Chan-Sik Kim

Korea Institute of Oriental Medicine, 부천시, Gyeonggi-do, South Korea

Are you Chan-Sik Kim?

Claim your profile

Publications (55)132.14 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ocular pathologic angiogenesis is an important causative risk factor of blindness in retinopathy of prematurity, proliferative diabetic retinopathy, and neovascular macular degeneration. Guibi-tang (GBT) is a frequently used oriental herbal formula in East Asian countries, and is also called Qui-pi-tang in Chinese and Kihi-To in Japanese. In the present study, we investigated the preventive effect of GBT on retinal pathogenic neovascularization in a mouse model of oxygen-induced retinopathy (OIR). C57BL/6 mice were exposed to 75% hyperoxia for five days on postnatal day 7 (P7). The mice were then exposed to room air from P12 to P17 to induce ischemic proliferative retinopathy. GBT (50 or 100 mg/kg/day) was intraperitoneally administered daily for five days (from P12 to P16). On P17, Retinal neovascularization was measured on P17, and the expression levels of 55 angiogenesis-related factors were analyzed using protein arrays. GBT significantly decreased retinal pathogenic angiogenesis in OIR mice, and protein arrays revealed that GBT decreased PAI-1 protein expression levels. Quantitative real-time PCR revealed that GBT reduced vascular endothelial growth factor (VEGF), fibroblast growth factor 2 (FGF2), and plasminogen activator inhibitor 1 (PAI-1) mRNA levels in OIR mice. GBT promotes potent inhibitory activity for retinal neovascularization by decreasing VEGF, FGF2, and PAI-1 levels.
    Preview · Article · Dec 2015 · International Journal of Molecular Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Retinal neovascularization is a common cause of vision loss in proliferative diabetic retinopathy, retinopathy of prematurity and age-related macular degeneration. Samul-tang (SMT) is a widely used traditional herbal medicine in East Asia and is also known as Shimotsu-to in Japanese and Si-Wu decoction in Chinese. This study was designed to evaluate the inhibitory effect of SMT on retinal pathogenic angiogenesis in a mouse model of oxygen-induced retinopathy (OIR). The mice were exposed to a 75 % concentration of oxygen for five days, starting on postnatal day 7 (P7-P12). The mice were then exposed to room air and were intraperitoneally injected with SMT (10 mg/kg or 50 mg/kg) once per day for five days (P12-P16). On P17, we measured retinal neovascularization and evaluated both the expression of angiogenesis-related proteins and changes in the gene expression level in the mRNA. SMT reduced the area of the central retina and reduced retinal neovascularization in OIR mice. The protein array revealed that SMT reduced the level of SDF-1 protein expression. Quantitative real-time PCR revealed that the HIF-1α, SDF-1, CXCR4 and VEGF mRNA levels in the retinas of OIR mice were elevated compared with those of normal control mice. However, SMT decreased the levels of HIF-1α, SDF-1, CXCR4 and VEGF mRNA in OIR mice. We are the first to elucidate that SMT inhibits the retinal pathogenic angiogenesis induced by ischemic retinopathy in OIR mice. SMT significantly inhibited retinal neovascularization by downregulating HIF-1α, SDF-1, CXCR4 and VEGF. Based on the results of our study, SMT could be a useful herbal medicine for treating ischemic retinopathy.
    Preview · Article · Dec 2015 · BMC Complementary and Alternative Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the pathophysiology of diabetic retinopathy (DR), advanced glycation end products (AGEs) and vascular endothelial growth factor (VEGF) are thought to have important roles. It is known that VEGF causes a breakdown of the blood‑retinal barrier (BRB) and retinal neovascularization; however, how AGEs affect the retina has largely remained elusive. OSSC1E‑K19 is a novel phytochemical component of Osteomeles schwerinae. The objective of the present study was to evaluate the protective effects of OSSC1E‑K19 on retinal vascular injury in AGE‑modified rat serum albumin (AGE-RSA)-induced retinopathy. AGE-RSA-injected rat eyes were used investigate the protective effects of OSSC1E‑K19 on BRB breakdown. Intravitreal injection of OSSC1E-K19 prevented AGE-RSA-induced BRB breakdown and decreased retinal VEGF expression in retinal vessels. In addition, OSSC1E-K19 inhibited the loss of occludin, a significant tight junction protein. These results supported the potential therapeutic utility of OSSC1E-K19 for retinal vascular permeability diseases.
