Enrico Scarpella

University of Alberta, Edmonton, Alberta, Canada

Are you Enrico Scarpella?

Claim your profile

Publications (33)167.65 Total impact

  • Source
    Carla Verna · Megan G. Sawchuk · Nguyen Manh Linh · Enrico Scarpella
    [Show abstract] [Hide abstract]
    ABSTRACT: Tissue networks such as the vascular networks of plant and animal organs transport signals and nutrients in most multicellular organisms. The transport function of tissue networks depends on topological features such as the number of networks’ components and the components’ connectedness; yet what controls tissue network topology is largely unknown, partly because of the difficulties in quantifying the effects of genes on tissue network topology. We address this problem for the vein networks of plant leaves by introducing biologically motivated descriptors of vein network topology; we combine these descriptors with cellular imaging and molecular genetic analysis; and we apply this combination of approaches to leaves of Arabidopsis thaliana that lack function of, overexpress or misexpress combinations of four PIN-FORMED (PIN) genes—PIN1, PIN5, PIN6, and PIN8—which encode transporters of the plant signal auxin and are known to control vein network geometry. We find that PIN1 inhibits vein formation and connection, and that PIN6 acts redundantly to PIN1 in these processes; however, the functions of PIN6 in vein formation are nonhomologous to those of PIN1, while the functions of PIN6 in vein connection are homologous to those of PIN1. We further find that PIN8 provides functions redundant and homologous to those of PIN6 in PIN1-dependent inhibition of vein formation, but that PIN8 has no functions in PIN1/PIN6-dependent inhibition of vein connection. Finally, we find that PIN5 promotes vein formation; that all the vein-formation-promoting functions of PIN5 are redundantly inhibited by PIN6 and PIN8; and that these functions of PIN5, PIN6, and PIN8 are independent of PIN1. Our results suggest that PIN-mediated auxin transport controls the formation of veins and their connection into networks.
    Preview · Article · Nov 2015 · BMC Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MONOPTEROS (MP) is an auxin-responsive transcription factor that is required for primary root formation and vascular development, whereas Dof5.8 is a Dof-class transcription factor whose gene is expressed in embryos as well as the pre- and procambial cells in the leaf primordium in Arabidopsis thaliana. In this study, it is shown that MP directly activates the Dof5.8 promoter. Although no apparent phenotype of the single dof5.8 mutants was found, phenotypic analysis with the mp dof5.8 double mutants revealed that mutations within Dof5.8 enhanced the phenotype of a weak allele of mp, with an increase in the penetrance of the ‘rootless’ phenotype and a reduction in the number of cotyledons. Furthermore, interestingly, although mp mutants showed reduced vascular pattern complexity in cotyledons, the mp dof5.8 double mutants displayed both more simplex and more complex vascular patterns in individual cotyledons. These results imply that the product of Dof5.8 whose expression is regulated by MP at least in part might be involved in multiple processes controlled by MP.
    Preview · Article · Oct 2014 · Journal of Experimental Botany
  • [Show abstract] [Hide abstract]
    ABSTRACT: Patterning of numerous features of plants depends on transduction of the auxin signal. Auxin signaling is mediated by several pathways, the best understood of which relies on the function of the MONOPTEROS (MP) gene. Seven mp mutant alleles have been described in the widely used Columbia background of Arabidopsis: two extensively characterized and five only partially characterized. One of these five mp alleles appears to be extinct and thus unavailable for analysis. We show that two of the four remaining, partially characterized mp alleles reported to be in the Columbia background are in fact not in this background. We extend characterization of the remaining two Columbia alleles of mp, and we identify and characterize four new alleles of mp in the Columbia background, among which the first low-expression allele of mp and the strongest Columbia allele of mp. These genetic resources provide the research community with new experimental opportunities for insight into the function of MP-dependent auxin signaling in plant development. © 2013 Wiley Periodicals, Inc.
