Ayako Suematsu

The University of Tokyo, Tōkyō, Japan

Are you Ayako Suematsu?

Claim your profile

Publications (7)97.5 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: TAK1 (encoded by Map3k7) is a mitogen-activated protein kinase kinase kinase (MAP3K), which activates the transcription factors AP-1 and NF-κB in response to receptor activator of NF-κB ligand (RANKL) stimulation, thus constituting a key regulator of osteoclast differentiation. Here we report the functional relevance of the kinase activity of TAK1 in the late stage of osteoclast differentiation in vivo using Ctsk-Cre mice and TAK1 mutant mice in which the TAK1 kinase domain was flanked by loxP. The Map3k7(flox/kd)Ctsk(Cre/+) mice displayed a severe osteopetrotic phenotype due to a marked decrease in osteoclast number. RANKL-induced activation of MAPK and NF-κB was impaired in the late stage of osteoclast differentiation. The absence of suppressive effect of an administered NF-κB inhibitor on the late stage of osteoclastogenesis led us to investigate unknown TAK1 targets in osteoclast differentiation. We performed a phosphoproteomic analysis of RANKL-stimulated osteoclast precursor cells from Map3k7(flox/kd)Ctsk(Cre/+) mice, revealing multiple targets regulated by TAK1 during osteoclastogenesis. Thus, TAK1 functions as a critical regulator of the phosophorylation status of various cellular proteins that govern osteoclastogenesis. Copyright © 2015. Published by Elsevier Inc.
    No preview · Article · Jun 2015 · Biochemical and Biophysical Research Communications
  • [Show abstract] [Hide abstract]
    ABSTRACT: Autoantibody production and immune complex (IC) formation are frequently observed in autoimmune diseases associated with bone loss. However, it has been poorly understood whether ICs regulate bone metabolism directly. Here we show that the level of osteoclastogenesis is determined by the strength of FcRγ signalling, which is dependent on the relative expression of positive and negative FcγRs (FcγRI/III/IV and IIB, respectively) as well as the availability of their ligands, ICs. Under physiological conditions, unexpectedly, FcγRIII inhibits osteoclastogenesis by depriving other osteoclastogenic Ig-like receptors of FcRγ. Fcgr2b(-/-) mice lose bone upon the onset of a hypergammaglobulinemia or the administration of IgG1 ICs, which act mainly through FcγRIII. The IgG2 IC activates osteoclastogenesis by binding to FcγRI and FcγRIV, which is induced under inflammatory conditions. These results demonstrate a link between the adaptive immunity and bone, suggesting a regulatory role for ICs in bone resorption in general, and not only in inflammatory diseases.
    No preview · Article · Mar 2015 · Nature Communications
  • Ayako Suematsu · Hiroshi Takayanagi
    [Show abstract] [Hide abstract]
    ABSTRACT: The immune and skeletal systems share a number of regulatory molecules including cytokines, signaling molecules, transcription factors and membrane receptors, in common. Consequently, the physiology and pathology of one system may very well affect the other. Research into the cartilage and bone destruction associated with rheumatoid arthritis (RA) has highlighted the importance of the interplay between the immune and skeletal systems. This interdisciplinary field called osteoimmunology has attracted much attention in recent years. Recently, animal models deficient in immunomodulatory molecules have been found frequently to develop an unexpected skeletal phenotype. Receptor activator of NF-kappaB ligand (RANKL) is an essential factor for the induction of osteoclastogenesis that links the immune and skeletal systems. Thus, osteoimmunology is becoming increasingly important for understanding the pathogenesis of bone destruction in RA and for developing new therapeutic strategies for diseases affecting both systems. Here we summarize recent advances on the study of the regulation of cartilage and bone destruction by the immune system.
    No preview · Article · Mar 2007 · Japanese Journal of Clinical Immunology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Finding a means to ameliorate and prevent bone destruction is one of the urgent issues in the treatment of rheumatoid arthritis. Recent studies revealed bone-resorbing osteoclasts to be essential for arthritic bone destruction, but to date there has been scarce experimental evidence for the underlying mechanism of the bone-protective effect of antirheumatic drugs. Here we examined the effects of one or a combination of disease-modifying antirheumatic drugs (DMARDs) on osteoclast differentiation to provide a cellular and molecular basis for their efficacy against bone destruction. The effects on osteoclast precursor cells and osteoclastogenesis-supporting cells were distinguished by two in vitro osteoclast culture systems. Methotrexate (MTX), bucillamine (Buc) and salazosulphapyridine (SASP) inhibited osteoclastogenesis by acting on osteoclast precursor cells and interfering with receptor activator of NF-kappaB ligand (RANKL)-mediated induction of the nuclear factor of activated T cells (NFAT) c1. MTX and SASP also suppressed RANKL expression on osteoclastogenesis-supporting mesenchymal cells. Interestingly, the combination of three antirheumatic drugs exerted a marked inhibitory effect on osteoclastogenesis even at a low dose at which there was much less of an effect when administered individually. These results are consistent with the reported efficacy of combined DMARDs therapy in humans and suggest that osteoclast culture systems are useful tools to provide an experimental basis for the bone-protective effects of antirheumatic drugs.
