Christopher J François

University of Wisconsin–Madison, Madison, Wisconsin, United States

Are you Christopher J François?

Claim your profile

Publications (118)348.25 Total impact

  • Source

    Full-text · Article · Jan 2016 · Journal of Cardiovascular Magnetic Resonance
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The performance of contrast enhanced pulmonary magnetic resonance angiography (MRA) for the diagnosis of pulmonary embolism (PE) is an effective non-ionizing alternative to contrast enhanced computed tomography and nuclear medicine ventilation/perfusion scanning. However, the technical success of these exams is very dependent on careful attention to the details of the MRA acquisition protocol and requires reader familiarity with MRI and its artifacts. Most practicing radiologists are very comfortable with the performance and interpretation of computed tomographic angiography (CTA) performed to detect pulmonary embolism but not all are as comfortable with the use of MRA in this setting. The purpose of this review is to provide the general radiologist with the tools necessary to build a successful pulmonary embolism MRA program. This review will cover in detail image acquisition, image interpretation, and some key elements of outreach that help to frame the role of MRA to consulting clinicians and hospital administrators. It is our aim that this resource will help build successful clinical pulmonary embolism MRA programs that are well received by patients and physicians, reduce the burden of medical imaging radiation, and maintain good patient outcomes.
    Full-text · Article · Dec 2015
  • Source
    Omid Forouzan · Jared Warczytowa · Oliver Wieben · Christopher J. François · Naomi C. Chesler
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Exercise stress tests are commonly used in clinical settings to monitor the functional state of the heart and vasculature. Large artery stiffness is one measure of arterial function that can be quantified noninvasively during exercise stress. Changes in proximal pulmonary artery stiffness are especially relevant to the progression of pulmonary hypertension (PH), since pulmonary artery (PA) stiffness is the best current predictor of mortality from right ventricular failure. Methods: Cardiovascular magnetic resonance (CMR) was used to investigate the effect of exercise stress on PA pulse wave velocity (PWV) and relative area change (RAC), which are both non-invasive measures of PA stiffness, in healthy subjects. All 21 subjects (average age 26 ± 4 years; 13 female and 8 male) used a custom-made MR-compatible stepping device to exercise (two stages of mild-to-moderate exercise of 3-4 min duration each) in a supine position within the confines of the scanner. To measure the cross-sectional area and blood flow velocity in the main PA (MPA), two-dimensional phase-contrast (2D-PC) CMR images were acquired. To measure the reproducibility of metrics, CMR images were analyzed by two independent observers. Inter-observer agreements were calculated using the intraclass correlation and Bland-Altman analysis. Results: From rest to the highest level of exercise, cardiac output increased from 5.9 ± 1.4 L/min to 8.2 ± 1.9 L/min (p < 0.05), MPA PWV increased from 1.6 ± 0.5 m/s to 3.6 ± 1.4 m/s (p < 0.05), and MPA RAC decreased from 0.34 ± 0.11 to 0.24 ± 0.1 (p < 0.05). While PWV also increased from the first to second exercise stage (from 2.7 ± 1.0 m/s to 3.6 ± 1.4 m/s, p < 0.05), there was no significant change in RAC between the two exercise stages. We found good inter-observer agreement for quantification of MPA flow, RAC and PWV. Conclusion: These results demonstrate that metrics of MPA stiffness increase in response to acute moderate exercise in healthy subjects and that CMR exercise stress offers great potential in clinical practice to noninvasively assess vascular function.
    Full-text · Article · Dec 2015 · Journal of Cardiovascular Magnetic Resonance
  • Arlene Sirajuddin · Christopher J. François · Jeffrey P. Kanne
    [Show abstract] [Hide abstract]
    ABSTRACT: Diseases that affect the pulmonary vasculature encompass a broad range of conditions including acute and chronic pulmonary thromboembolism, pulmonary hypertension, vasculitis, malignancy, and various congenital abnormalities. Imaging modalities available to evaluate diseases of the pulmonary vasculature include radiography, computed tomography, magnetic resonance imaging, and scintigraphy. This article reviews the role of imaging in a variety of pulmonary vascular diseases, highlighting advantages and disadvantages, as well as illustrating imaging findings of these diseases.
    No preview · Article · Nov 2015 · Clinical Pulmonary Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose To demonstrate the feasibility of free-breathing three-dimensional (3D) radial ultrashort echo time (UTE) magnetic resonance (MR) imaging in the simultaneous detection of pulmonary embolism (PE) and high-quality evaluation of lung parenchyma. Materials and Methods The institutional animal care committee approved this study. A total of 12 beagles underwent MR imaging and computed tomography (CT) before and after induction of PE with autologous clots. Breath-hold 3D MR angiography and free-breathing 3D radial UTE (1.0-mm isotropic spatial resolution; echo time, 0.08 msec) were performed at 3 T. Two blinded radiologists independently marked and graded all PEs on a four-point scale (1 = low confidence, 4 = absolutely certain) on MR angiographic and UTE images. Image quality of pulmonary arteries and lung parenchyma was scored on a four-point-scale (1 = poor, 4 = excellent). Locations and ratings of emboli were compared with reference standard CT images by