    Preview · Article · Oct 2015 · Molecular Medicine Reports
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the retina, a number of degenerative diseases, including glaucoma, diabetic retinopathy, and age-related macular degeneration, may occur as a result of aging. Oxidative damage is believed to contribute to the pathogenesis of aging as well as to age-related retinal disease. Although physiological exercise has been shown to reduce oxidative stress in rats and mice, it is not known whether it has a similar effect in retinal tissues. The aim of this study was to evaluate retinal oxidative stress in naturally-aged mice. In addition, we evaluated the effects of aerobic training on retinal oxidative stress by immunohistochemically evaluating oxidative stress markers. A group of twelve-week-old male mice were not exercised (young control). Two groups of twenty-two-month-old male mice were created: an old control group and a treadmill exercise group. The old control group mice were not exercised. The treadmill exercise group mice ran on a treadmill (5 to 12 m/min, 30 to 60 min/day, 3 days/week for 12 weeks). The retinal thickness and number of cells in the ganglion cell layer of the naturally-aged mice were reduced compared to those in the young control mice. However, treadmill exercise reversed these morphological changes in the retinas. We evaluated retinal expression of carboxymethyllysine (CML), 8-hydroxy-2'-deoxyguanosine (8-OHdG) and nitrotyrosine. The retinas from the aged mice showed increased CML, 8-OHdG, and nitrotyrosine immunostaining intensities compared to young control mice. The exercise group exhibited significantly lower CML levels and nitro-oxidative stress than the old control group. These results suggest that regular exercise can reduce retinal oxidative stress and that physiological exercise may be distinctly advantageous in reducing retinal oxidative stress.
    Full-text · Article · Sep 2015 · International Journal of Molecular Sciences
  • [Show abstract] [Hide abstract]
    ABSTRACT: Retinal pericyte loss and neovascularization are characteristic features of diabetic retinopathy. Gemigliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, has shown robust blood-glucose lowering effects in type 2 diabetic patients, but its effects on diabetic retinopathy have not yet been reported. We evaluated the efficacy of gemigliptin on retinal vascular leakage in db/db mice, which is an animal model for type 2 diabetes, and neovascularization in oxygen-induced retinopathy (OIR) mice, which is an animal model for ischemic proliferative retinopathy. Gemigliptin (100mg/kg/day) was orally administered to the db/db mice for 12weeks. C57BL/6 mice on postnatal day 7 (P7) were exposed to 75% hyperoxia for 5days, followed by exposure to room air from P12 to P17 to induce OIR. Gemigliptin (50mg/kg/day) was intraperitoneally injected daily from P12 to P17. Retinal neovascularization was analyzed in flat-mounted retinas on P17. We determined the efficacy and possible mechanism of gemigliptin on high glucose-induced apoptosis of primary human retinal pericytes. The oral administration of gemigliptin for 4months significantly ameliorated retinal pericyte apoptosis and vascular leakage in the db/db mice. Gemigliptin also ameliorated retinal neovascularization in the OIR mice. Gemigliptin attenuated the overexpression of plasminogen activator inhibitor-1 (PAI-1) in the retinas of diabetic and OIR mice. Gemigliptin and PAI-1 siRNA significantly inhibited pericyte apoptosis by inhibiting the overexpression of PAI-1, which is induced by high glucose. Our results suggest that gemigliptin has potent anti-angiogenic and anti-apoptotic activities via suppressing DPP-4 and PAI-1, and the results support the direct retinoprotective action of gemigliptin.
