance photosynthesis and biomass production, effects on the chemical composition of plants are less well known. This is particularly true for major crop plants with respect to harvestable yield quality. Moreover, it remains open, how these effects on quality may be realized under field conditions and how management (e.g. plant N nutrition) or environmental factors (e.g. water availability) will alter impacts of elevated CO2. Here we report on a series of free air CO2 enrichment (FACE) experiments with wheat and barley and with maize in which effects of elevated CO2 combined with different levels of N supply (wheat and barley) and with drought stress (maize) on grain and biomass quality characteristics were investigated. Winter wheat and winter barley (1st experiment) and maize (2nd experiment) were grown in the field each for two growing seasons under ambient and elevated CO2 concentration (FACE, 550μmol mol-1). Wheat and barley were grown under adequate N supply and under 50% of adequate N as sub-treatments. In the maize experiment rain shelters were used to create two different levels of plant water supply (well-watered and drought stress – about 50% of well-watered) as sub-treatments. Treatment effects on elemental composition and a variety of quality characteristics of the plant material at final harvest were investigated. This included a detailed analysis of wheat grain protein components and of different fiber fractions of maize. Compiled results of the relative effects of elevated CO2, N and drought stress treatments on different quality parameters of the crops are presented.
    Preview · Article · Dec 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We studied the interaction between deoxynivalenol (DON)-feeding and a subsequent pre- and post-hepatic immune stimulus with the hypothesis that the liver differently mediates the acute phase reaction (APR) in pigs. Barrows (n = 44) were divided into a DON-(4.59 mg DON/kg feed) and a control-diet group, surgically equipped with permanent catheters pre- (V. portae hepatis) and post-hepatic (V. jugularis interna) and infused either with 0.9% NaCl or LPS (7.5 µg/kg BW). Thus, combination of diet (CON vs. DON) and infusion (CON vs. LPS, jugular vs. portal) created six groups: CON_CONjug.-CONpor., CON_CONjug.-LPSpor., CON_LPSjug.-CONpor., DON_CONjug.-CONpor., DON_CONjug.-LPSpor., DON_LPSjug.-CONpor.. Blood samples were taken at −30, 15, 30, 45, 60, 75, 90, 120, 150, 180 min relative to infusion and analyzed for leukocytes and TNF-alpha. Concurrently, clinical signs were scored and body temperature measured during the same period. LPS as such induced a dramatic rise in TNF-alpha (p < 0.001), hyperthermia (p < 0.01), and severe leukopenia (p < 0.001). In CON-fed pigs, an earlier return to physiological base levels was observed for the clinical complex, starting at 120 min post infusionem (p < 0.05) and persisting until 180 min. DON_LPSjug.-CONpor. resulted in a lower temperature rise (p = 0.08) compared to CON_LPSjug.-CONpor.. In conclusion, APR resulting from a post-hepatic immune stimulus was altered by chronic DON-feeding.
    Preview · Article · Dec 2015 · Toxins
  • Source

    Preview · Article · Dec 2015
  • M. Eger · J. Hussen · M. Koy · S. Dänicke · H.-J. Schuberth · G. Breves
    [Show abstract] [Hide abstract]
    ABSTRACT: The peripartal period of dairy cows is characterized by negative energy balance and higher incidences of infectious diseases such as mastitis or metritis. With the onset of lactation, milk production is prioritized and large amounts of glucose are transported into the mammary gland. Decreased overall energy availability might impair the function of monocytes acting as key innate immune cells, which give rise to macrophages and dendritic cells and link innate and adaptive immunity. Information on glucose requirements of bovine immune cells is rare. Therefore, this study aims to evaluate glucose transporter expression of the 3 bovine monocyte subsets (classical, intermediate, and nonclassical monocytes) and monocyte-derived macrophages and to identify influences of the peripartal period. Blood samples were either collected from nonpregnant healthy cows or from 16 peripartal German Holstein cows at d -14, +7, and +21 relative to parturition. Quantitative real-time PCR was applied to determine mRNA expression of glucose transporters (GLUT) 1, GLUT3, and GLUT4 in monocyte subsets and monocyte-derived macrophages. The low GLUT1 and GLUT3 expression in nonclassical monocytes was unaltered during differentiation into macrophages, whereas in classical and intermediate monocytes GLUT expression was downregulated. Alternatively activated M2 macrophages consumed more glucose compared with classically activated M1 macrophages. The GLUT4 mRNA was only detectable in unstimulated macrophages. Neither monocytes nor macrophages were insulin responsive. In the peripartum period, monocyte GLUT1 and GLUT3 expression and the GLUT3/GLUT1 ratio were negatively correlated with lactose production. The high-affinity GLUT3 transporter appears to be the predominant glucose transporter on bovine monocytes and macrophages, especially in the peripartal period when blood glucose levels decline. Glucose transporter expression in monocytes is downregulated as a function of lactose production, which might impair monocyte to macrophage differentiation.
