Everly Conway de Macario

University of Maryland, Baltimore, Baltimore, Maryland, United States

Are you Everly Conway de Macario?

Claim your profile

Publications (246)816.79 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Heat shock protein 60 (Hsp60) is a chaperone localizing in skeletal muscle mitochondria, whose role is poorly understood. In the present study, the levels of Hsp60 in fibres of the entire posterior group of hindlimb muscles (gastrocnemius, soleus, and plantaris) were evaluated in mice after completing a 6-week endurance training program. The correlation between Hsp60 levels and the expression of four isoforms of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α) were investigated only in soleus. Short-term overexpression of hsp60, achieved by in vitro plasmid transfection, was then performed to determine whether this chaperone could have a role in the activation of the expression levels of PGC1α isoforms. The levels of Hsp60 protein were fibre-type specific in the posterior muscles and endurance training increased its content in type I muscle fibers. Concomitantly with the increased levels of Hsp60 released in the blood stream of trained mice, mitochondrial copy number and the expression of three isoforms of PGC1α increased. Overexpressing hsp60 in cultured myoblasts induced only the expression of PGC1 1α, suggesting a correlation between Hsp60 overexpression and PGC1 1 α activation.
    Full-text · Article · Jan 2016 · Scientific Reports
  • [Show abstract] [Hide abstract]
    ABSTRACT: There is considerable information on the clinical manifestations and mode of inheritance for many genetic chaperonopathies but little is known on the molecular mechanisms underlying the cell and tissue abnormalities that characterize them. This scarcity of knowledge is mostly due to the lack of appropriate animal models that mimic closely the human molecular, cellular, and histological characteristics. In this article we introduce zebrafish as a suitable model to study molecular and cellular mechanisms pertaining to human chaperonopathies. Genetic chaperonopathies manifest themselves from very early in life so it is necessary to examine the impact of mutant chaperone genes during development, starting with fertilization and proceeding throughout the entire ontogenetic process. Zebrafish is amenable to such developmental analysis as well as studies during adulthood. In addition, the zebrafish genome contains a wide range of genes encoding proteins similar to those that form the chaperoning system of humans. This, together with the availability of techniques for genetic manipulations and for examination of all stages of development, makes zebrafish the organism of choice for the analysis of the molecular features and pathogenic mechanisms pertaining to human chaperonopathies. This article is protected by copyright. All rights reserved.
    No preview · Article · Jan 2016 · Journal of Cellular Physiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objectives: Alcoholism is one of the most devastating diseases with high incidence, but knowledge of its pathology and treatment is still plagued with gaps mostly because of the inherent limitations of research with patients. We developed an animal model for studying liver histopathology, Hsp (heat-shock protein)-chaperones involvement, and response to treatment. Methods: The system was standardized using mice to which ethanol was orally administered alone or in combination with Lactobacillus fermentum following a precise schedule over time and applying, at predetermined intervals, a battery of techniques (histology, immunohistochemistry, western blotting, real-time PCR, immunoprecipitation, 3-nitrotyrosine labeling) to assess liver pathology (e.g., steatosis, fibrosis), and Hsp60 and iNOS (inducible form of nitric oxide synthase) gene expression and protein levels, and post-translational modifications. Results: Typical ethanol-induced liver pathology occurred and the effect of the probiotic could be reliably monitored. Steatosis score, iNOS levels, and nitrated proteins (e.g., Hsp60) decreased after probiotic intake. Conclusions: We describe a mouse model useful for studying liver disease induced by chronic ethanol intake and for testing pertinent therapeutic agents, e.g., probiotics. We tested L. fermentum, which reduced considerably ethanol-induced tissue damage and deleterious post-translational modifications of the chaperone Hsp60. The model is available to test other agents and probiotics with therapeutic potential in alcoholic liver disease.