    No preview · Article · Sep 2015 · Biochimica et Biophysica Acta
  • [Show abstract] [Hide abstract]
    ABSTRACT: Advanced glycation end products (AGEs) are involved in the development of diabetic complications such as diabetic retinopathy. 5'-methoxybiphenyl-3,4,3'-triol (referred to as K24) was isolated using bioactivity-guided fractionation of Osteomeles schwerinae C. K. Schneid. and identified as a potent AGE inhibitor. To identify the protective effect of K24 on disruption of the blood-retinal barrier, AGE-RSA was intravitreally injected into rat eyes. K24 had an inhibitory effect on AGE-RSA-induced retinal vascular leakage by suppressing the expression of vascular endothelial growth factor (VEGF) and decreasing the loss of occludin. In addition, we examined whether K24 has a preventive effect against retinal pathogenic angiogenesis in an oxygen-induced retinopathy (OIR) mouse model. K24 significantly reduced the retinal non-perfused area and neovascular tufts in the OIR mice. These data indicate that K24 could serve as an innovative pharmaceutical agent to prevent blood-retinal barrier breakage and retinal pathogenic angiogenesis through an anti-VEGF mechanism. Copyright © 2015. Published by Elsevier B.V.
    No preview · Article · Apr 2015 · European journal of pharmacology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The retinal accumulation of advanced glycation end products (AGEs) is a condition, which is found in diabetic retinopathy. The purpose of the present study was to investigate the protective effect of Litsea japonica extract (LJE) and to elucidate its underlying protective mechanism in model diabetic db/db mice. Male, 7 ‑week‑old db/db mice were treated with LJE (100 or 250 mg/kg body weight) once a day orally for 12 weeks. The expression levels of AGEs and their receptor (RAGE) were subsequently assessed by immunohistochemistry. An electrophoretic mobility shift assay and southwestern histochemistry were used to detect activated nuclear factor κB (NF‑κB). The immunohistochemical analysis demonstrated that LJE significantly reduced the expression levels of the AGEs and RAGE in the neural retinas of the db/db mice. LJE markedly inhibited the apoptosis of retinal ganglion cells. In addition, LJE suppressed the activation of NF‑κB. These results suggested that LJE may be beneficial for the treatment of diabetes‑induced retinal neurodegeneration, and the ability of LJE to attenuate retinal ganglion cell loss may be mediated by inhibition of the accumulation of AGEs.
    Preview · Article · Mar 2015 · Molecular Medicine Reports
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aldose reductase (AR) is the first and rate-limiting enzyme of the polyol pathway. AR-dependent synthesis of excess polyols leads to lens opacification in diabetic cataract. The purpose of this study is to investigate the protective effect of Litsea japonica extract (LJE) on diabetes-induced lens opacification and its protective mechanism in db/db mice. Seven-week-old male db/db mice were treated with LJE (100 and 250 mg/kg body weight) once a day orally for 12 weeks. LJE dose dependently inhibited rat lens aldose reductase activity in vitro (IC50 = 13.53 ± 0.74 µg/mL). In db/db mice, lens was slightly opacified, and lens fiber cells were swollen and ruptured. In addition, lenticular sorbitol accumulation was increased in db/db mice. However, the administration of LJE inhibited these lenticular sorbitol accumulation and lens architectural changes in db/db mice. Our results suggest that LJE might be beneficial for the treatment of diabetes-induced lens opacification. The ability of LJE to suppress lenticular sorbitol accumulation may be mediated by the inhibition of AR activity.
    Preview · Article · Feb 2015 · Evidence-based Complementary and Alternative Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Many dietary supplements have been sold through advertising their large number of beneficial effects. The aim of this study was to determine whether bilberries (Vaccinium myrtillus) help to prevent diabetes-induced retinal vascular dysfunction in vivo. V. myrtillus extract (VME; 100 mg/kg) was orally administered to streptozotocin-induced diabetic rats for 6 weeks. All diabetic rats exhibited hyperglycemia, and VME did not affect the blood glucose levels and body weight during the experiments. In the fluorescein-dextran angiography, the fluorescein leakage was significantly reduced in diabetic rats treated with VME. VME treatment also decreased markers of diabetic retinopathy, such as retinal vascular endothelial growth factor (VEGF) expression and degradation of zonula occludens-1, occludin and claudin-5 in diabetic rats. In conclusion, VME may prevent or delay the onset of early diabetic retinopathy. These findings have important implications for prevention of diabetic retinopathy using a dietary bilberry supplement.