    No preview · Article · Dec 2015 · Journal of Dairy Science
  • [Show abstract] [Hide abstract]
    ABSTRACT: The transition period in dairy cows is characterized by major changes in glucose and adipose tissue metabolism. The Sirtuin-1 (SIRT1) PPARγ co-activator 1α (PPARGC1A) axis might be related to the adiponectin (ADIPOQ) system to orchestrate the regulation of these processes. We aimed to assess the mRNA abundance of the aforementioned components in ono visceral and one subcutaneous fat depot, together with the ADIPOQ concentrations in serum of dairy cows from late gestation to early lactation. In addition, the effect of 2 diets differing in energy density was tested. Twenty pluriparous German Holstein cows were all kept on the same silage-based diet until d 42 antepartum. From then on until d 1 antepartum, 10 animals each were assigned to either high-concentrate (60:40 concentrate:roughage) or low-concentrate (30:70) diets. Both groups were further subdivided into a control and a niacin group, the latter receiving 24 g/d nicotinic acid from d -42 until d 24. From d 1 postpartum (p.p.) to d 24 p.p., the concentrate portion was increased from 30 to 50% for all cows. Biopsies of subcutaneous (SCAT) and retroperitoneal adipose tissue (RPAT) were taken at d -42, 1, 21, and 100 relative to parturition. Blood samples were drawn along with the biopsies as well as on d -21, -14, -7, -3, 1, 3, 7, 14, 21, 28, 35, 42, 63, 82, and 100 relative to calving. Quantification of target mRNA was done using quantitative PCR and serum ADIPOQ concentration was measured via ELISA. The feeding regimen did not affect the variables examined. Serum ADIPOQ concentrations decreased toward parturition, returned to precalving levels within 1 wk after parturition, and remained on a constant level until the end of the experiment. The mRNA abundance of SIRT1, PPARGC1A, NAMPT, and the ADIPOQ receptors 1 (ADIPOR1) and 2 (ADIPOR2) changed in SCAT and RPAT during the considered time period. Comparing SCAT and RPAT, the mRNA of SIRT1, ADIPOR1, and ADIPOR2 were more abundant in RPAT, whereas PPARGC1A and NAMPT were expressed more highly in SCAT. The protein abundance of SIRT1 tended to increase from d -42 to 21. At d 21 we detected more PPARGC1A protein in the low-concentrate group as compared with the high-concentrate group. The correlations observed point to a link between these factors and might hint to a functional role of the variables in the regulation of glucose metabolism. This study substantiates the existence of the SIRT1-PPARGC1A-axis and indicates a functional relationship between SIRT1 and ADIPOR1 in bovine adipose tissue.
    No preview · Article · Dec 2015 · Journal of Dairy Science
  • [Show abstract] [Hide abstract]
    ABSTRACT: The transition from pregnancy to lactation is characterized by major changes in glucose and adipose tissue metabolism. Anti- and prolipolytic pathways mediated via the hydroxycarboxylic acid receptors 1 (HCAR1) and 2 (HCAR2) and tumor necrosis factor-α receptor 1 (TNFR1), as well as the adipokines apelin and resistin, are likely involved in regulating these processes. This study aimed to determine the mRNA abundance of the aforementioned receptors in both subcutaneous and visceral adipose tissue, to characterize the adipokine concentrations in serum, and to test the effects of feeding diets with either high or low portions of concentrate and a concomitant niacin supplementation from late gestation to early lactation. Twenty pluriparous German Holstein cows were all kept on the same silage-based diet until d 42 antepartum, when they were allocated to 2 feeding groups: until d 1 antepartum, 10 animals each were assigned to either a high-concentrate (60:40 concentrate-to-roughage ratio) or a low-concentrate diet (30:70). Both groups were further subdivided into a control and a niacin group, the latter receiving 24 g/d of nicotinic acid from d -42 until 24. From d 1 to 24 postpartum, the concentrate portion was increased from 30 to 50% for all cows. Biopsies of subcutaneous (SCAT) and retroperitoneal adipose tissue (RPAT) were taken at d -42, 1, 21, and 100 relative to parturition. Blood samples were drawn along with the biopsies and on d -14, 3, 7, 14, and 42. The concentrations of the adipokines apelin and resistin in serum were measured via ELISA. The mRNA of the 3 receptors in AT was quantified as well as the protein abundance of HCAR2 by Western blot. The feeding regimen did not affect the variables examined. The concentrations of apelin remained fairly constant during the observation period, whereas the resistin concentrations increased toward parturition and decreased to precalving levels within 1 wk after calving. The mRNA abundance of HCAR1, HCAR2, and TNFR1 changed in SCAT and RPAT during the considered time period. For the HCAR2 protein, time-dependent changes were restricted to SCAT. The mRNA abundance of all receptors was greater in RPAT than in SCAT. The tissue-specific correlations observed between the receptors point to a link between these factors and may indicate different regulatory roles in the respective tissues. This study provides insight into the complex metabolic adaptations during the transition period and supports a differential regulation of lipolysis among SCAT and RPAT in dairy cows.