    Full-text · Article · Jan 2016 · Clinical and Translational Gastroenterology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HSP60 undergoes changes in quantity and distribution in some types of tumors suggesting a participation of the chaperonin in the mechanism of transformation and cancer progression. Suberoylanilide hydroxamic acid (SAHA), a member of a family of histone deacetylase inhibitors (HDACi), has anti-cancer potential but its interaction, if any, with HSP60 has not been elucidated. We investigated the effects of SAHA in a human lung-derived carcinoma cell line (H292). We analysed cell viability and cycle; oxidative stress markers; mitochondrial integrity; HSP60 protein and mRNA levels; and HSP60 post-translational modifications, and its secretion. We found that SAHA is cytotoxic for H292 cells, interrupting the cycle at the G2/M phase, which is followed by death; cytotoxicity is associated with oxidative stress, mitochondrial damage, and diminution of intracellular levels of HSP60; HSP60 undergoes a post-translational modification and becomes nitrated; and nitrated HSP60 is exported via exosomes. We propose that SAHA causes ROS overproduction and mitochondrial dysfunction, which leads to HSP60 nitration and release into the intercellular space and circulation to interact with the immune system. These successive steps might constitute the mechanism of the anti-tumor action of SAHA and provide a basis to design supplementary therapeutic strategies targeting HSP60, which would be more efficacious than the compound alone.
    Full-text · Article · Dec 2015 · Oncotarget
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Vernal keratoconjunctivitis (VKC) is a severe ocular allergy with pathogenic mechanism poorly understood and no efficacious treatment. The aims of the study were to determine quantities and distribution of Hsp-chaperones in the conjunctiva of VKC patients and assess their levels in conjunctival epithelial and fibroblast cultures exposed to inflammatory stimuli. Methods: Hsp10, Hsp27, Hsp40, Hsp60, Hsp70, Hsp90, Hsp105, and Hsp110 were determined in conjunctiva biopsies from 9 patients and 9 healthy age-matched normal subjects, using immunomorphology and qPCR. Conjunctival epithelial cells and fibroblasts were cultured and stimulated with IL-1β, histamine, IL-4, TNF-α, or UV-B irradiation, and changes in Hsp levels were determined by Western blotting. Results: Hsp27, Hsp40, Hsp70, and Hsp90 levels increased in the patients' conjunctiva, whereas Hsp10, Hsp60, Hsp100, and Hsp105 did not. Double immunofluorescence demonstrated co-localization of Hsp27, Hsp40, Hsp70, and Hsp90 with CD68 and tryptase. Testing of cultured conjunctival cells revealed increase in the levels of: Hsp27 in fibroblasts stimulated with IL-4; Hsp40 in epithelial cells stimulated with IL-4 and TNF-α, and in fibroblasts stimulated with IL-4, TNFα, and IL-1β; Hsp70 in epithelial cells stimulated with histamine and IL-4; and Hsp90 in fibroblasts stimulated with IL-1β, TNF-α, and IL-4. UV-B did not induce changes. Conclusions: VKC conjunctiva displays distinctive quantitative patterns of Hsps as compared with healthy controls. Cultured conjunctival cells respond to cytokines and inflammatory stimuli with changes in the Hsps quantitative patterns. The data suggest that interaction between the chaperoning and the immune systems drives disease progression. This article is protected by copyright. All rights reserved.
    No preview · Article · Nov 2015 · Allergy
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD1a is involved in presentation to the immune system of lipid antigen derived from tumor cells with subsequent T cell activation. Hsp60 is a molecular chaperone implicated in carcinogenesis by, for instance, modulating the immune reaction against the tumor. We have previously postulated a synergism between CD1a and Hsp60 as a key factor in the activation of an effective antitumor immune response in squamous epithelia. Keratoacantomas (KAs) are benign tumors that however can transform into squamous cell carcinomas (SCCs), but the reasons for this malignization are unknown. In a previous study, we found that CD1a-positive cells are significantly more numerous in KA than in SCC. In this study, we analyzed a series of KAs and SCCs by immunohistochemistry for CD1a and Hsp60. Our results show that the levels of both are significantly lower in KA than in SCC and support the hypothesis that KA may evolve towards SCC if there is a failure of the local modulation of the antitumor immune response. The data also show that immunohistochemistry for CD1a and Hsp60 can be of help in differential diagnosis between KAs and well-differentiated forms of SCC.