    No preview · Article · Feb 2014 · genesis
  • Source
    Megan G Sawchuk · Enrico Scarpella
    [Show abstract] [Hide abstract]
    ABSTRACT: The vein networks of plant leaves are among the most spectacular expressions of biological pattern, and the principles controlling their formation have continually inspired artists and scientists. Control of vein patterning by the polar, cell-to-cell transport of the plant signaling molecule auxin-mediated in Arabidopsis primarily by the plasma-membrane-localized PIN1-has long been known. By contrast, the existence of intracellular auxin transport and its contribution to vein patterning are recent discoveries. The endoplasmic-reticulum-localized PIN5, PIN6, and PIN8 of Arabidopsis define an intracellular auxin-transport pathway whose functions in vein patterning overlap with those of PIN1-mediated intercellular auxin transport. The genetic interaction between the components of the intracellular auxin-transport pathway is far from having been resolved. The study of vein patterning provides experimental access to gain such a resolution-a resolution that in turn holds the promise to improve our understanding of one of the most fascinating examples of biological pattern formation.
    Preview · Article · Dec 2013 · Plant signaling & behavior
  • Source
    Megan G Sawchuk · Enrico Scarpella
    [Show abstract] [Hide abstract]
    ABSTRACT: Plant vascular cells are joined end to end along uninterrupted lines to connect shoot organs with roots; vascular strands are thus polar, continuous and internally aligned. What controls the formation of vascular strands with these properties? The "auxin canalization hypothesis"-based on positive feedback between auxin flow through a cell and the cell's capacity for auxin transport-predicts the selection of continuous files of cells that transport auxin polarly, thus accounting for the polarity and continuity of vascular strands. By contrast, polar, continuous auxin transport-though required-is insufficient to promote internal alignment of vascular strands, implicating additional factors. The auxin canalization hypothesis was derived from the response of mature tissue to auxin application but is consistent with molecular and cellular events in embryo axis formation and shoot organ development. Objections to the hypothesis have been raised based on vascular organizations in callus tissue and shoot organs but seem unsupported by available evidence. Other objections call instead for further research; yet the inductive and orienting influence of auxin on continuous vascular differentiation remains unique.
    Preview · Article · Jun 2013 · Journal of Integrative Plant Biology
  • Source
    Megan G Sawchuk · Alexander Edgar · Enrico Scarpella
    [Show abstract] [Hide abstract]
    ABSTRACT: The formation of leaf vein patterns has fascinated biologists for centuries. Transport of the plant signal auxin has long been implicated in vein patterning, but molecular details have remained unclear. Varied evidence suggests a central role for the plasma-membrane (PM)-localized PIN-FORMED1 (PIN1) intercellular auxin transporter of Arabidopsis thaliana in auxin-transport-dependent vein patterning. However, in contrast to the severe vein-pattern defects induced by auxin transport inhibitors, pin1 mutant leaves have only mild vein-pattern defects. These defects have been interpreted as evidence of redundancy between PIN1 and the other four PM-localized PIN proteins in vein patterning, redundancy that underlies many developmental processes. By contrast, we show here that vein patterning in the Arabidopsis leaf is controlled by two distinct and convergent auxin-transport pathways: intercellular auxin transport mediated by PM-localized PIN1 and intracellular auxin transport mediated by the evolutionarily older, endoplasmic-reticulum-localized PIN6, PIN8, and PIN5. PIN6 and PIN8 are expressed, as PIN1 and PIN5, at sites of vein formation. pin6 synthetically enhances pin1 vein-pattern defects, and pin8 quantitatively enhances pin1pin6 vein-pattern defects. Function of PIN6 is necessary, redundantly with that of PIN8, and sufficient to control auxin response levels, PIN1 expression, and vein network formation; and the vein pattern defects induced by ectopic PIN6 expression are mimicked by ectopic PIN8 expression. Finally, vein patterning functions of PIN6 and PIN8 are antagonized by PIN5 function. Our data define a new level of control of vein patterning, one with repercussions on other patterning processes in the plant, and suggest a mechanism to select cell files specialized for vascular function that predates evolution of PM-localized PIN proteins.