    No preview · Article · Dec 2015 · Journal of Dairy Science
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Energy balance in dairy cows changes during the course of lactation due to alterations in voluntary feed intake and energy required for milk synthesis. To adapt to the demands of lactation, energy metabolism needs to be regulated and coordinated in key organs such as adipose tissue (AT), liver, and mammary gland. Mitochondria are the main sites of energy production in mammalian cells and their number varies depending on age, organ, and physiological condition. The copy number of the mitochondrial genome, the mitochondrial DNA (mtDNA), reflects the abundance of mitochondria within a cell and is regulated by transcriptional and translational factors. Environmental, physiological, and energetic conditions change during lactation and we thus hypothesized that these changes may influence the mtDNA copy number and the abundance of genes regulating mitochondrial biogenesis. Therefore, we aimed to provide an overview of mitochondrial biogenesis in liver, subcutaneous (sc)AT, mammary gland, and peripheral blood cells during early and late lactation in dairy cows. German Holstein cows (n = 21) were fed according to their requirements, and biopsies from scAT, liver, mammary gland, and blood were collected in early and late lactation and assayed for relative mtDNA copy numbers and the mRNA abundance of genes regulating mitochondrial biogenesis, such as nuclear-respiratory factor 1 and 2 (NRF-1, NRF-2), mitochondrial transcription factor A (TFAM), and peroxisome proliferator-activated receptor-gamma coactivator 1-α (PGC-1α). The number of mtDNA copies increased from early to late lactation in all tissues, whereas that in peripheral blood cells was greater in early compared with late lactation. Moreover, mitochondrial activity enzymes (i.e., citrate synthase and cytochrome c oxidase) increased from early to late lactation in scAT. Comparing the number of mtDNA copies between tissues and blood in dairy cows, the highest mtDNA content was observed in liver. The mRNA abundance of genes related to mitochondrial biogenesis changed in a tissue-specific manner when comparing early versus late lactation. The mtDNA copy number was associated with transcriptional factors only in AT, suggesting nontranscriptional regulation of mtDNA in the other tissues. We detected strong correlations between peripheral blood mtDNA and tissue mtDNA content in early lactation. Peripheral blood forms an appropriate medium to display the cellular content of mtDNA copy numbers and consequently the cellular energy status of tissues during early lactation.