    Full-text · Article · Oct 2015 · Cell Stress and Chaperones
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND Heat shock protein 60 (Hsp60) is a chaperonin involved in tumorigenesis, but its participation in tumor development and progression is not well understood and its value as a tumor biomarker has not been fully elucidated. In the current study, the authors presented evidence supporting the theory that Hsp60 has potential as a biomarker as well as a therapeutic target in patients with large bowel cancer.METHODS The authors studied a population of 97 subjects, including patients and controls. Immunomorphology, Western blot analysis, and quantitative real-time polymerase chain reaction were performed on tissue specimens. Exosomes were isolated from blood and characterized by electron microscopy, biochemical tests, and Western blot analysis.RESULTSHsp60 was found to be increased in cancerous tissue, in which it was localized in the tumor cell plasma membrane, and in the interstitium associated with cells of the immune system, in which it was associated with exosomes liberated by tumor cells and, as such, circulated in the blood. An interesting finding was that these parameters returned to normal shortly after tumor removal.CONCLUSIONS The data from the current study suggested that Hsp60 is a good candidate for theranostics applied to patients with large bowel carcinoma and encourage similar research among patients with other tumors in which Hsp60 has been implicated. Cancer 2015. © 2015 American Cancer Society.
    Full-text · Article · Jun 2015 · Cancer
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mitochondrial chaperonin Hsp60 is a ubiquitous molecule with multiple roles, constitutively expressed and inducible by oxidative stress. In the brain, Hsp60 is widely distributed and has been implicated in neurological disorders, including epilepsy. A role for mitochondria and oxidative stress has been proposed in epileptogenesis of temporal lobe epilepsy (TLE). Here, we investigated the involvement of Hsp60 in TLE using animal and human samples. Hsp60 immunoreactivity in the hippocampus, measured by Western blotting and immunohistochemistry, was increased in a rat model of TLE. Hsp60 was also increased in the hippocampal dentate gyrus neurons somata and neuropil and hippocampus proper (CA3, CA1) of the epileptic rats. We also determined the circulating levels of Hsp60 in epileptic animals and TLE patients using ELISA. The epileptic rats showed circulating levels of Hsp60 higher than controls. Likewise, plasma post-seizure Hsp60 levels in patients were higher than before the seizure and those of controls. These results demonstrate that Hsp60 is increased in both animals and patients with TLE in affected tissues, and in plasma in response to epileptic seizures, and point to it as biomarker of hippocampal stress potentially useful for diagnosis and patient management.
    Full-text · Article · Mar 2015 · Scientific Reports
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The pathogenesis of Hashimoto's thyroiditis includes autoimmunity involving thyroid antigens, autoantibodies, and possibly cytokines. It is unclear what role plays Hsp60, but our recent data indicate that it may contribute to pathogenesis as an autoantigen. Its role in the induction of cytokine production, pro- or anti-inflammatory, was not elucidated, except that we found that peripheral blood mononucleated cells (PBMC) from patients or from healthy controls did not respond with cytokine production upon stimulation by Hsp60 in vitro with patterns that would differentiate patients from controls with statistical significance. This "negative" outcome appeared when the data were pooled and analyzed with conventional statistical methods. We re-analyzed our data with non-conventional statistical methods based on data mining using the classification and regression tree learning algorithm and clustering methodology. The results indicate that by focusing on IFN-γ and IL-2 levels before and after Hsp60 stimulation of PBMC in each patient, it is possible to differentiate patients from controls. A major general conclusion is that when trying to identify disease markers such as levels of cytokines and Hsp60, reference to standards obtained from pooled data from many patients may be misleading. The chosen biomarker, e.g., production of IFN-γ and IL-2 by PBMC upon stimulation with Hsp60, must be assessed before and after stimulation and the results compared within each patient and analyzed with conventional and data mining statistical methods.
