Jer-Yuarn Wu

Academia Sinica, T’ai-pei, Taipei, Taiwan

Are you Jer-Yuarn Wu?

Claim your profile

Publications (121)902.38 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sixty genetic loci associated with abdominal obesity, measured by waist circumference (WC) and waist-hip ratio (WHR), have been previously identified, primarily from studies conducted in European-ancestry populations. We conducted a meta-analysis of associations of abdominal obesity with approximately 2.5 million single nucleotide polymorphisms (SNPs) among 53,052 (for WC) and 48,312 (for WHR) individuals of Asian descent, and replicated 33 selected SNPs among 3,762 to 17,110 additional individuals. We identified four novel loci near the EFEMP1, ADAMTSL3 , CNPY2, and GNAS genes that were associated with WC after adjustment for body mass index (BMI); two loci near the NID2 and HLA-DRB5 genes associated with WHR after adjustment for BMI, and three loci near the CEP120, TSC22D2, and SLC22A2 genes associated with WC without adjustment for BMI. Functional enrichment analyses revealed enrichment of corticotropin-releasing hormone signaling, GNRH signaling, and/or CDK5 signaling pathways for those newly-identified loci. Our study provides additional insight on genetic contribution to abdominal obesity.
    Preview · Article · Jan 2016 · Scientific Reports
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Kawasaki disease (KD) is an acute, inflammatory, and self-limited vasculitis affecting infants and young children. Coronary artery aneurysm (CAA) formation is the major complication of KD and the leading cause of acquired cardiovascular disease among children. To identify susceptible loci that might predispose patients with KD to CAA formation, a genome-wide association screen was performed in a Taiwanese KD cohort. Patients with both KD and CAA had longer fever duration and delayed intravenous immunoglobulin treatment time. After adjusting for these factors, 100 susceptibility loci were identified. Four genes were identified from a single cluster of 35 using the Ingenuity Pathway Analysis (IPA) Knowledge Base. Silencing KCNQ5, PLCB1, PLCB4, and PLCL1 inhibited the effect of lipopolysaccharide-induced endothelial cell inflammation with varying degrees of proinflammatory cytokine expression. PLCB1 showed the most significant inhibition. Endothelial cell inflammation was also inhibited by using a phospholipase C (PLC) inhibitor. The single nucleotide polymorphism rs6140791 was identified between PLCB4 and PLCB1. Plasma PLC levels were higher in patients with KD and CC+CG rs6140791genotypes, and these genotypes were more prevalent in patients with KD who also had CAA. Our results suggest that polymorphism of the PLCB4/B1 genes might be involved in the CAA pathogenesis of KD.
    Full-text · Article · Oct 2015 · Scientific Reports
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Autism spectrum disorder (ASD) is a neurodevelopmental disorder with strong genetic components. Several recent genome-wide association (GWA) studies in Caucasian samples have reported a number of gene regions and loci correlated with the risk of ASD-albeit with very little consensus across studies. Methods: A two-stage GWA study was employed to identify common genetic variants for ASD in the Taiwanese Han population. The discovery stage included 315 patients with ASD and 1,115 healthy controls, using the Affymetrix SNP array 6.0 platform for genotyping. Several gene regions were then selected for fine-mapping and top markers were examined in extended samples. Single marker, haplotype, gene-based, and pathway analyses were conducted for associations. Results: Seven SNPs had p-values ranging from 3.4~9.9*10-6, but none reached the genome-wide significant level. Five of them were mapped to three known genes (OR2M4, STYK1, and MNT) with significant empirical gene-based p-values in OR2M4 (p = 3.4*10-5) and MNT (p = 0.0008). Results of the fine-mapping study showed single-marker associations in the GLIS1 (rs12082358 and rs12080993) and NAALADL2 (rs3914502 and rs2222447) genes, and gene-based associations for the OR2M3-OR2T5 (olfactory receptor genes, p = 0.02), and GLIPR1/KRR1 gene regions (p = 0.015). Pathway analyses revealed important pathways for ASD, such as olfactory and G protein-coupled receptors signaling pathways. Conclusions: We reported Taiwanese Han specific susceptibility genes and variants for ASD. However, further replication in other Asian populations is warranted to validate our findings. Investigation in the biological functions of our reported genetic variants might also allow for better understanding on the underlying pathogenesis of autism.
    Full-text · Article · Sep 2015 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We carried out a trans-ancestry genome-wide association and replication study of blood pressure phenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. We find genetic variants at 12 new loci to be associated with blood pressure (P = 3.9 x 10(-11) to 5.0 x 10(-21)). The sentinel blood pressure SNPs are enriched for association with DNA methylation at multiple nearby CpG sites, suggesting that, at some of the loci identified, DNA methylation may lie on the regulatory pathway linking sequence variation to blood pressure. The sentinel SNPs at the 12 new loci point to genes involved in vascular smooth muscle (IGFBP3, KCNK3, PDE3A and PRDM6) and renal (ARHGAP24, OSR1, SLC22A7 and TBX2) function. The new and known genetic variants predict increased left ventricular mass, circulating levels of NT-proBNP, and cardiovascular and all-cause mortality (P = 0.04 to 8.6 x 10(-6)). Our results provide new evidence for the role of DNA methylation in blood pressure regulation.
    Full-text · Article · Sep 2015 · Nature Genetics
  • Tai-Ming Ko · Yuan-Tsong Chen · Jer-Yuarn Wu