    Full-text · Article · Dec 2015 · Journal of Dairy Science
  • U. Brezina · I. Rempe · S. Kersten · H. Valenta · H.-U. Humpf · S. Dänicke

    No preview · Article · Nov 2015 · World Mycotoxin Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have shown that chronic oral deoxynivalenol (DON) exposure modulated Escherichia coli lipopolysaccharide (LPS)-induced systemic inflammation, whereby the liver was suspected to play an important role. Thus, a total of 41 barrows was fed one of two maize-based diets, either a DON-diet (4.59 mg DON/kg feed, n = 19) or a control diet (CON, n = 22). Pigs were equipped with indwelling catheters for pre- or post-hepatic (portal vs. jugular catheter) infusion of either control (0.9% NaCl) or LPS (7.5 µg/kg BW) for 1h and frequent blood sampling. This design yielded six groups: CON_CONjugular‑CONportal, CON_CONjugular‑LPSportal, CON_LPSjugular‑CONportal, DON_CONjugular‑CONportal, DON_CONjugular‑LPSportal and DON_LPSjugular‑CONportal. Blood samples were analyzed for blood gases, electrolytes, glucose, pH, lactate and red hemogram. The red hemogram and electrolytes were not affected by DON and LPS. DON-feeding solely decreased portal glucose uptake (p < 0.05). LPS-decreased partial oxygen pressure (pO₂) overall (p < 0.05), but reduced pCO₂ only in arterial blood, and DON had no effect on either. Irrespective of catheter localization, LPS decreased pH and base-excess (p < 0.01), but increased lactate and anion-gap (p < 0.01), indicating an emerging lactic acidosis. Lactic acidosis was more pronounced in the group DON_LPSjugular-CONportal than in CON-fed counterparts (p < 0.05). DON-feeding aggravated the porcine acid-base balance in response to a subsequent immunostimulus dependent on its exposure site (pre- or post-hepatic).
    No preview · Article · Nov 2015 · Toxins
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, deoxynivalenol-3-sulfate (DON-3-sulfate) was proposed as a major DON metabolite in poultry. In the present work, the first LC-MS/MS based method for determination of DON-3-sulfate, deepoxy-DON-3-sulfate (DOM-3-sulfate), DON, DOM, DON sulfonates 1, 2, 3, and DOM sulfonate 2 in excreta samples of chickens and turkeys was developed and validated. To this end, DOM-3-sulfate was chemically synthesized and characterized by NMR and LC-HR-MS/MS measurements. Application of the method to excreta and chyme samples of four feeding trials with turkeys, chickens, pullets, and roosters confirmed DON-3-sulfate as the major DON metabolite in all poultry species studied. Analogously to DON-3-sulfate, DOM-3-sulfate was formed after oral administration of DOM both in turkeys and in chickens. In addition, pullets and roosters metabolized DON into DOM-3-sulfate. In vitro transcription/translation assays revealed DOM-3-sulfate to be 2000 times less toxic on the ribosome than DON. Biological recoveries of DON and DOM orally administered to broiler chickens, turkeys, and pullets were 74%-106% (chickens), 51%-72% (roosters), and 131%-151% (pullets). In pullets, DON-3-sulfate concentrations increased from jejunum chyme samples to excreta samples by a factor of 60. This result, put into context with earlier studies, indicates fast and efficient absorption of DON between crop and jejunum, conversion to DON-3-sulfate in intestinal mucosa, liver, and possibly kidney, and rapid elimination into excreta via bile and urine.
    Preview · Article · Nov 2015 · Toxins
  • [Show abstract] [Hide abstract]
    ABSTRACT: We recently showed that the mRNA expression of genes encoding for specific nutrient sensing receptors, namely the free fatty acid receptors (FFAR) 1, 2, 3, and the hydroxycarboxylic acid receptor (HCAR) 2, undergo characteristic changes during the transition from late pregnancy to lactation in certain adipose tissues (AT) of dairy cows. We hypothesised that divergent energy intake achieved by feeding diets with either high or low portions of concentrate (60% v. 30% concentrate on a dry matter basis) will alter the mRNA expression of FFAR 1, 2, 3, as well as HCAR2 in subcutaneous (SCAT) and retroperitoneal AT (RPAT) of dairy cows in the first 3 weeks postpartum (p.p.). For this purpose, 20 multiparous German Holstein cows were allocated to either the high concentrate ration (HC, n=10) or the low concentrate ration (LC, n=10) from day 1 to 21 p.p. Serum samples and biopsies of SCAT (tail head) and RPAT (above the peritoneum) were obtained at day -21, 1 and 21 relative to parturition. The mRNA abundances were measured by quantitative PCR. The concentrations of short-chain fatty acid (SCFA) in serum were measured by gas chromatography-flame ionisation detector. The FFAR1 and FFAR2 mRNA abundance in RPAT was higher at day -21 compared to day 1. At day 21 p.p. the FFAR2 mRNA abundance was 2.5-fold higher in RPAT of the LC animals compared to the HC cows. The FFAR3 mRNA abundance tended to lower values in SCAT of the LC group at day 21. The HCAR2 mRNA abundance was neither affected by time nor by feeding in both AT. On day 21 p.p. the HC group had 1.7-fold greater serum concentrations of propionic acid and lower concentrations of acetic acid (trend: 1.2-fold lower) compared with the LC group. Positive correlations between the mRNA abundance of HCAR2 and peroxisome proliferator-activated receptor γ-2 (PPARG2) indicate a link between HCAR2 and PPARG2 in both AT. We observed an inverse regulation of FFAR2 and FFAR3 expression over time and both receptors also showed an inverse mRNA abundance as induced by different portions of concentrate. Thus, indicating divergent nutrient sensing of both receptors in AT during the transition period. We propose that the different manifestation of negative EB in both groups at day 21 after parturition affect at least FFAR2 expression in RPAT.