    Full-text · Article · Nov 2014 · Cell Stress and Chaperones
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Heat-shock protein (Hsp)10 is the co-chaperone for Hsp60 inside mitochondria, but it also resides outside the organelle. Variations in its levels and intracellular distribution have been documented in pathological conditions, e.g. cancer and chronic obstructive pulmonary disease (COPD). Here, we show that Hsp10 in COPD undergoes changes at the molecular and subcellular levels in bronchial cells from human specimens and derived cell lines, intact or subjected to stress induced by cigarette smoke extract (CSE). Noteworthy findings are: (i) Hsp10 occurred in nuclei of epithelial and lamina propria cells of bronchial mucosa from non-smokers and smokers; (ii) human bronchial epithelial (16HBE) and lung fibroblast (HFL-1) cells, in vitro, showed Hsp10 in the nucleus, before and after CSE exposure; (iii) CSE stimulation did not increase the levels of Hsp10 but did elicit qualitative changes as indicated by molecular weight and isoelectric point shifts; and (iv) Hsp10 nuclear levels increased after CSE stimulation in HFL-1, indicating cytosol to nucleus migration, and although Hsp10 did not bind DNA, it bound a DNA-associated protein.
    Full-text · Article · Oct 2014 · Open Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It has been established that Hsp60 can accumulate in the cytosol in various pathological conditions, including cancer and chronic inflammatory diseases. Part or all of the cytosolic Hsp60 could be naïve, namely, bear the mitochondrial import signal (MIS), but neither the structure nor the in solution oligomeric organization of this cytosolic molecule has still been elucidated. Here we present a detailed study of the structure and self-organization of naïve cytosolic Hsp60 in solution. Results were obtained by different biophysical methods (light and X ray scattering, single molecule spectroscopy and hydrodynamics) that all together allowed us to assay a wide range of concentrations of Hsp60. We found that Naïve Hsp60 in aqueous solution is assembled in very stable heptamers and tetradecamers at all concentrations assayed, without any trace of monomer presence.
    Full-text · Article · May 2014 · PLoS ONE
  • Alberto J. L. Macario · Francesco Cappello · Everly Conway de Macario
    [Show abstract] [Hide abstract]
    ABSTRACT: Human mortalin is presented against the background of the Hsp70 family to show its distinctive properties and disease-causing potential. Seventeen genes of the Hsp70 family have recently been characterized applying the chaperonomics protocol to the human genome. One of these genes is HSPA9B, which encodes mortalin, identified in the early 1990s. Mortalin also called mtHsp70, PBP74, GRP75, and HSPA9B, resides inside the mitochondria but can also occur elsewhere. Mortalin is unique within the family because it is more closely related to bacterial than to eukaryotic orthologs, indicating distinctive evolution and functions. Its canonical role pertains to protein folding inside mitochondria in association with Hsp60 (∈Cpn60) and other molecules. However, it is involved also in other processes distinct from protein folding inside and outside mitochondria. It can be predicted that mortalin structure-function defects, inherited or acquired, will have a serious impact on key cellular events, particularly when mitochondria play a role, and in aging. Chaperonopathies due to mortalin malfunction will surely be identified, soon. Existing data indicate that mortalin can be pathogenic, particularly in some types of cancer: mortalin is normal but helps cancer cells to grow, exemplifying the chaperonopathies by mistake, in which a normal chaperone contributes to disease rather than to protection, as expected from a chaperone. Future research offers a multifaceted perspective for mortalin as etiologic factor (chaperonopathies due to chaperone malfunction or mistaken allegiance), disease biomarker, therapeutic target for anti-chaperone compounds (when mortalin is pathogenic), and therapeutic agent in replacement chaperonotherapy (when mortalin is absent or defective).
    No preview · Article · Apr 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Hsp60 (Cpn60) assembles into a tetradecamer that interacts with the co-chaperonin Hsp10 (Cpn10) to assist client polypeptides to fold, but it also has other roles, including participation in pathogenic mechanisms. Area covered: Hsp60 chaperonopathies are pathological conditions, inherited or acquired, in which the chaperone plays a determinant etiologic-pathogenic role. These diseases justify selection of Hsp60 as a target for developing agents that interfere with its pathogenic effects. We provide information on how to proceed. Expert opinion: The information available encourages the development of ways to improve Hsp60 activity (positive chaperonotherapy) when deficient or to block it (negative chaperonotherapy) when pathogenic. Many questions are still unanswered and obstacles are obvious. More information is needed to establish when and why autologous Hsp60 becomes a pathogenic autoantigen, or induces cytokine formation and inflammation, or favors carcinogenesis. Clarification of these points will take considerable time. However, analysis of the Hsp60 molecule and a search for active compounds aimed at structural sites that will affect its functioning should continue without interruption. No doubt that some of these compounds will offer therapeutic hopes and will also be instrumental for dissecting structure-function relationships at the biochemical and biological (using animal models and cultured cells) levels.