    Preview · Article · Feb 2013 · PLoS Genetics
  • Enrico Scarpella · Thomas Berleth
    [Show abstract] [Hide abstract]
    ABSTRACT: Reticulate tissue systems pervade most multicellular organisms, and the principles controlling the formation of these cellular networks have long been object of interest of biologists and mathematicians. In particular, the beautiful and varied networks of veins in plant leaves have intrigued mankind since antiquity. Vascular cells are aligned with one another within continuous veins that reproducibly supply all areas of the leaf, but the precise path of vein formation is highly variable. Recent advances suggest a self-organizing control mechanism in which an apical-basal continuous flow of signal could establish a basic coordinate system for body-axis and vascular-strand formation, and account for both the reproducible and the variable features of leaf vein patterns.
    No preview · Chapter · Jan 2013
  • Source
    Tyler J Donner · Enrico Scarpella
    [Show abstract] [Hide abstract]
    ABSTRACT: Unlike most animal tissue networks, the patterns of vein networks in plant leaves are variable and plastic, suggesting distinct control mechanisms. Thus, knowledge of the gene regulatory circuits that pattern leaf vein networks could suggest new control mechanisms of tissue network formation. However, the cis-regulatory elements required for expression at early stages of vein development are largely unknown. Here we show that the Arabidopsis genes CYCLIN A2;1 (CYCA2;1) and CYCLIN A2;4 (CYCA2;4), previously shown to act redundantly in vein cell proliferation, are expressed at early stages of vein development. We show that stage-specific expression of CYCA2;1 and CYCA2;4 in vein development depends on regulatory elements containing, respectively, one and three evolutionarily conserved transcription-factor binding sites. Our data suggest that early vein expression is encoded in regulatory elements of different structures.
    Preview · Article · Jul 2012 · Mechanisms of development
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In multicellular organisms, morphogenesis relies on a strict coordination in time and space of cell proliferation and differentiation. In contrast to animals, plant development displays continuous organ formation and adaptive growth responses during their lifespan relying on a tight coordination of cell proliferation. How developmental signals interact with the plant cell-cycle machinery is largely unknown. Here, we characterize plant A2-type cyclins, a small gene family of mitotic cyclins, and show how they contribute to the fine-tuning of local proliferation during plant development. Moreover, the timely repression of CYCA2;3 expression in newly formed guard cells is shown to require the stomatal transcription factors FOUR LIPS/MYB124 and MYB88, providing a direct link between developmental programming and cell-cycle exit in plants. Thus, transcriptional downregulation of CYCA2s represents a critical mechanism to coordinate proliferation during plant development.
    Full-text · Article · Aug 2011 · The EMBO Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genes expressed in vascular tissues have been identified by several strategies, usually with a focus on mature vascular cells. In this study, we explored the possibility of using two opposite types of altered tissue compositions in combination with a double-filter selection to identify genes with a high probability of vascular expression in early organ primordia. Specifically, we generated full-transcriptome microarray profiles of plants with (a) genetically strongly reduced and (b) pharmacologically vastly increased vascular tissues and identified a reproducible cohort of 158 transcripts that fulfilled the dual requirement of being underrepresented in (a) and overrepresented in (b). In order to assess the predictive value of our identification scheme for vascular gene expression, we determined the expression patterns of genes in two unbiased subsamples. First, we assessed the expression patterns of all twenty annotated transcription factor genes from the cohort of 158 genes and found that seventeen of the twenty genes were preferentially expressed in leaf vascular cells. Remarkably, fifteen of these seventeen vascular genes were clearly expressed already very early in leaf vein development. Twelve genes with published leaf expression patterns served as a second subsample to monitor the representation of vascular genes in our cohort. Of those twelve genes, eleven were preferentially expressed in leaf vascular tissues. Based on these results we propose that our compendium of 158 genes represents a sample that is highly enriched for genes expressed in vascular tissues and that our approach is particularly suited to detect genes expressed in vascular cell lineages at early stages of their inception.