using an alternative free-response receiver operating characteristic curve (AFROC) method. Areas under the curve and image quality ratings were compared by using the F test and the Wilcoxon signed-rank test. Results A total of 48 emboli were detected with CT. Both readers showed higher sensitivity for PE detection with UTE (83% and 79%) than with MR angiography (75% and 71%). The AFROC area under the curve was higher for UTE than for MR angiography (0.95 vs 0.89), with a significant difference in area under the curve of 0.06 (95% confidence interval: 0.01, 0.11; P = .018). UTE image quality exceeded that of MR angiography for subsegmental arteries (3.5 ± 0.7 vs 2.9 ± 0.5, P = .002) and lung parenchyma (3.8 ± 0.5 vs 2.2 ± 0.2, P < .001). The apparent signal-to-noise ratio in pulmonary arteries and lung parenchyma was significantly higher for UTE than for MR angiography (41.0 ± 5.2 vs 24.5 ± 6.2 [P < .001] and 10.2 ± 1.8 vs 3.5 ± 0.8 [P < .001], respectively). The apparent contrast-to-noise ratio between arteries and PEs was higher for UTE than for MR angiography (20.3 ± 5.2 vs 15.4 ± 6.7, P = .055). Conclusion In a canine model, free-breathing 3D radial UTE performs better than breath-hold 3D MR angiography in the detection of PE and yields better image quality for visualization of small vessels and lung parenchyma. Free-breathing 3D radial UTE for detection of PE is feasible and warrants evaluation in human subjects. (©) RSNA, 2015.
    No preview · Article · Sep 2015 · Radiology
  • Peter Bannas · Christopher J François · Scott B Reeder
    [Show abstract] [Hide abstract]
    ABSTRACT: The magnetic resonance angiography (MRA) toolbox includes a wide array of versatile methods for diagnosis and therapy planning in patients with a variety of upper extremity vascular pathologies. MRA can provide excellent image quality with high spatial and high temporal resolution without the disadvantages of ionizing radiation, iodinated contrast, and operator dependency. Contrast-enhanced techniques are preferred for their robustness, image quality, and shorter scan times. This article provides an overview of the available MRA techniques and a description of the clinical entities that are well suited for evaluation with contrast-enhanced MRA. Copyright © 2015 Elsevier Inc. All rights reserved.
    No preview · Article · Aug 2015 · Magnetic resonance imaging clinics of North America
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cross-sectional imaging of the heart utilizing computed tomography and magnetic resonance imaging (MRI) has been shown to be superior for the evaluation of cardiac morphology and systolic function in humans compared to echocardiography. The purpose of this prospective study was to test the effects of two different anesthetic protocols on cardiac measurements in 10 healthy beagle dogs using 64-multidetector row computed tomographic angiography (64-MDCTA), 3T magnetic resonance (MRI) and standard awake echocardiography. Both anesthetic protocols used propofol for induction and isoflourane for anesthetic maintenance. In addition, protocol A used midazolam/fentanyl and protocol B used dexmedetomedine as premedication and constant rate infusion during the procedure. Significant elevations in systolic and mean blood pressure were present when using protocol B. There was overall good agreement between the variables of cardiac size and systolic function generated from the MDCTA and MRI exams and no significant difference was found when comparing the variables acquired using either anesthetic protocol within each modality. Systolic function variables generated using 64-MDCTA and 3T MRI were only able to predict the left ventricular end diastolic volume as measured during awake echocardiogram when using protocol B and 64-MDCTA. For all other systolic function variables, prediction of awake echocardiographic results was not possible (P = 1). Planar variables acquired using MDCTA or MRI did not allow prediction of the corresponding measurements generated using echocardiography in the awake patients (P = 1). Future studies are needed to validate this approach in a more varied population and clinically affected dogs. © 2015 American College of Veterinary Radiology.
    No preview · Article · Jun 2015 · Veterinary Radiology & Ultrasound
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pulmonary arteries (PAs) distend to accommodate increases in cardiac output. PA distensibility protects the right ventricle (RV) from excessive increases in pressure. Loss of PA distensibility plays a critical role in the fatal progression of pulmonary arterial hypertension (PAH) towards RV failure. However, it is unclear how PA distensibility is distributed across the generations of PA branches, mainly because of the lack of appropriate in vivo methods to measure distensibility of vessels other than the large, conduit PAs. In this study we propose a novel approach to assess the distensibility of individual PA branches. The metric of PA distensibility we used is the slope of the stretch ratio-pressure relationship. To measure distensibility, we combined invasive measurements of mean PA pressure with angiographic imaging of the PA network of six healthy female dogs. Stacks of 2D images of the PAs, obtained from either contrast enhanced magnetic resonance angiography (CE-MRA) or computed tomography digital subtraction angiography (CT-DSA), were used to reconstruct 3D surface models of the PA network, from the first bifurcation down to the sixth generation of branches. For each branch of the PA, we calculated radial and longitudinal stretch between baseline and a pressurized state obtained via acute embolization of the pulmonary vasculature. Our results indicated that large and intermediate PA branches have a radial distensibility consistently close to 2%/mmHg. Our axial distensibility data, albeit affected by larger variability, suggested that the PAs distal to the first generation may not significantly elongate in vivo, presumably due to spatial constraints. Results from both angiographic techniques were comparable to data from established phase-contrast (PC) magnetic resonance imaging (MRI) and ex vivo mechanical tests, which can only be used in the first branch generation. Our novel method can be used to characterize PA distensibility in PAH patients undergoing clinical right heart catheterization in combination with MR imaging.