    No preview · Article · Aug 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many biochemical pathways involved in hair and skin development have not been investigated. Here, we reported on the lesions and investigated the mechanism underlying hair and skin abnormalities in Zdhhc13(skc4) mice with a deficiency in DHHC13, a palmitoyl-acyl transferase encoded by Zdhhc13. Homozygous affected mice showed ragged and dilapidated cuticle of the hair shaft (Cuh, a hair anchoring structure), poor hair anchoring ability and premature hair loss at early telogen phase of the hair cycle, resulting in cyclic alopecia. Furthermore, the homozygous affected mice exhibited hyperproliferation of the epidermis, disturbed cornification, fragile cornified envelope (CE, a skin barrier structure), and impaired skin barrier function. Biochemical investigations revealed cornifelin, which contains 5 palmitoylation sites at cysteine residues (C58, C59, C60, C95, and C101), was a specific substrate of DHHC13 and that it was absent in the Cuh and CE structures of the affected mice. Furthermore, cornifelin levels were markedly reduced when two palmitoylated cysteines were replaced with serine (C95S and C101S). Taken together, our results suggest that DHHC13 is important for hair anchoring and skin barrier function and that cornifelin deficiency contributes to cyclic alopecia and skin abnormalities in Zdhhc13(skc4) mice.Journal of Investigative Dermatology accepted article preview online, 29 June 2015. doi:10.1038/jid.2015.240.
    No preview · Article · Jun 2015 · Journal of Investigative Dermatology
  • Source