    No preview · Article · Aug 2011 · Plant Science
  • Source
    Jason Gardiner · Tyler J Donner · Enrico Scarpella
    [Show abstract] [Hide abstract]
    ABSTRACT: The processes underlying the formation of leaf vascular networks have long captured the attention of developmental biologists, especially because files of elongated vascular-precursor procambial cells seem to differentiate from apparently equivalent, isodiametric ground cells. In Arabidopsis leaves, ground cells that have been specified to vascular fate engage expression of ARABIDOPSIS THALIANA HOMEOBOX8 (ATHB8). While definition of the transcriptional state of ATHB8-expressing ground cells would be particularly informative, no other genes have been identified whose expression is initiated at this stage. Here we show that expression of SHORT-ROOT (SHR) is activated simultaneously with that of ATHB8 in leaf development. Congruence between SHR and ATHB8 expression domains persists under conditions of manipulated vein patterning, suggesting that inception of expression of SHR and ATHB8 identifies transition to a preprocambial cell state that presages vein formation. Our observations further characterize the molecular identity of cells at anatomically inconspicuous stages of leaf vein development.
    Preview · Article · Jan 2011 · Developmental Dynamics
  • Source
    Tyler J Donner · Ira Sherr · Enrico Scarpella
    [Show abstract] [Hide abstract]
    ABSTRACT: The plant signaling molecule auxin has been implicated in the control of a confounding multitude of diverse processes in plants, including leaf vascular patterning. In Arabidopsis leaves, expression of the HD-ZIP III gene ATHB8 is initiated in files of isodiametric subepidermal cells that will elongate into vein-forming procambium. We have recently shown that ATHB8 is transiently required for preprocambial development and procambium differentiation, and that permanence of the effects of loss of ATHB8 function on vein formation depends on the activity of the auxin response factor MONOPTEROS (MP). Further, we have shown that the onset of ATHB8 expression is directly and positively regulated by MP through an auxin-response element in the ATHB8 promoter, suggesting a molecular path by which auxin signals are translated into vein patterning inputs. Within broad fields of MP expression, however, only a subset of cells initiates expression of ATHB8. Here we discuss putative mechanisms by which wide domains of MP expression could activate ATHB8 transcription in single cell files.
    Full-text · Article · Jan 2010 · Plant signaling & behavior
  • Source
    Enrico Scarpella · Michalis Barkoulas · Miltos Tsiantis
    [Show abstract] [Hide abstract]
    ABSTRACT: Leaves are the main photosynthetic organs of vascular plants and show considerable diversity in their geometries, ranging from simple spoon-like forms to complex shapes with individual leaflets, as in compound leaves. Leaf vascular tissues, which act as conduits of both nutrients and signaling information, are organized in networks of different architectures that usually mirror the surrounding leaf shape. Understanding the processes that endow leaves and vein networks with ordered and closely aligned shapes has captured the attention of biologists and mathematicians since antiquity. Recent work has suggested that the growth regulator auxin has a key role in both initiation and elaboration of final morphology of both leaves and vascular networks. A key feature of auxin action is the existence of feedback loops through which auxin regulates its own transport. These feedbacks may facilitate the iterative generation of basic modules that underlies morphogenesis of both leaves and vasculature.
    Preview · Article · Jan 2010 · Cold Spring Harbor perspectives in biology
  • Source
    Jason Gardiner · Ira Sherr · Enrico Scarpella
    [Show abstract] [Hide abstract]
    ABSTRACT: The sequence of events underlying the formation of vascular networks in the leaf has long fascinated developmental biologists. In Arabidopsis leaves, vascular-precursor procambial cells derive from the elongation of morphologically inconspicuous ground cells that selectively activate expression of the HD-ZIP III gene ATHB8. Inception of ATHB8 expression operationally defines acquisition of a typically irreversible preprocambial cell state that preludes to vein formation. A view of the constellation of genes whose expression is activated at preprocambial stages would therefore be particularly desirable; however, very few preprocambial gene expression profiles have been identified. Here, we show that expression of three genes encoding members of the DOF family of plant-specific transcription factors is activated at stages overlapping onset of ATHB8 expression. Expression of DOF genes is initiated in wide domains that become confined to sites of vein development. Congruence between DOF expression fields and zones of vein formation persists upon experimental manipulation of leaf vascular patterning, suggesting that DOF expression identifies consistently recurring steps in vein ontogeny. Our results contribute to defining preprocambial cell identity at the molecular level.