    No preview · Article · Jan 2015 · International Journal of Food Sciences and Nutrition
  • Junghyun Kim · Chan-Sik Kim · Min Kyong Moon · Jin Sook Kim
    [Show abstract] [Hide abstract]
    ABSTRACT: The accumulation of advanced glycation end products (AGEs) is associated with many of the complications of diabetes mellitus, including diabetic retinopathy. AGE-breakers, such as N-phenacylthiazolium and alagebrium, have been proposed as therapeutic agents for reversing the increase in protein crosslinking in diabetes. (-)-Epicatechin is a major dietary flavonoid with a wide range of health-promoting biological activities. The aim of this study was to determine the potential effect of (-)-epicatechin in reducing the burden of AGEs in vitro and in vivo and to evaluate whether the reduced AGE burden could translate into improvement in retinal vascular function in exogenously AGE-injected rats. Glycated human serum albumin was purified from patients with diabetes. The breakdown of the already formed AGEs was studied by treating glycated human serum albumin with (-)-epicatechin. To study the effect of (-)-epicatechin on retinal vascular function, exogenously AGE-injected rats were treated with (-)-epicatechin (50 and 100mg/kg i.p.) for two weeks. Apoptosis of retinal vascular cells was quantified using TUNEL staining. The AGE load in the retinas was determined via immunohistochemical staining and western blot analysis. (-)-Epicatechin was able to break preformed glycated human serum albumin in vitro as well as reduce AGE accumulation in retinas in vivo in a dose dependent manner. In exogenously AGE-injected rats, treatment with (-)-epicatechin was evidenced by an improved retinal vascular apoptosis. AGE burden in retinas was also reduced upon treatment. This study suggests that (-)-epicatechin could represent a valuable drug for the treatment of diabetic retinopathy by reducing the AGE burden. Copyright © 2014. Published by Elsevier B.V.
    No preview · Article · Dec 2014 · European Journal of Pharmacology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Platelet-derived growth factor-BB (PDGF-BB) is highly expressed in the renal tissues of patients with diabetic nephropathy, and it plays an important role in the initiation and progression of diabetic nephropathy. The aim of this study was to evaluate the protective effects of root of Polygonum cuspidatum extract (PCE) on early renal glomerular proliferation in streptozotocin (STZ)-induced diabetic rats. PCE (100, 350 mg/kg/day) was administered to diabetic rats for 16 weeks. Blood glucose and albuminuria were measured. Renal histology, alpha-smooth muscle actin (alpha-SMA), and proliferating cell nuclear antigen (PCNA) expression levels were also examined. After 16 weeks of treatment with PCE, severe hyperglycemia and albuminuria were observed in the diabetic rats. The expressions levels of alpha-SMA and PCNA proteins were significantly increased in the glomeruli of the diabetic rats. The expression levels of PDGF-BB and its receptor expressions were greatly increased in the glomeruli of the diabetic rats. However, PCE markedly reduced albuminuria in the diabetic rats. PCE inhibited alpha-SMA and PCNA up-regulation and ameliorated PDGF-BB and PEGFR-Ss protein expression in the diabetic rats. In addition, the binding of PDGF-BB/PDGFR-Ss was inhibited by PCE as shown by an in vitro assay. These results suggest that PCE has an inhibitory effect on mesangial proliferation in diabetic renal tissues via the inhibition of the interaction of PDGF-BB with its receptor. PCE may have beneficial effects in preventing the progression of diabetic nephropathy.