    Full-text · Dataset · May 2015
  • Source

    Full-text · Dataset · Mar 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several genes that are involved in the regulation of circadian rhythms are implicated in the susceptibility to bipolar disorder (BD). The current study aimed to investigate the relationships between genetic variants in NR1D1 RORA, and RORB genes and BD in the Han Chinese population. We conducted a case-control genetic association study with two samples of BD patients and healthy controls. Sample I consisted of 280 BD patients and 200 controls. Sample II consisted of 448 BD patients and 1770 healthy controls. 27 single nucleotide polymorphisms in the NR1D1, RORA, and RORB genes were genotyped using GoldenGate VeraCode assays in sample I, and 492 markers in the three genes were genotyped using Affymetrix Genome-Wide CHB Array in sample II. Single marker and gene-based association analyses were performed using PLINK. A combined p-value for the joining effects of all markers within a gene was calculated using the rank truncated product method. Multifactor dimensionality reduction (MDR) method was also applied to test gene-gene interactions in sample I. All markers were in Hardy-Weinberg equilibrium (P>0.001). In sample I, the associations with BD were observed for rs4774388 in RORA (OR = 1.53, empirical p-value, P = 0.024), and rs1327836 in RORB (OR = 1.75, P = 0.003). In Sample II, there were 45 SNPs showed associations with BD, and the most significant marker in RORA was rs11639084 (OR = 0.69, P = 0.002), and in RORB was rs17611535 (OR = 3.15, P = 0.027). A combined p-value of 1.6×10-6, 0.7, and 1.0 was obtained for RORA, RORB and NR1D1, respectively, indicting a strong association for RORA with the risk of developing BD. A four way interaction was found among markers in NR1D1, RORA, and RORB with the testing accuracy 53.25% and a cross-validation consistency of 8 out of 10. In sample II, 45 markers had empirical p-values less than 0.05. The most significant markers in RORA and RORB genes were rs11639084 (OR = 0.69, P = 0.002), and rs17611535 (OR = 3.15, P = 0.027), respectively. Gene-based association was significant for RORA gene (P = 0.0007). Our results support for the involvement of RORs genes in the risk of developing BD. Investigation of the functional properties of genes in the circadian pathway may further enhance our understanding about the pathogenesis of bipolar illness.
    Full-text · Article · Mar 2015 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rationale: Kawasaki disease (KD), an acute febrile vasculitis, is the most common cause of acquired heart disease in childhood; however, diagnosing KD can be difficult. Objective: To identify unique proteomic biomarkers that can be used to facilitate earlier diagnosis of KD. Methods and results: We enrolled 214 children with fever and clinical features suggestive of KD. Of those, only 100 were diagnosed with KD. Their plasma samples were globally analyzed for cytokines, chemokines, and cell adhesion molecules using an unbiased, large-scale, quantitative protein array. This study was conducted in 3 stages: discovery, replication, and blinded validation. During the discovery phase (n [KD]=37; n [control]=20), the expression of interleukin-17F, sCD40L, E-selectin, CCL23 (myeloid progenitor inhibitory factor 1), and CXCL10 (IFN-γ-inducible protein 10 [IP-10]) were upregulated during the acute phase in patients with KD when compared with that in the controls. A notable increase was observed in the IP-10 levels (KD, 3037 ± 226.7 pg/mL; control, 672 ± 130.4 pg/mL; P=4.1 × 10(-11)). Receiver-operating characteristic analysis of the combined discovery and replication data (n [KD]=77; n [control]=77) showed that the IP-10 level had high area under the curve values (0.94 [95% confidence interval, 0.9055-0.9778]; sensitivity, 100%; and specificity, 77%). With 1318 pg/mL as the optimal cutoff, the blinded validation study confirmed that the IP-10 levels were a good predictor of KD. With intravenous immunoglobulin treatment, the IP-10 levels returned to normal. The downstream receptor of IP-10, CXCR3, was activated in the T cells of patients with acute KD. Conclusions: IP-10 may be used as a biomarker to facilitate KD diagnosis, and it may provide clues about the pathogenesis of KD.