    Full-text · Article · Jan 2010 · The International journal of developmental biology
  • Enrico Scarpella · Ykä Helariutta
    [Show abstract] [Hide abstract]
    ABSTRACT: Reticulate tissue systems exist in most multicellular organisms, and the principles underlying the formation of cellular networks have fascinated philosophers, mathematicians, and biologists for centuries. In particular, the beautiful and varied arrangements of vascular tissues in plants have intrigued mankind since antiquity, yet the organizing signals have remained elusive. Plant vascular tissues form systems of interconnected cell files throughout the plant body. Vascular cells are aligned with one another along continuous lines, and vascular tissues differentiate at reproducible positions within organ environments. However, neither the precise path of vascular differentiation nor the exact geometry of vascular networks is fixed or immutable. Several recent advances converge to reconcile the seemingly conflicting predictability and plasticity of vascular tissue patterns. A control mechanism in which an apical-basal flow of signal establishes a basic coordinate system for body axis formation and vascular strand differentiation, and in which a superimposed level of radial organizing cues elaborates cell patterns, would generate a reproducible tissue configuration in the context of an underlying robust, self-organizing structure, and account for the simultaneous regularity and flexibility of vascular tissue patterns.
    No preview · Article · Jan 2010 · Current Topics in Developmental Biology
  • Source
    Tyler J Donner · Ira Sherr · Enrico Scarpella
    [Show abstract] [Hide abstract]
    ABSTRACT: The principles underlying the formation of veins in the leaf have long intrigued developmental biologists. In Arabidopsis leaves, files of anatomically inconspicuous subepidermal cells that will elongate into vein-forming procambial cells selectively activate ATHB8 gene expression. The biological role of ATHB8 in vein formation and the molecular events that culminate in acquisition of the ATHB8 preprocambial cell state are unknown, but intertwined pathways of auxin transport and signal transduction have been implicated in defining paths of vascular strand differentiation. Here we show that ATHB8 is required to stabilize preprocambial cell specification against auxin transport perturbations, to restrict preprocambial cell state acquisition to narrow fields and to coordinate procambium formation within and between veins. We further show that ATHB8 expression at preprocambial stages is directly and positively controlled by the auxin-response transcription factor MONOPTEROS (MP) through an auxin-response element in the ATHB8 promoter. We finally show that the consequences of loss of ATHB8 function for vein formation are masked by MP activity. Our observations define, at the molecular level, patterning inputs of auxin signaling in vein formation.
    Full-text · Article · Sep 2009 · Development
  • Source
    Tyler J. Donner · Enrico Scarpella
    [Show abstract] [Hide abstract]
    ABSTRACT: The formation of vein patterns in leaves has captivated biologists, mathematicians, and philosophers. In leaf development, files of vein-forming procambial cells emerge from within a seemingly homogeneous subepidermal tissue through the selection of anatomically inconspicuous preprocambial cells. Although the molecular details underlying the orderly formation of veins in the leaf remain elusive, gradually restricted transport paths of the plant signaling molecule auxin have long been implicated in defining sites of vein differentiation. Several recent advances converge to more precisely define the role of auxin flow at successive stages of vascular development. The picture that emerges is that of vein formation as a self-organizing, reiterative, auxin-transport-dependent process.La formation des patrons des nervures foliaires a captivé les biologistes, les mathématiciens et les philosophes. Au cours du développement foliaire, des files de cellules procambiales forment des veines émergentes au sein de ce qui semble un tissus sub épidermique homogène, via la sélection de cellules procambiales anatomiquement invisibles. Bien que les détails moléculaires sous-jacents à la formation ordonnée des nervures dans la feuille demeurent insaisissables, on a depuis longtemps impliqué le transport graduellement restreint de la molécule d'auxine responsable de signaux végétaux, dans la définition des sites de différenciation des nervures. Plusieurs percées récentes convergent vers une définition plus précise du rôle du flux d'auxine à différents stades du développement vasculaire. Le tableau qui émerge est celui de la formation des nervures comme un processus auto organisé, réitératif et dépendant de l'auxine.