    Full-text · Article · Nov 2013 · Expert Opinion on Therapeutic Targets
  • Source

    Full-text · Dataset · Oct 2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The role Hsp60 might play in various inflammatory and autoimmune diseases is under investigation, but little information exists pertaining to Hashimoto's thyroiditis (HT). With the aim to fill this gap, in the present work, we directed our attention to Hsp60 participation in HT pathogenesis. We found Hsp60 levels increased in the blood of HT patients compared to controls. The chaperonin was immunolocalized in thyroid tissue specimens from patients with HT, both in thyrocytes and oncocytes (Hurthle cells) with higher levels compared to controls (goiter). In oncocytes, we found Hsp60 not only in the cytoplasm but also on the plasma membrane, as shown by double immunofluorescence performed on fine needle aspiration cytology. By bioinformatics, we found regions in the Hsp60 molecule with remarkable structural similarity with the thyroglobulin (TG) and thyroid peroxidase (TPO) molecules, which supports the notion that autoantibodies against TG and TPO are likely to recognize Hsp60 on the plasma membrane of oncocytes. This was also supported by data obtained by ELISA, showing that anti-TG and anti-TPO antibodies cross-react with human recombinant Hsp60. Antibody-antigen (Hsp60) reaction on the cell surface could very well mediate thyroid cell damage and destruction, perpetuating inflammation. Experiments with recombinant Hsp60 did not show stimulation of cytokine production by peripheral blood mononuclear cells from HT patients. All together, these results led us to hypothesize that Hsp60 may be an active player in HT pathogenesis via an antibody-mediated immune mechanism.
    Full-text · Article · Sep 2013 · Cell Stress and Chaperones
  • Rona G Giffard · Alberto J.L. Macario · Everly Conway de Macario
    [Show abstract] [Hide abstract]
    ABSTRACT: Protection of hair cells by HSP70 released by supporting cells is reported by May et al. in this issue of the JCI. Their findings suggest a new way to reduce ototoxicity from therapeutic medications and raise larger questions about the role and integration of heat shock proteins in non–cell-autonomous responses to stress. Increasing evidence suggests an important role for extracellular heat shock proteins in both the nervous system and the immune system. The work also suggests that defective chaperones could cause ear disease and supports the potential use of chaperone therapeutics.
    No preview · Article · Aug 2013 · The Journal of clinical investigation
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this work, we propose that for further studies of the physiopathology and treatment for inflammatory bowel diseases, an integral view of the conditions, including the triad of microbiota-heat shock proteins (HSPs)-probiotics, ought to be considered. Microbiota is the complex microbial flora that resides in the gut, affecting not only gut functions but also the health status of the whole body. Alteration in the microbiota's composition has been implicated in a variety of pathological conditions (e.g., ulcerative colitis, UC), involving both gut and extra-intestinal tissues and organs. Some of these pathologies are also associated with an altered expression of HSPs (chaperones) and this is the reason why they may be considered chaperonopathies. Probiotics, which are live microorganisms able to restore the correct, healthy equilibrium of microbiota composition, can ameliorate symptoms in patients suffering from UC and modulate expression levels of HSPs. However, currently probiotic therapy follows ex-adiuvantibus criteria, i.e., treatments with beneficial effects but whose mechanism of action is unknown, which should be changed so the probiotics needed in each case are predetermined on the basis of the patient's microbiota. Consequently, efforts are necessary to develop diagnostic tools for elucidating levels and distribution of HSPs and the microbiota composition (microbiota fingerprint) of each subject and, thus, guide specific probiotic therapy, tailored to meet the needs of the patient. Microbiota fingerprinting ought to include molecular biology techniques for sequencing highly conserved DNA, e.g., genes encoding 16S RNA, for species identification and, in addition, quantification of each relevant microbe.