    No preview · Article · Nov 2015 · animal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Deoxynivalenol (DON) exposure of pigs might cause serious problems when critical dietary toxin concentrations are exceeded. As DON contamination of agricultural crops cannot be completely prevented, detoxification measures are needed. Wet preservation with sodium sulfite resulted in a significant DON reduction of naturally-contaminated maize in previous experiments. The preserved material had a characteristic DON sulfonates (DONS) pattern. DONS is known to be less toxic than DON but its stability was shown to depend on pH, which gives rise to the question if a back-conversion to DON occurs in vivo. Therefore, the toxicokinetics and bioavailability of DON and DONS were studied in pigs. After the administration of a single oral or intravenous bolus of DON or DONS, serial blood samples were collected and subsequently analyzed. DONS was not detectable after oral administration of DONS mixtures. The results showed further that the bioavailability of DONS as DON in pigs fed maize preserved wet with sodium sulfite was significantly decreased compared to untreated control maize (DON), indicating that DONS obviously did not convert back to DON to a large extent in vivo. Moreover, the fact that DONS was not detectable in systemic blood requires further investigations regarding their ingestive and/or metabolic fate.
    Preview · Article · Nov 2015 · Toxins
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The present study was conducted to investigate the effects of 24 g niacin (nicotinic acid (NA)) supplementation over 40 weeks with two forage-to-concentrate ratios (60% concentrate vs. 30% in the total diet) on performance variables of energy metabolism such as plasma concentrations of non-esterified fatty acids (NEFA), beta-hydroxybutyrate (BHB), glucose and nicotinamide (NAM), and the fatty acid profile in rumen fluid. In a 2 × 2 factorial design, 64 German Holstein cows were divided postpartum into four dietary groups: i) 60% concentrate supplemented with 24 g NA (Group 60 + NA); ii) 60% concentrate without NA (Group 60-); iii) 30% concentrate with 24 g NA (Group 30 + NA) and iv) 30% concentrate without NA (Group 30-). The experiment started on the day of calving and continued for 40 weeks. Niacin supplementation did not affect milk yield or composition. The plasma niacin content increased in the supplemented groups, especially Group 30 + NA. Niacin supplementation led to decreased plasma glucose concentrations. The interaction of concentrate × niacin enhanced the molar proportion of propionic acid in rumen fluid in Group 60 + NA. Total short-chain fatty acid (SCFA) concentrations were increased by level of concentrate, niacin supplementation and the interaction, concentrate × niacin. Plasma levels of NEFA and BHB remained unaffected. In sum, concentrate level, niacin supplementation and the interaction of concentrate × niacin increased plasma NAM concentration, whereas plasma glucose concentration was decreased by niacin supplementation.