    No preview · Article · Jan 2015 · Circulation Research
  • [Show abstract] [Hide abstract]
    ABSTRACT: To identify disease relevant genes and pathways associated with knee Osteoarthritis (OA) progression in human subjects using medial and lateral compartment dominant OA knee tissue. Gene expression of knee cartilage was comprehensively assessed for three regions of interest from human medial dominant OA (n=10) and non-OA (n=6) specimens. Histology and gene expression were compared for the regions with minimal degeneration, moderate degeneration and significant degeneration. Agilent whole-genome microarray was performed and data were analyzed using Agilent GeneSpring GX11.5. Significant differentially regulated genes were further investigated by Ingenuity Pathway Analysis (IPA) to identify functional categories. To confirm their association with disease severity as opposed to site within the knee, 30 differentially expressed genes, identified by microarray, were analyzed by quantitative reverse-transcription polymerase chain reaction on additional medial (n=16) and lateral (n=10) compartment dominant knee OA samples. A total of 767 genes were differentially expressed >two-fold (P ≤0.05) in lesion compared to relatively intact regions. Analysis of these data by IPA predicted biological functions related to an imbalance of anabolism and catabolism of cartilage matrix components. Up-regulated expression of IL11, POSTN, TNFAIP6, and down-regulated expression of CHRDL2, MATN4, SPOCK3, VIT, PDE3B were significantly associated with OA progression and validated in both medial and lateral compartment dominant OA samples. Our study provides a strategy for identifying targets whose modification may have the potential to ameliorate pathological alternations and progression of disease in cartilage and to serve as biomarkers for identifying individuals susceptible to progression. Copyright © 2015. Published by Elsevier Ltd.
    No preview · Article · Jan 2015 · Osteoarthritis and Cartilage
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Patients with Kawasaki disease (KD), a pediatric systemic vasculitis, may develop coronary artery aneurysm (CAA) as a complication. To investigate the role of glutamate receptors in KD and its CAA development, we performed genetic association studies. We examined the whole family of glutamate receptors by genetic association studies in a Taiwanese cohort of 262 KD patients. We identified glutamate receptor ionotropic, kainate 1 (GRIK1) as a novel susceptibility locus associated with CAA formation in KD. Statistically significant differences were noted for factors like fever duration, 1st Intravenous immunoglobulin (IVIG) used time (number of days after the first day of fever) and the GRIK1 (rs466013, rs425507, and rs38700) genetic variants. This significant association persisted even after using multivariate regression analysis (Full model: for rs466013: odds ratio =2.12; 95% CI =1.22-3.65; for rs425507: odds ratio =2.16; 95% CI =1.26-3.76; for rs388700: odds ratio =2.16; 95% CI =1.26-3.76). We demonstrated that GRIK1 polymorphisms are associated CAA formation in KD, even when adjusted for fever duration and IVIG used time, and may also serve as a genetic marker for the CAA formation in KD.
    Full-text · Article · Nov 2014 · Cell and Bioscience