    No preview · Article · Apr 2015 · Journal of Biomechanical Engineering
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Thoracic outlet syndrome is a clinical entity characterized by compression of the neurovascular bundle, and may be associated with additional findings such as venous thrombosis, arterial stenosis, or neurologic symptoms. The goal of imaging is to localize the site of compression, the compressing structure, and the compressed organ or vessel, while excluding common mimics. A literature review is provided of current indications for diagnostic imaging, with discussion of potential limitations and benefits of the respective modalities. The ACR Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed every 3 years by a multidisciplinary expert panel. The guideline development and review include an extensive analysis of current medical literature from peer-reviewed journals and the application of a well-established consensus methodology (modified Delphi) to rate the appropriateness of imaging and treatment procedures by the panel. In those instances in which evidence is lacking or not definitive, expert opinion may be used to recommend imaging or treatment. In this document, we provided guidelines for use of various imaging modalities for assessment of thoracic outlet syndrome. Copyright © 2015 American College of Radiology. Published by Elsevier Inc. All rights reserved.
    Full-text · Article · Mar 2015 · Journal of the American College of Radiology: JACR
  • [Show abstract] [Hide abstract]
    ABSTRACT: Portal and mesenteric hemodynamics is greatly altered in portal hypertension patients. This study utilizes 4D flow magnetic resonance imaging (MRI) to visualize and quantify changes in abdominal hemodynamics in patients with portal hypertension undergoing meal challenge. Twelve portal hypertension patients and six healthy subjects participated in the study. Baseline MRI was acquired after 5 hours of fasting. Postmeal MRI was obtained 20 minutes after subjects ingested EnSure Plus (574 mL). Imaging was performed at 3T using 4D flow MRI with an undersampled radial acquisition. Flow measurements were performed blinded to subject status (fasting/meal). Flow values for each vessel were compared before and after the meal challenge using paired Student's t-tests (P < 0.05). After meal challenge, significant increases in blood flow were observed in supraceliac aorta, portal vein, superior mesenteric vein, and artery in both groups (P < 0.05). In patients, hepatic artery (P = 0.001) and splenic vein (P = 0.045) flow decreased while azygos vein flow (P = 0.002) increased. Portal venous flow regulation to adjust the increasing mesenteric venous flow after a meal challenge may be impaired in patients with cirrhosis. The ability to comprehensively quantify the hemodynamic response of the abdominal vasculature to a meal challenge using 4D flow MRI reveals the potential of this technique to noninvasively characterize portal hypertension hemodynamics. J. Magn. Reson. Imaging 2015. © 2015 Wiley Periodicals, Inc.
    No preview · Article · Mar 2015 · Journal of Magnetic Resonance Imaging
  • Daniel Jeong · Mark L Schiebler · Peng Lai · Kang Wang · Karl K Vigen · Christopher J François
    [Show abstract] [Hide abstract]
    ABSTRACT: Validation of a new single breath-hold, three-dimensional, cine balanced steady-state free precession (3D cine bSSFP) cardiac magnetic resonance (CMR) sequence for left ventricular function. CMR examinations were performed on fifteen patients and three healthy volunteers on a clinical 1.5T scanner using a two-dimensional (2D) cine balanced SSFP CMR sequence (2D cine bSSFP) followed by an investigational 3D cine bSSFP pulse sequence acquired within a single breath hold. Left ventricular end diastolic volume (LVEDV), end systolic volume (LVESV), ejection fraction (LVEF), and myocardial mass were independently segmented on a workstation by two experienced radiologists. Blood pool to myocardial contrast was evaluated in consensus using a Likert scale. Bland-Altman analysis was used to compare these quantitative and nominal measurements for the two sequences. The average acquisition time was significantly shorter for the 3D cine bSSFP than for 2D cine bSSFP (0.36 ± 0.03 vs. 8.5 ± 2.3 min) p = 0.0002. Bland-Altman analyses [bias and (limits of agreement)] of the data derived from these two methods revealed that the LVEF 0.9 % (-4.7, 6.4), LVEDV 4.9 ml (-23.0, 32.8), LVESV -0.2 ml (-22.4, 21.9), and myocardial mass -0.4 g (-23.8, 23.0) were not significantly different. There was excellent intraclass correlation for intra-observer variability (0.981, 0.989, 0.997, 0.985) and inter-observer variability (0.903, 0.954, 0.970, 0.842) for LVEF, LVEDV, LVESV, and myocardial mass respectively. 3D cine bSSFP allows for accurate single breath-hold volumetric cine CMR which enables substantial improvements in scanner time efficiency without sacrificing diagnostic accuracy.
    No preview · Article · Feb 2015 · The International Journal of Cardiovascular Imaging
  • Source