    Preview · Article · Jul 2009 · Botany
  • Source
    Megan G Sawchuk · Tyler J Donner · Philip Head · Enrico Scarpella
    [Show abstract] [Hide abstract]
    ABSTRACT: Light provides crucial positional information in plant development, and the morphogenetic processes that are orchestrated by light signals are triggered by changes of gene expression in response to variations in light parameters. Control of expression of members of the RbcS and Lhc families of photosynthesis-associated nuclear genes by light cues is a paradigm for light-regulated gene transcription, but high-resolution expression profiles for these gene families are lacking. In this study, we have investigated expression patterns of members of the RbcS and Lhc gene families in Arabidopsis (Arabidopsis thaliana) at the cellular level during undisturbed development and upon controlled interference of the light environment. Members of the RbcS and Lhc gene families are expressed in specialized territories, including root tip, leaf adaxial, abaxial, and epidermal domains, and with distinct chronologies, identifying successive stages of leaf mesophyll ontogeny. Defined spatial and temporal overlap of gene expression fields suggest that the light-harvesting and photosynthetic apparatus may have a different polypeptide composition in different cells and that such composition could change over time even within the same cell.
    Preview · Article · Oct 2008 · Plant physiology
  • Source
    Megan G Sawchuk · Tyler J Donner · Enrico Scarpella
    [Show abstract] [Hide abstract]
    ABSTRACT: For centuries, the formation of vein patterns in the leaf has intrigued biologists, mathematicians and philosophers. In leaf development, files of vein-forming procambial cells emerge from seemingly homogeneous subepidermal tissue through the selection of anatomically inconspicuous preprocambial cells. Although the molecular details underlying the orderly differentiation of veins in the leaf remain elusive, gradually restricted transport paths of the plant hormone auxin have long been implicated in defining sites of vein formation. Several recent advances now appear to converge on a more precise definition of the role of auxin flow at different stages of vascular development. The picture that emerges is that of vein formation as a self-organizing, reiterative, auxin transport-dependent process.
    Preview · Article · Jun 2008 · Plant signaling & behavior
  • Thomas Berleth · Enrico Scarpella · Przemyslaw Prusinkiewicz
    [Show abstract] [Hide abstract]
    ABSTRACT: Polar auxin transport intimately connects plant cell polarity and multicellular patterning. Through the transport of the small molecule indole-3-acetic acid, plant cells integrate their polarities and communicate the degree of their polarization. In this way, they generate an apical-basal axis that serves as a positional reference anchoring subsequent patterning events. Research in recent years has brought the molecular mechanisms underlying auxin perception and auxin transport to light. This knowledge has been used to derive spectacular molecular visualization tools and animated computer simulations, which are now allied in a joint systems biology effort towards a mathematical description of auxin-transport-mediated patterning processes.
    No preview · Article · May 2007 · Trends in Plant Science

Publication Stats

2k Citations
167.65 Total Impact Points

Institutions

  • 2004-2015
    • University of Alberta
      • Department of Biological Sciences
      Edmonton, Alberta, Canada
    • University of Toronto
      • Department of Cell and Systems Biology
      Toronto, Ontario, Canada
  • 2011
    • The Ohio State University
      Columbus, Ohio, United States
  • 1997-2002
    • Leiden University
      • Institute of Biology Leiden
      Leyden, South Holland, Netherlands