    Preview · Article · Nov 2015 · South African Journal Of Animal Science
  • [Show abstract] [Hide abstract]
    ABSTRACT: In pasture-based dairy production systems, dairy cows often receive a silage- and concentrate-based ration [total mixed ration (TMR)] during wintertime and are gradually introduced to fresh herbage in spring. The present study aimed to investigate how the transition to this new nutritional situation influenced different production and health indicators. A 10-wk trial was performed in spring 2014, including 60 dairy cows of the German Holstein breed (166 ± 23 d in milk, 23.5 ± 3.7 kg of milk/d; means ± SD). The cows were divided into a pasture and a confinement group (PG and CG, respectively). The CG stayed on a TMR-based diet (35% corn silage, 35% grass silage, 30% concentrate; DM basis), whereas the PG was gradually transitioned from a TMR- to a pasture-based ration (wk 1 = TMR-only, wk 2 = 3 h/d on pasture, wk 3 and 4 = 12 h/d on pasture, wk 5-10 = pasture-only). A continuous grazing system was implemented on a ryegrass dominated pasture and temperature humidity indices were assessed based on continuous recording of temperature and humidity indoors as well as outdoors. Dry matter intake (DMI) from TMR, milk production, body weight (BW), and body condition score decreased as soon as the PG had partial access to pasture. Milk production and BW decreased even further in the first week on a full grazing ration, but thereafter BW increased again and milk production stabilized. The DMI estimation using the n-alkane method in wk 7 and 9 revealed an increase in DMI from pasture between the 2 time points and indicates an adaptation of grazing behavior and metabolism over several weeks. Increased serum β-hydroxybutyrate and fatty acids concentrations at several time points, as well as a continuous body condition score decrease during the whole course of the trial, indicate an energy deficit in the PG. A significant correlation between serum glucose concentrations and the temperature humidity indices was observed. An increase in serum and milk urea concentrations as well as an increase in the urine total N to creatinine ratio occurred in the PG. To assess possible negative effects of the ration change on metabolic and liver health, different clinical chemistry variables and complete blood counts were assessed. No biologically relevant changes were observed for serum albumin, total protein, cholesterol, aspartate transaminase, γ-glutamyltransferase, and glutamate dehydrogenase concentrations, as well as for white and red blood cell counts.
    No preview · Article · Nov 2015 · Journal of Dairy Science
  • [Show abstract] [Hide abstract]
    ABSTRACT: This work examined preventive effects of a dietary and a medical intervention measure on postpartum (p.p.) ketogenesis in dairy cows overconditioned in late pregnancy. Sixty German Holstein cows were allocated 6 weeks antepartum (a.p.) to three high body condition score (BCS) groups (BCS 3.95 ± 0.08) and one low BCS group (LC, BCS 2.77 ± 0.14). Concentrate proportion in diet a.p. was higher (60% vs. 20%) and increase in proportion p.p. from 30% up to 50% decelerated (3 vs. 2 weeks) in high BCS groups. High BCS cows received a monensin controlled-release capsule (CRC) (HC/MO), a blend of essential oils (HC/EO) or formed a control group (HC). Performance parameters and energy status were evaluated in three periods [day (d) -42 until calving, one until 14 days in milk (DIM), 15 until 56 DIM]. Feed efficiency was 65% and 53% higher in HC/MO than in LC (p < 0.001) and HC groups (p = 0.002) in the second period. Milk fat content was higher in HC/EO (5.60 vs. 4.82%; p = 0.012) and milk urea higher in HC/MO (135 mg/kg) than in LC cows (107 mg/kg; p < 0.001). Increased p.p. levels of non-esterified fatty acids in serum were found in HC (p = 0.003), HC/MO (p = 0.068) and HC/EO (p = 0.002) in comparison with LC cows. Prevalence of subclinical and clinical ketosis was 54% and 46%, respectively, in HC group. Monensin decreased the prevalence to 50% and 7% respectively. Ruminal fermentation pattern showed higher proportions of propionate (23.43 mol % and 17.75 mol %, respectively; p < 0.008) and lower acetate:propionate ratio (2.66 vs. 3.76; p < 0.001) in HC/MO than HC group. Results suggest that a monensin CRC improved energy status and feed efficiency of transition dairy cows while essential oils failed to elicit any effect.
    No preview · Article · Nov 2015 · J Anim Physiol a Anim Nutr

Publication Stats

4k Citations
500.03 Total Impact Points

Institutions

  • 2008-2016
    • Friedrich Loeffler Institute
      • Institute of Animal Nutrition
      Griefswald, Mecklenburg-Vorpommern, Germany
  • 2010-2015
    • MSD Animal Health, Germany
      Schleisheim, Bavaria, Germany
  • 1995-2009
    • Martin Luther University Halle-Wittenberg
      • Institute of Agricultural and Nutritional Sciences
      Halle-on-the-Saale, Saxony-Anhalt, Germany
  • 2007
    • Hawaii Agriculture Research Center
      Honolulu, Hawaii, United States
  • 2005-2006
    • Centro Nacional de Investigaciones Agropecuarias
      Buenos Aires, Buenos Aires F.D., Argentina
  • 2004
    • University of Veterinary Medicine in Vienna
      Wien, Vienna, Austria
  • 2003
    • Leibniz Institute for Farm Animal Biology
      • Genetics and Biometry Research Unit
      Dummerstorf, Mecklenburg-Vorpommern, Germany
  • 1999
    • Freie Universität Berlin
      Berlín, Berlin, Germany