    Preview · Article · Feb 2015 · Journal of Cardiovascular Magnetic Resonance
  • Source
    Syed F Hussaini · Alejandro Roldán-Alzate · Christopher J Francois

    Preview · Article · Feb 2015 · Journal of Cardiovascular Magnetic Resonance
  • Source

    Preview · Article · Feb 2015 · Journal of Cardiovascular Magnetic Resonance
  • Source

    Preview · Article · Feb 2015 · Journal of Cardiovascular Magnetic Resonance
  • Source

    Full-text · Article · Feb 2015 · Journal of Cardiovascular Magnetic Resonance
  • [Show abstract] [Hide abstract]
    ABSTRACT: To develop and demonstrate a breathheld 3D radial ultrashort echo time (UTE) acquisition to visualize co-registered lung perfusion and vascular structure. Nine healthy dogs were scanned twice at 3 Tesla (T). Contrast-enhanced pulmonary perfusion scans were acquired with a temporally interleaved three-dimensional (3D) radial UTE (TE = 0.08 ms) sequence in a breathhold (1 s time frames over a 33 s breathhold). The 3D breathheld volume was reconstructed into time-resolved perfusion datasets, and a composite vascular structure dataset. For structural comparison, a 5 min respiratory-gated 3D radial UTE scan was acquired. Data were analyzed by quantitative metrics and radiologist scoring. Appropriate time-course of contrast was seen in all subjects. Right ventricle to aorta transit times were 7.4 ± 2.0 s. Relative lung enhancement was a factor of 8.4 ± 1.5. Radiologist scoring showed similarly excellent visualization of the pulmonary arteries to the subsegmental level in breathheld (94% of cases) and respiratory-gated (100% of cases) acquisitions (P = 0.33) despite the aggressive under sampling in the breathheld scan. Similarly, differentiation of lung tissue and airways was achieved by both acquisition methods. A time-resolved 3D radial UTE sequence for simultaneous imaging of pulmonary perfusion and co-registered vascular structure is feasible.J. Magn. Reson. Imaging 2013. © 2013 Wiley Periodicals, Inc.
    No preview · Article · Jan 2015 · Journal of Magnetic Resonance Imaging
  • Christopher J. François
    [Show abstract] [Hide abstract]
    ABSTRACT: Cardiac magnetic resonance (CMR) imaging is increasingly being used to evaluate patients with known or suspected ischemic heart disease, because of its ability to acquire images in any orientation and the wide variety of sequences available to characterize normal and abnormal structure and function. Substantial improvements have been made in the hardware and software used to perform CMR, resulting in better and more consistent image quality. There has been a greater emphasis recently in developing and validating quantitative CMR techniques. This article reviews advances in CMR techniques for assessing cardiac function, myocardial perfusion, late gadolinium enhancement, and tissue characterization with T1 and T2 mapping sequences. Copyright © 2015 Elsevier Inc. All rights reserved.
    No preview · Article · Dec 2014 · Radiologic Clinics of North America
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ventricular kinetic energy measurements may provide a novel imaging biomarker of declining ventricular efficiency in patients with repaired tetralogy of Fallot. Our purpose was to assess differences in ventricular kinetic energy with 4-dimensional flow magnetic resonance imaging between patients with repaired tetralogy of Fallot and healthy volunteers. Cardiac magnetic resonance, including 4-dimensional flow magnetic resonance imaging, was performed at rest in 10 subjects with repaired tetralogy of Fallot and 9 healthy volunteers using clinical 1.5T and 