  • No preview · Article · Nov 2014 · Journal of Allergy and Clinical Immunology
  • Source

    Preview · Article · Jul 2014
  • Kai-Ming Liu · Jer-Yuarn Wu · Yuan-Tsong Chen
    [Show abstract] [Hide abstract]
    ABSTRACT: Glycogen storage disease type IIIa (GSD IIIa) is caused by a deficiency of the glycogen debranching enzyme (GDE), which is encoded by the Agl gene. GDE deficiency leads to the pathogenic accumulation of phosphorylase limit dextrin (PLD), an abnormal glycogen, in the liver, heart, and skeletal muscle. To further investigate the pathological mechanisms behind this disease and develop novel therapies to treat this disease, we generated a GDE-deficient mouse model by removing exons after exon 5 in the Agl gene. GDE reduction was confirmed by western blot and enzymatic activity assay. Histology revealed massive glycogen accumulation in the liver, muscle, and heart of the homozygous affected mice. Interestingly, we did not find any differences in the general appearance, growth rate, and life span between the wild-type, heterozygous, and homozygous affected mice with ad libitum feeding, except reduced motor activity after 50 weeks of age, and muscle weakness in both forelimb and hind legs of homozygous affected mice by using the grip strength test at 62 weeks of age. However, repeated fasting resulted in decreased survival of the knockout mice. Hepatomegaly and progressive liver fibrosis were also found in the homozygous affected mice. Blood chemistry revealed that alanine transaminase (ALT), aspartate transaminase (AST) and alkaline phosphatase (ALP) activities were significantly higher in the homozygous affected mice than in both wild-type and heterozygous mice and the activity of these enzymes further increased with fasting. Creatine phosphokinase (CPK) activity was normal in young and adult homozygous affected mice. However, the activity was significantly elevated after fasting. Hypoglycemia appeared only at a young age (3 weeks) and hyperlipidemia was not observed in our model. In conclusion, with the exception of normal lipidemia, these mice recapitulate human GSD IIIa; moreover, we found that repeated fasting was detrimental to these mice. This mouse model will be useful for future investigation regarding the pathophysiology and treatment strategy of human GSD III.
    No preview · Article · Apr 2014 · Molecular Genetics and Metabolism
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glycated hemoglobin (HbA1C) is used as a measure of glycemic control and also as a diagnostic criterion for diabetes mellitus. To discover novel loci harbouring common variants associated with HbA1C in East Asians, we conducted a meta-analysis of 13 genome wide association studies (N=21,026). We replicated our findings in 3 additional studies comprising 11,576 individuals of East Asian ancestry. 10 variants showed associations that reached genome wide significance in the discovery dataset of which 9 [4 novel variants at TMEM79 (P-value 1.3 × 10(-23)), HBS1L/MYB (8.5 × 10(-15)), MYO9B (9.0 × 10(-12)) and CYBA (1.1 × 10(-8)) as well as 5 variants at loci that had been previously identified (CDKAL1, G6PC2/ABCB11, GCK, ANK1, and FN3K)] showed consistent evidence of association in replication datasets. These variants explained 1.76% of the variance in HbA1C. Several of these variants (TMEM79, HBS1L/MYB, CYBA, MYO9B, ANK1, and FN3K) showed no association with either blood glucose or type 2 diabetes. Amongst individuals with non-diabetic levels of fasting glucose (<7.0 mmol/l) but elevated (>=6.5%) HbA1c, 36.1% had HbA1C<6.5% after adjustment for these 6 variants. . Our East Asian GWAS meta-analysis has identified novel variants associated with HbA1C as well as demonstrating that the effects of known variants are largely transferable across ethnic groups. Variants affecting erythrocyte parameters rather than glucose metabolism may be relevant to the use of HbA1C for diagnosing diabetes in these populations.
    Full-text · Article · Mar 2014 · Diabetes
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ZDHHC13 is a member of DHHC-containing palmitoyl acyltransferases (PATs) family of enzymes. It functions by post-translationally adding 16-carbon palmitate to proteins through a thioester linkage. We have previously shown that mice carrying a recessive Zdhhc13 nonsense mutation causing a Zdhcc13 deficiency develop alopecia, amyloidosis and osteoporosis. Our goal was to investigate the pathogenic mechanism of osteoporosis in the context of this mutation in mice. Body size, skeletal structure and trabecular bone were similar in Zdhhc13 WT and mutant mice at birth. Growth retardation and delayed secondary ossification center formation were first observed at day 10 and at 4 weeks of age, disorganization in growth plate structure and osteoporosis became evident in mutant mice. Serial microCT from 4-20 week-olds revealed that Zdhhc13 mutant mice had reduced bone mineral density. Through co-immunoprecipitation and acyl-biotin exchange, MT1-MMP was identified as a direct substrate of ZDHHC13. In cells, reduction of MT1-MMP palmitoylation affected its subcellular distribution and was associated with decreased VEGF and osteocalcin expression in chondrocytes and osteoblasts. In Zdhhc13 mutant mice epiphysis where MT1-MMP was under palmitoylated, VEGF in hypertrophic chondrocytes and osteocalcin at the cartilage-bone interface were reduced based on immunohistochemical analyses. Our results suggest that Zdhhc13 is a novel regulator of postnatal skeletal development and bone mass acquisition. To our knowledge, these are the first data to suggest that ZDHHC13-mediated MT1-MMP palmitoylation is a key modulator of bone homeostasis. These data may provide novel insights into the role of palmitoylation in the pathogenesis of human osteoporosis.