    Full-text · Article · Jul 2013 · Medical Microbiology and Immunology
  • Alberto J.L Macario · Everly Conway de Macario · Francesco Cappello
    [Show abstract] [Hide abstract]
    ABSTRACT: This chapter deals with structural and hereditary chaperonopathies. The chaperonopathies caused by mutations in: sHsp, chaperonin genes (Hsp60 or Cpn60, and CCT subunits), Hsp40/DnaJ, Hsp70, sacsin, and dedicated chaperones (e.g., those involved in microtubule biogenesis, in maintenance of the respiratory chain inside the mitochondria, and others in various cell compartments and tissues), are described and discussed.
    No preview · Chapter · Jan 2013
  • Alberto J.L Macario · Everly Conway de Macario · Francesco Cappello
    [Show abstract] [Hide abstract]
    ABSTRACT: In this chapter are presented chaperonopathies in which a genetic mechanism is involved but are different from those discussed in chapter 4. Thus, chaperonopathies due to gene dysregulation such as those observed in aged individuals and in some cases with neurodegenerative diseases (e.g., Alzheimer’s, Huntington’s, Parkinson’s, and other conditions), are presented. Likewise, examples of the impact of chaperone-gene polymorphisms on health and disease are given. The quantitative chaperonopathies attributable to gene dysregulation are discussed.
    No preview · Chapter · Jan 2013
  • Alberto J.L Macario · Everly Conway de Macario · Francesco Cappello
    [Show abstract] [Hide abstract]
    ABSTRACT: A mechanism causing a chaperonopathy that is introduced in this chapter consists of the absence of a chaperone from the place where it is needed (i.e., chaperonopathies by misplacement). Also in this chapter are discussed the unfolded-protein response (UPR), chaperone-mediated autophagy (CMA), and illustrative examples of chaperonopathies by mistake, or collaborationism. In these conditions, one or more chaperones, apparently normal in structure, perform functions that favor disease rather than the contrary, hence the name of chaperonopathy by mistake or collaborationism (a molecule that ought to protect the cell and the organism promotes pathogenesis instead). Many examples of chaperonopathies by mistake have been identified involving various chaperones and co-chaperones, including a variety of cancers, and inflammatory and autoimmune conditions. The participation of Hsp60 in these disorders is analyzed in some detail. The potential role of this chaperone as autoantigen and/or as signal molecule is brought up to central stage in certain cancers, myasthenia gravis, Hashimoto’s thyroiditis, chronic obstructive pulmonary disease (COPD), and ulcerative colitis.
    No preview · Chapter · Jan 2013

Publication Stats

5k Citations
816.79 Total Impact Points


  • 2007-2015
    • University of Maryland, Baltimore
      • • Department of Medicine
      • • Department of Microbiology and Immunology
      Baltimore, Maryland, United States
  • 2011-2012
    • Loyola University Maryland
      Baltimore, Maryland, United States
  • 1992-2006
    • Albany State University
      Georgia, United States
  • 1995-2005
    • Wadsworth Center, NYS Department of Health
      Albany, New York, United States
  • 2004
    • University of Texas at Austin
      • Department of Chemistry and Biochemistry
      Austin, Texas, United States
  • 1987-2003
    • University at Albany, The State University of New York
      • School of Public Health
      New York City, NY, United States
  • 2001
    • Institute of Biochemistry and Biophysics Polish Academy of Sciences
      Warszawa, Masovian Voivodeship, Poland
  • 1992-2000
    • Technical University of Denmark
      • Department of Environmental Engineering
      København, Capital Region, Denmark
  • 1979-2000
    • New York State Department of Health
      • Wadsworth Center
      New York, New York, United States
  • 1994
    • The Andalusian School of Public Health
      Granata, Andalusia, Spain
  • 1993
    • University of Rhode Island
      Кингстон, Rhode Island, United States
  • 1989-1992
    • State University of New York
      New York City, New York, United States
  • 1991
    • Autonomous University of Barcelona
      Cerdanyola del Vallès, Catalonia, Spain
  • 1988-1990
    • University of Iowa
      • Department of Microbiology
      Iowa City, Iowa, United States
    • Medical Research Council (UK)
      Londinium, England, United Kingdom
  • 1976-1978
    • Brown University
      • Division of Biology and Medicine
      Providence, Rhode Island, United States
  • 1972
    • National Research Council
      Bari, Apulia, Italy