3T magnetic resonance imaging scanners. Right and left ventricular kinetic energy (KERV and KELV), main pulmonary artery flow (QMPA), and aortic flow (QAO) were quantified using 4-dimensional flow magnetic resonance imaging data. Right and left ventricular size and function were measured using standard cardiac magnetic resonance techniques. Differences in peak systolic KERV and KELV in addition to the QMPA/KERV and QAO/KELV ratios between groups were assessed. Kinetic energy indices were compared with conventional cardiac magnetic resonance parameters. Peak systolic KERV and KELV were higher in patients with repaired tetralogy of Fallot than in healthy volunteers (P = .0002 and P = .0002, respectively). The QMPA/KERV and QAO/KELV ratios were lower in patients with repaired tetralogy of Fallot than in healthy volunteers (P = .0002). QMPA/KERV and QAO/KELV were weakly correlated to ventricular size and function. Greater ventricular kinetic energy is necessary to generate flow in the pulmonary and aortic circulations in repaired tetralogy of Fallot. Quantification of ventricular kinetic energy in patients with repaired tetralogy of Fallot is a new observation. Future studies are needed to determine whether changes in ventricular kinetic energy can provide earlier evidence of ventricular dysfunction and guide future medical and surgical interventions. Copyright © 2015 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
    No preview · Article · Dec 2014 · Journal of Thoracic and Cardiovascular Surgery
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To develop and evaluate a free-breathing chemical-shift-encoded (CSE) spoiled gradient-recalled echo (SPGR) technique for whole-heart water-fat imaging at 3 Tesla (T). We developed a three-dimensional (3D) multi-echo SPGR pulse sequence with electrocardiographic gating and navigator echoes and evaluated its performance at 3T in healthy volunteers (N = 6) and patients (N = 20). CSE-SPGR, 3D SPGR, and 3D balanced-SSFP with chemical fat saturation were compared in six healthy subjects with images evaluated for overall image quality, level of residual artifacts, and quality of fat suppression. A similar scoring system was used for the patient datasets. Images of diagnostic quality were acquired in all but one subject. CSE-SPGR performed similarly to SPGR with fat saturation, although it provided a more uniform fat suppression over the whole field of view. Balanced-SSFP performed worse than SPGR-based methods. In patients, CSE-SPGR produced excellent fat suppression near metal. Overall image quality was either good (7/20) or excellent (12/20) in all but one patient. There were significant artifacts in 5/20 clinical cases. CSE-SPGR is a promising technique for whole-heart water-fat imaging during free-breathing. The robust fat suppression in the water-only image could improve assessment of complex morphology at 3T and in the presence of off-resonance, with additional information contained in the fat-only image. Magn Reson Med, 2013. © 2013 Wiley Periodicals, Inc.
    Full-text · Article · Sep 2014 · Magnetic Resonance in Medicine

Publication Stats

1k Citations
348.25 Total Impact Points

Institutions

  • 2008-2015
    • University of Wisconsin–Madison
      • Department of Radiology
      Madison, Wisconsin, United States
  • 2003-2009
    • Northwestern University
      • • Department of Radiology
      • • Division of Gastroenterology and Hepatology
      Evanston, Illinois, United States
  • 2005-2006
    • Loyola University Medical Center
      • Department of Radiology
      مايوود، إلينوي, Illinois, United States