    Preview · Article · Dec 2014 · BMC Complementary and Alternative Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: HL-217 is a new synthetic angiogenesis inhibitor. Platelet derived growth factor (PDGF) is a vasoactive factor and has been implicated in proliferative retinopathies. In this study, we examined the mechanism of action and efficacy of topical application of HL-217 on subretinal neovascularization in very low-density lipoprotein receptor knockout (Vldlr−/−) mice. In three-week-old male Vldlr−/− mice, HL-217 (1.5 or 3 mg/ml) was administered twice per day for 4 weeks by topical eye drop instillation. Neovascular areas were then measured. We used a protein array to evaluate the expression levels of angiogenic factors. The inhibitory effect of HL-217 on the PDGF-BB/PDGFRβ interaction was evaluated in vitro. The neovascular area in the Vldlr−/− mice was significantly reduced by HL-217. Additionally, HL-217 decreased the expression levels of PDGF-BB protein and VEGF mRNA. Moreover, HL-217 dose-dependently inhibited the PDGF-BB/PDGFRβ interaction (IC50 = 38.9 ± 0.7 μM). These results suggest that HL-217 is a potent inhibitor of PDGF-BB. HL-217, when applied topically, is an effective inhibitor of subretinal neovascularization due to its ability to inhibit the pro-angiogenic effects of PDGF-BB.
    No preview · Article · Nov 2014 · Biochemical and Biophysical Research Communications
  • [Show abstract] [Hide abstract]
    ABSTRACT: Retinal neovascularization is a common pathology in age-related macular degeneration, retinopathy of prematurity and proliferative diabetic retinopathy. Platelet derived growth factor (PDGF) is a vasoactive factor and has been implicated in proliferative retinopathies. Oxygen-induced retinopathy in the mouse is the standard experimental model of proliferative retinopathies. Sipjeondaebo-tang (SDT) is the most widely used traditional herbal formula in East Asia, also known as Shi-Quan-Da-Bu-Tang in Chinese and Juzen-taiho-to in Japanese. SDT has been known to exert anti-angiogenic activities in several tumor models, but the role of SDT in proliferative retinopathies remains unclear. Thus, the object of the present study is to examine the mechanism of action and efficacy of SDT on retinal neovascularization in oxygen-induced ischemic retinopathy (OIR) mice. Neonatal mice at postnatal day 7 (P7) were exposed to 75% concentration of oxygen for 5 days (P7-P12), and then returned to room air from P12 to P17 to induce retinal neovascularization. SDT were administered once per day for 5 consecutive days (P12-P16) by intraperitoneal injection. Retinal neovascularization was measured at P17. We used a protein array to evaluate the expression levels of angiogenic factors. Inhibitory activity of SDT on PDGF-BB/PDGFRβ interaction was evaluated in vitro. Retinal neovascularization in the OIR mice was significantly decreased by SDT. SDT decreased the expression levels of PDGF-BB protein and VEGF mRNA. Moreover, SDT dose-dependently inhibited PDGF-BB/PDGFRβ interaction (IC50 = 388.82 ± 7.31 µg/ml). In conclusion, SDT is a potent inhibitor of retinal neovascularization through inhibiting the pro-angiogenic effect of PDGF-BB.
    No preview · Article · Nov 2014 · The Tohoku Journal of Experimental Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: Advanced glycation end products (AGE) have been implicated in the development of diabetic retinopathy. Characterization of the early stages of diabetic retinopathy is retinal pericytes loss, which is the result of pericytes migration. In this study, we investigated the pathological mechanisms of AGE on the migration of retinal pericytes and confirmed the inhibitory effect of myricetin on migration in vitro and in vivo. Migration assays of bovine retinal pericytes (BRP) were induced using AGE-BSA and phosphorylation of Src, ERK1/2, focal adhesion kinase (FAK-1) and paxillin were determined using immunoblot analysis. Sprague-Dawley rats (6 weeks old) were injected intravitreally with AGE-BSA and morphological and immunohistochemical analysis of p-FAK-1 and p-paxillin were performed in the rat retina. Immunoblot analysis and siRNA transfection were used to study the molecular mechanism of myricetin on BRP migration. AGE-BSA increased BRP migration in a dose-dependent manner via receptor for AGEs (RAGE)-dependent activation of the Src kinase-ERK1/2 pathway. AGE-BSA-induced migration was inhibited by an ERK1/2 specific inhibitor (PD98059), but not by p38 and Jun N-terminal kinase inhibitors. AGE-BSA increased FAK-1 and paxillin phosphorylation in a dose- and time-dependent manner. These increases were attenuated by PD98059 and ERK1/2 siRNA. Phosphorylation of FAK-1 and paxillin were increased in response to AGE-BSA-induced migration of rat retinal pericytes. Myricetin strongly inhibited ERK1/2 phosphorylation and significantly suppressed pericytes migration in AGE-BSA-injected rats. Our results demonstrate that AGE-BSA participated in the pathophysiology of retinal pericytes migration likely through the RAGE-Src-ERK1/2-FAK-1-paxillin signaling pathway. Furthermore, myricetin suppressed phosphorylation of ERK 1/2-FAK-1-paxillin and inhibited pericytes migration.