    Full-text · Article · Mar 2014 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are the main therapeutic agents used to treat non-small-cell lung cancer patients harboring EGFR-activating mutations. However, most of these patients will eventually develop resistance, 50% of which are due to a secondary mutation at T790M in the EGFR. In this paper, we describe the development of an allele-specific DNAzyme, DzT, that can specifically silence EGFR T790M mutant messenger RNA while leaving wild-type EGFR intact. Allele-specific silencing of EGFR T790M expression and downstream signaling by DzT triggered apoptosis in non-small-cell lung cancer cells harboring this mutant. Adding a cholesterol-triethylene glycol group on the 3'-end of DzT (cDzT) improved drug efficacy, increasing inhibitory effect on cell viability from 46 to 79% in T790M/L858R-harboring H1975(TM/LR) non-small-cell lung cancer cells, without loss of allele specificity. Combined treatment with cDzT and BIBW-2992, a second-generation EGFR-tyrosine kinase inhibitor, synergistically inhibited EGFR downstream signaling and suppressed the growth of xenograft tumors derived from H1975(TM/LR) cells. Collectively, these results indicate that the allele-specific DNAzyme, DzT, may provide an alternative treatment for non-small-cell lung cancer that is capable of overcoming EGFR T790M mutant-based tyrosine kinase inhibitor resistance.Molecular Therapy-Nucleic Acids (2014) 3, e150; doi:10.1038/mtna.2014.3; published online 4 March 2014.
    Preview · Article · Mar 2014 · Molecular Therapy - Nucleic Acids
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genome-wide association studies have identified many obesity/body mass index (BMI)-associated loci in Europeans and East Asians. Since then, a large number of studies have investigated the role of BMI-associated loci in the development of type 2 diabetes (T2D). However, the results have been inconsistent. The objective of this study was to investigate the associations of eleven obesity/BMI loci with T2D risk and explore how BMI influences this risk. We retrieved published literature from PubMed and Embase. The pooled odds ratios (OR) with 95% confidence intervals (CI) were calculated using fixed- or random- effect models. In the meta-analysis of forty-two studies for 11 obesity/BMI-associated loci, we observed a statistically significant association of the FTO rs9939609 polymorphism (66,425 T2D cases/239,689 normoglycaemic subjects; p=1.00×10(-41) ) and six other variants with T2D risk (17,915 T2D cases/27,531 normoglycaemic individuals: n=40,629 to 130,001; all p<0.001 for SH2B1 rs7498665, FAIM2 rs7138803, TMEM18 rs7561317, GNPDA2 rs10938397, BDNF rs925946 and NEGR1 rs2568958). After adjustment for BMI, the association remained statistically significant for four of the seven variants (all p<0.05 for FTO rs9939609, SH2B1 rs7498665, FAIM2 rs7138803, GNPDA2 rs10938397). Subgroup analysis by ethnicity demonstrated similar results. This meta-analysis indicates that several BMI-associated variants are significantly associated with T2D risk. Some variants increase the T2D risk independent of obesity, while others mediate this risk through obesity. This article is protected by copyright. All rights reserved.
    Full-text · Article · Feb 2014 · Clinical Endocrinology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic variation associated with human leukocyte antigen (HLA) genes has immunological functions and is associated with autoimmune diseases. To date, large-scale studies involving classical HLA genes have been limited by time-consuming and expensive HLA-typing technologies. To reduce these costs, single-nucleotide polymorphisms (SNPs) have been used to predict HLA-allele types. Although HLA allelic distributions differ among populations, most prediction model of HLA genes are based on Caucasian samples, with few reported studies involving non-Caucasians. Our sample consisted of 437 Han Chinese with Affymetrix 5.0 and Illumina 550 K SNPs, of whom 214 also had data on Affymetrix 6.0 SNPs. All individuals had HLA typings at a 4-digit resolution. Using these data, we have built prediction model of HLA genes that are specific for a Han Chinese population. To optimize our prediction model of HLA genes, we analyzed a number of critical parameters, including flanking-region size, genotyping platform, and imputation. Predictive accuracies generally increased both with sample size and SNP density. SNP data from the HapMap Project are about five times more dense than commercially available genotype chip data. Using chips to genotype our samples, however, only reduced the accuracy of our HLA predictions by only ~3%, while saving a great deal of time and expense. We demonstrated that classical HLA alleles can be predicted from SNP genotype data with a high level of accuracy (80.37% (HLA-B) ~95.79% (HLA-DQB1)) in a Han Chinese population. This finding offers new opportunities for researchers in obtaining HLA genotypes via prediction using their already existing chip datasets. Since the genetic variation structure (e.g. SNP, HLA, Linkage disequilibrium) is different between Han Chinese and Caucasians, and has strong impact in building prediction models for HLA genes, our findings emphasize the importance of building ethnic-specific models when analyzing human populations.
    Full-text · Article · Jan 2014 · BMC Genomics

Publication Stats

5k Citations
902.38 Total Impact Points

Institutions

  • 2004-2015
    • Academia Sinica
      • Institute of Biomedical Sciences
      T’ai-pei, Taipei, Taiwan
  • 2004-2012
    • China Medical University Hospital
      • Department of Radiology
      臺中市, Taiwan, Taiwan
  • 1998-2004
    • Taichung Hospital
      臺中市, Taiwan, Taiwan