Yanfei Xu

Northwestern University, Evanston, Illinois, United States

Are you Yanfei Xu?

Claim your profile

Publications (4)27.13 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Obesity has been shown to increase breast cancer risk. FTO is a novel gene which has been identified through genome wide association studies (GWAS) to be related to obesity. Our objective was to evaluate tissue expression of FTO in breast and the role of FTO SNPs in predicting breast cancer risk. We performed a case-control study of 354 breast cancer cases and 364 controls. This study was conducted at Northwestern University. We examined the role of single nucleotide polymorphisms (SNPs) of intron 1 of FTO in breast cancer risk. We genotyped cases and controls for four SNPs: rs7206790, rs8047395, rs9939609 and rs1477196. We also evaluated tissue expression of FTO in normal and malignant breast tissue. We found that all SNPs were significantly associated with breast cancer risk with rs1477196 showing the strongest association. We showed that FTO is expressed both in normal and malignant breast tissue. We found that FTO genotypes provided powerful classifiers to predict breast cancer risk and a model with epistatic interactions further improved the prediction accuracy with a receiver operating characteristic (ROC) curves of 0.68. In conclusion we have shown a significant expression of FTO in malignant and normal breast tissue and that FTO SNPs in intron 1 are significantly associated with breast cancer risk. Furthermore, these FTO SNPs are powerful classifiers in predicting breast cancer risk.
    Full-text · Article · Apr 2011 · BMC Medical Genetics
  • [Show abstract] [Hide abstract]
    ABSTRACT: To dissect the role of constitutively altered Tgfbr1 signaling in pancreatic cancer development, we crossed Elastase-Kras(G12D) (EL-Kras) mice with Tgfbr1 haploinsufficient mice to generate EL-Kras/Tgfbr1(+/-) mice. Mice were euthanized at 6 to 9 months to compare the incidence, frequency, and size of precancerous lesions in the pancreas. Only 50% of all EL-Kras/Tgfbr1(+/-) mice developed preinvasive lesions compared with 100% of EL-Kras (wild-type Tgfbr1) mice. The frequency of precancerous lesions was 4-fold lower in haploinsufficient than in control mice. Paradoxically, the precancerous lesions of EL-Kras/Tgfbr1(+/-) mice were considerably larger than those in EL-Kras mice. Yet, the mitotic index of precancerous cells and the observable levels of fibrosis, lipoatrophy, and lymphocytic infiltration were reduced in EL-Kras/Tgfbr1(+/-) mice. We conclude that Tgfbr1 signaling promotes the development of precancerous lesions in mice. These findings suggest that individuals with constitutively decreased TGFBR1 expression may have a decreased risk of pancreatic cancer.
    No preview · Article · Dec 2009 · Cancer Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transforming growth factor-beta (TGF-beta) signaling is frequently altered in colorectal cancer. Using a novel model of mice heterozygous for a targeted null mutation of Tgfbr1 crossed with Apc(Min/+) mice, we show that Apc(Min/+);Tgfbr1(+/-) mice develop twice as many intestinal tumors as Apc(Min/+);Tgfbr1(+/+) mice, as well as adenocarcinoma of the colon, without loss of heterozygosity at the Tgfbr1 locus. Decreased Smad2 and Smad3 phosphorylation and increased cellular proliferation are observed in the colonic epithelium crypts of Apc(Min/+); Tgfbr1(+/-) mice. Smad-mediated TGF-beta signaling is preserved in both Apc(Min/+);Tgfbr1(+/+) and Apc(Min/+);Tgfbr1(+/-) intestinal tumors, but cyclin D1 expression and cellular proliferation are significantly higher in Apc(Min/+);Tgfbr1(+/-) tumors. These results show that constitutively reduced Tgfbr1-mediated TGF-beta signaling significantly enhances colorectal cancer development and results in increased tumor cell proliferation. These findings provide a plausible molecular mechanism for colorectal cancer development in individuals with constitutively altered TGFBR1 expression, a recently identified common form of human colorectal cancer.
    Full-text · Article · Feb 2009 · Cancer Research
  • Source
    Yanfei Xu · Boris Pasche
    [Show abstract] [Hide abstract]
    ABSTRACT: In 2006, more than 55,000 patients died of colorectal cancer in the US, accounting for approximately 10% of all cancer deaths. Despite significant progress in screening combined with the development of novel effective therapies, colorectal cancer ranks second to lung cancer as a cause of cancer death. Twin studies indicate that 35% of all colorectal cancers are inherited, but high-penetrance tumor susceptibility genes only account for approximately 3-6% of all cases. The remainder of the unexplained familial risk is presumably due to other high-penetrance genes, but polygenic mechanisms and low-penetrance tumor susceptibility genes are likely to account for a greater proportion of familial colorectal cancers. In this regard, there is growing evidence that a common hypomorphic variant of the type I TGF-beta receptor, TGFBR1*6A, may account for approximately 3% of all colorectal cancer cases, a fraction higher than that attributable to mismatch repair genes MLH1, MSH2, MSH6 and PMS2. Furthermore, TGFBR1*6A is emerging as a potent modifier of colorectal cancer risk among individuals with a strong family of colorectal cancer. The TGF-beta signaling pathway plays a central but paradoxical role in the predisposition and progression of colorectal cancer. TGF-beta is a potent inhibitor of normal colonic epithelial cells acting as a tumor suppressor. However, TGF-beta promotes the survival, invasion and metastasis of colorectal cancer cells, thereby acting as an oncogene. Understanding how selective alterations of the TGF-beta signaling pathway contribute to colorectal cancer development and progression will likely permit the identification of an additional fraction of inherited colorectal cancer cases and provide novel opportunities for therapeutic intervention.
    Preview · Article · May 2007 · Human Molecular Genetics