    Preview · Article · Feb 2007 · Modern Rheumatology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Calcium (Ca(2+)) signaling is essential for a variety of cellular responses and higher biological functions. Ca(2+)/calmodulin-dependent kinases (CaMKs) and the phosphatase calcineurin activate distinct downstream pathways that are mediated by the transcription factors cAMP response element (CRE)-binding protein (CREB) and nuclear factor of activated T cells (NFAT), respectively. The importance of the calcineurin-NFAT pathway in bone metabolism has been demonstrated in osteoclasts, osteoblasts and chondrocytes. However, the contribution of the CaMK-CREB pathway is poorly understood, partly because of the difficulty of dissecting the functions of homologous family members. Here we show that the CaMKIV-CREB pathway is crucial for osteoclast differentiation and function. Pharmacological inhibition of CaMKs as well as the genetic ablation of Camk4 reduced CREB phosphorylation and downregulated the expression of c-Fos, which is required for the induction of NFATc1 (the master transcription factor for osteoclastogenesis) that is activated by receptor activator of NF-kappaB ligand (RANKL). Furthermore, CREB together with NFATc1 induced the expression of specific genes expressed by differentiated osteoclasts. Thus, the CaMK-CREB pathway biphasically functions to regulate the transcriptional program of osteoclastic bone resorption, by not only enhancing induction of NFATc1 but also facilitating NFATc1-dependent gene regulation once its expression is induced. This provides a molecular basis for a new therapeutic strategy for bone diseases.
    Full-text · Article · Jan 2007 · Nature Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In autoimmune arthritis, traditionally classified as a T helper (Th) type 1 disease, the activation of T cells results in bone destruction mediated by osteoclasts, but how T cells enhance osteoclastogenesis despite the anti-osteoclastogenic effect of interferon (IFN)-gamma remains to be elucidated. Here, we examine the effect of various Th cell subsets on osteoclastogenesis and identify Th17, a specialized inflammatory subset, as an osteoclastogenic Th cell subset that links T cell activation and bone resorption. The interleukin (IL)-23-IL-17 axis, rather than the IL-12-IFN-gamma axis, is critical not only for the onset phase, but also for the bone destruction phase of autoimmune arthritis. Thus, Th17 is a powerful therapeutic target for the bone destruction associated with T cell activation.
    Full-text · Article · Dec 2006 · Journal of Experimental Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: Costimulatory signals are required for activation of immune cells, but it is not known whether they contribute to other biological systems. The development and homeostasis of the skeletal system depend on the balance between bone formation and resorption. Receptor activator of NF-kappaB ligand (RANKL) regulates the differentiation of bone-resorbing cells, osteoclasts, in the presence of macrophage-colony stimulating factor (M-CSF). But it remains unclear how RANKL activates the calcium signals that lead to induction of nuclear factor of activated T cells c1, a key transcription factor for osteoclastogenesis. Here we show that mice lacking immunoreceptor tyrosine-based activation motif (ITAM)-harbouring adaptors, Fc receptor common gamma subunit (FcRgamma) and DNAX-activating protein (DAP)12, exhibit severe osteopetrosis owing to impaired osteoclast differentiation. In osteoclast precursor cells, FcRgamma and DAP12 associate with multiple immunoreceptors and activate calcium signalling through phospholipase Cgamma. Thus, ITAM-dependent costimulatory signals activated by multiple immunoreceptors are essential for the maintenance of bone homeostasis. These results reveal that RANKL and M-CSF are not sufficient to activate the signals required for osteoclastogenesis.
    No preview · Article · May 2004 · Nature

Publication Stats

1k Citations
97.50 Total Impact Points


  • 2015
    • The University of Tokyo
      Tōkyō, Japan
    • Japan Science and Technology Agency (JST)
      Edo, Tokyo, Japan
  • 2004-2007
    • Tokyo Medical and Dental University
      • • Department of Cell Signaling
      • • Department of Cellular Physiological Chemistry
      Edo, Tōkyō, Japan