    No preview · Article · Oct 2014 · Biochemical Pharmacology
  • Sok Park · Chan-Sik Kim · Jinah Min · Soo Hwan Lee · Yi-Sook Jung
    [Show abstract] [Hide abstract]
    ABSTRACT: Declining renal function is commonly observed with age. Obesity induced by a high-fat diet (HFD) may reduce renal function. Korean red ginseng (KRG) has been reported to ameliorate oxidative tissue injury and have an anti-aging effect. This study was designed to investigate whether HFD would accelerate the D-galactose-induced aging process in the rat kidney and to examine the preventive effect of KRG on HFD and D-galactose-induced aging-related renal injury. When rats with D-galactose-induced aging were fed an HFD for 9 wk, enhanced oxidative DNA damage, renal cell apoptosis, protein glycation, and extracellular high mobility group box 1 protein (HMGB1), a signal of tissue damage, were observed in renal glomerular cells and tubular epithelial cells. However, treatment of rats with HFD- plus D-galactose-induced aging with KRG restored all of these renal changes. Our data suggested that a long-term HFD may enhance D-galactose-induced oxidative renal injury in rats and that this age-related renal injury could be suppressed by KRG through the repression of oxidative injury.
    No preview · Article · Aug 2014 · Journal of Nutritional Science and Vitaminology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chronic hyperglycemia leads to the formation of advanced glycation end products (AGEs), which accelerates the development of diabetic complications. Previous studies have shown that extract of Cassiae semen (CS), the seed of Cassia tora, has inhibitory activity on AGEs formation in vitro and reduces transforming growth factor-beta1 (TGF-β1) and extracellular matrix protein expression via inhibition of AGEs-mediated signaling in glomerular mesangial cells. In this study, to examine the preventive effects of CS extract on the development of diabetic nephropathy in vivo, streptozotocin (STZ)-injected diabetic rats were orally administered CS extract (200mg/kg body weight/day) for 12 weeks. Serum glucose, triglycerides, and total cholesterol in diabetic rats were significantly higher compared to control rats. CS or aminoguanidine (AG) treatment significantly reduced these factors. Proteinuria and creatinine clearance were also significantly decreased in the CS-treated group compared with the untreated diabetic group. The CS-treated group had significantly inhibited COX-2 mRNA and protein, which mediates the symptoms of inflammation in the renal cortex of diabetic rats. Furthermore, histopathological studies of kidney tissue showed that in diabetic rats, AGEs, the receptor for AGEs, TGF-β1, and collagen IV were suppressed by CS treatment. Our data suggest that oral treatment of CS can inhibit the development of diabetic nephropathy via inhibition of AGEs accumulation in STZ-induced diabetic rats.
    No preview · Article · Dec 2013 · Phytomedicine: international journal of phytotherapy and phytopharmacology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Loss of blood-retinal barrier (BRB) properties is an important feature in the pathology of diabetic retinopathy. Endothelium integrity is important for the normal vascular function. Litsea japonica (Thunb.) Jussieu is a Korean native plant that is consumed as a vegetable food. In this study, we evaluated the ability of an ethanol extract of L. japonica to prevent retinal vascular leakages in db/db mice, which is an animal model of type II diabetes. L. japonica extracts (LJE, 100 and 250 mg/kg) were administered once a day, orally, for 12 weeks. Vehicle-treated db/db mice exhibited hyperglycemia and retinal vascular leakage. LJE treatment blocked diabetes-induced BRB breakdown and decreased retinal VEGF expression in db/db mice. LJE also inhibited the degradation of occludin, which is an important tight junction protein. These findings support the potential therapeutic usefulness of L. japonica for retinal vascular permeability diseases.
    No preview · Article · Nov 2013 · Endocrine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Retinal pathogenic angiogenesis in the eyes is a causative factor in retinopathy of prematurity, diabetic retinopathy, and age-related macular degeneration. This study was designed to examine the pathogenic role of the high-mobility group box-1 (HMGB1) protein and the inhibitory effect of ethyl pyruvate (EP), a well-known antioxidant substance, in retinal pathogenic angiogenesis in mice with oxygen-induced retinopathy (OIR), one of the animal models of proliferative ischemic retinopathy. The OIR mouse model was used for our in vivo studies. The mice were exposed to 75% oxygen from postnatal day 7 (P7) to P11, after which the mice were brought to room air and intraperitoneally injected with EP (50 mg/kg, or 100 mg/kg) for five days. At P17, the mice were perfused with fluorescein isothiocyanate-dextran, and flat-mounted retinas were used to measure nonperfused and neovascular tufts. In OIR mice, an intraperitoneal injection of EP reduced the nonperfused retinal area in the treatment group and significantly reduced the retinal neovascular tufts. In addition, EP inhibited the overexpression of HMGB1 in the retinas of OIR mice. These data suggest that EP could serve as an innovative pharmaceutical agent to prevent retinal neovascularization through inhibiting HMGB1 expression.
    Preview · Article · Nov 2013 · Journal of Diabetes Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: KIOM-79, a herbal mixture of parched Puerariae radix, gingered Magnoliae cortex, Glycyrrhizae radix, and Euphorbiae radix, has a strong inhibitory effect on advanced glycation end products (AGEs) formation. We investigated the beneficial effects of KIOM-79 on cardiac fibrosis in Zucker diabetic fatty (ZDF) rats. KIOM-79 (50 or 500 mg/kg/day) was orally administered for 13 weeks. AGEs formation and collagen expression in the myocardium were assessed by immunohistochemistry. The expression levels of the receptor for AGEs (RAGE), transforming growth factor- β 1 (TGF- β 1), collagen IV, fibronectin, urotensin II, and urotensin II receptor were examined in the myocardial tissue of ZDF rats. KIOM-79 treatment at 500 mg/kg inhibited the accumulation of AGEs, reduced RAGE mRNA and protein expression, and reduced the upregulation of cardiac fibrogenic factors, such as fibronectin and collagen IV, in heart of ZDF rats. Additionally, KIOM-79 ameliorated urotensin II/receptor gene expression in the cardiac tissue of ZDF rats. Our findings indicate that KIOM-79 diminishes cardiac fibrosis in ZDF rats by preventing AGEs accumulation and RAGE overexpression and by modulating the cardiac urotensin II/receptor pathway, which decreases the amount of profibrotic factors, such as TGF- β 1, fibronectin, and collagen in cardiac tissue.
    Preview · Article · Nov 2013 · Evidence-based Complementary and Alternative Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cataracts are a major cause of human blindness. Aldose reductase (AR) is an important rate-limiting enzyme that contributes to cataract induction in diabetic patients. Scopoletin is the main bioactive constituent of flower buds from Magnolia fargesii and is known to inhibit AR activity. To assess scopoletin's ability to mitigate sugar cataract formation in vivo, we studied its effects in a rat model of dietary galactose-induced sugar cataracts. Galactose-fed rats were orally dosed with scopoletin (10 or 50 mg/kg body weight) once a day for 2 weeks. Administering scopoletin delayed the progression of the cataracts that were induced by dietary galactose. Scopoletin also prevented galactose-induced changes in lens morphology, such as lens fiber swelling and membrane rupture. Scopoletin's protective effect against sugar cataracts was mediated by inhibiting both AR activity and oxidative stress. These results suggest that scopoletin is a useful treatment for sugar cataracts.
    Preview · Article · Sep 2013 · Evidence-based Complementary and Alternative Medicine