Sang Mi Shim

Seoul National University, Sŏul, Seoul, South Korea

Are you Sang Mi Shim?

Claim your profile

Publications (8)62.33 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Huntington’s disease (HD) is a devastating neurodegenerative disorder, which is caused by the expression and aggregation of polyQ-expanded mutant huntingtin protein (mtHTT). While toxic mtHTT aggregates are primarily eliminated through autophagy, autophagy dysfunction is often observed in HD pathogenesis. Here, we show that ectodermal-neural cortex 1 (ENC1), a novel binding partner of sequestosome 1 (p62), negatively regulates autophagy under endoplasmic reticulum (ER) stress. We found that ER stress significantly increases the expression of ENC1 via inositol-requiring enzyme 1 (IRE1)-TNF receptor-associated factor 2 (TRAF2)-c-Jun N-terminal kinase (JNK) pathway. Ectopic expression of ENC1 alone induces the accumulation of detergent-resistant mtHTT aggregates and downregulation of ENC1 alleviates ER stress-induced mtHTT aggregation. Simultaneously, ER stress-induced impairment of autophagy flux is ameliorated by downregulation of ENC1. From immunoprecipitation and immunocytochemical assays, we found that ENC1 binds to p62 through its BTB and C-terminal Kelch (BACK) domain and this interaction is enhanced under ER stress. In particular, ENC1 preferentially interacts with the phosphorylated p62 at Ser403 during ER stress. Interestingly, ENC1 colocalizes with mtHTT aggregates and its C-terminal Kelch domain is required for interfering with the access of p62 to ubiquitinated mtHTT aggregates, thus inhibiting cargo recognition of p62. Accordingly, knockdown of ENC1 expression enhances colocalization of p62 with mtHTT aggregates. Consequently, ENC1 knockdown relieves death of neuronal cells expressing mtHTT under ER stress. These results suggest that ENC1 interacts with the phosphorylated p62 to impair autophagic degradation of mtHTT aggregates and affects cargo recognition failure under ER stress, leading to the accumulation and neurotoxicity of mtHTT aggregates.
    No preview · Article · Dec 2015 · Molecular Neurobiology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our previous studies demonstrated that transplantation of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) into the hippocampus of a transgenic mouse model of Alzheimer's disease (AD) reduced amyloid-β (Aβ) plaques and enhanced cognitive function through paracrine action. Due to the limited lifespan of hUCB-MSCs after their transplantation, the extension of hUCB-MSC efficacy was essential for AD treatment. Here, we show that repeated cisterna magna injections of hUCB-MSCs activated endogenous hippocampal neurogenesis and significantly reduced Aβ42 levels. In order to identify the paracrine factors released from the hUCB-MSCs that stimulated endogenous hippocampal neurogenesis in the dentate gyrus, we co-cultured adult mouse neural stem cells (NSCs) with hUCB-MSCs and analyzed the co-cultured media with cytokine arrays. Growth/differentiation factor-15 (GDF-15) levels were significantly increased in the media. GDF-15 suppression in hUCB-MSCs with GDF-15-small interfering RNA reduced the proliferation of NSCs in co-cultures. Conversely, recombinant GDF-15 treatment in both in vitro and in vivo enhanced hippocampal NSC proliferation and neuronal differentiation. Repeated administration of hUBC-MSCs markedly promoted the expression of synaptic vesicle markers, including synaptophysin, which are downregulated in patients with AD. In addtition, in vitro synaptic activity through GDF-15 was promoted. Taken together, these results indicated that repeated cisterna magna administration of hUCB-MSCs enhanced endogenous adult hippocampal neurogenesis and synaptic activity through a paracrine factor of GDF-15, suggesting a possible role of hUCB-MSCs in future treatment strategies for AD.
    No preview · Article · Jul 2015 · Stem cells and development
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ubiquitin-proteasome system is essential for maintaining protein homeostasis. However, proteasome dysregulation in chronic diseases is poorly understood. Through genome-wide cell-based screening using 5,500 cDNAs, a signaling pathway leading to NFκB activation was selected as an inhibitor of 26S proteasome. TNF-α increased S5b (HGNC symbol PSMD5; hereafter S5b/PSMD5) expression via NFκB, and the surplus S5b/PSMD5 directly inhibited 26S proteasome assembly and activity. Downregulation of S5b/PSMD5 abolished TNF-α-induced proteasome inhibition. TNF-α enhanced the interaction of S5b/PSMD5 with S7/PSMC2 in nonproteasome complexes, and interference of this interaction rescued TNF-α-induced proteasome inhibition. Transgenic mice expressing S5b/PSMD5 exhibited a reduced life span and premature onset of aging-related phenotypes, including reduced proteasome activity in their tissues. Conversely, S5b/PSMD5 deficiency in Drosophila melanogaster ameliorated the tau rough eye phenotype, enhanced proteasome activity, and extended the life span of tau flies. These results reveal the critical role of S5b/PSMD5 in negative regulation of proteasome by TNF-α/NFκB and provide insights into proteasome inhibition in human disease.
    Full-text · Article · Aug 2012 · Cell Reports
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the prevalence and risk factors of vertebral fractures in Korea. In a community-based prospective epidemiology study, 1,155 men and 1,529 women (mean age 59 years, range 43-74) were recruited from Ansung, a rural Korean community. Prevalent vertebral fractures were identified on the lateral spinal radiographs at T11 to L4 using vertebral morphometry. Bone mineral density (BMD) was measured at the lumbar spine, femur neck and total hip. Of the 2,684 subjects, 137 (11.9%) men and 227 (14.8%) women had vertebral fractures and the standardized prevalence for vertebral fractures using the age distribution of Korean population was 8.8% in men and 12.6% in women. In univariate analysis, older age, low hip circumference, low BMD, low income and education levels in both sexes, previous history of fracture in men, high waist-to-hip circumference ratio, postmenopausal status, longer duration since menopause, and higher number of pregnancies and deliveries in women were associated with an increased risk of vertebral fractures. However, after adjusting for age, only low BMD in both sexes and a previous history of fracture in men were significantly associated with an increased risk of vertebral fractures. Vertebral fractures are prevalent in Korea as in other countries. Older age, low BMD and a previous history of fracture are significant risk factors for vertebral fractures.
    No preview · Article · Jul 2011 · Journal of Bone and Mineral Metabolism
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amyloid-beta (Abeta) neurotoxicity is believed to contribute to the pathogenesis of Alzheimer's disease (AD). Previously we found that E2-25K/Hip-2, an E2 ubiquitin-conjugating enzyme, mediates Abeta neurotoxicity. Here, we report that E2-25K/Hip-2 modulates caspase-12 activity via the ubiquitin/proteasome system. Levels of endoplasmic reticulum (ER)-resident caspase-12 are strongly up-regulated in the brains of AD model mice, where the enzyme colocalizes with E2-25K/Hip-2. Abeta increases expression of E2-25K/Hip-2, which then stabilizes caspase-12 protein by inhibiting proteasome activity. This increase in E2-25K/Hip-2 also induces proteolytic activation of caspase-12 through its ability to induce calpainlike activity. Knockdown of E2-25K/Hip-2 expression suppresses neuronal cell death triggered by ER stress, and thus caspase-12 is required for the E2-25K/Hip-2-mediated cell death. Finally, we find that E2-25K/Hip-2-deficient cortical neurons are resistant to Abeta toxicity and to the induction of ER stress and caspase-12 expression by Abeta. E2-25K/Hip-2 is thus an essential upstream regulator of the expression and activation of caspase-12 in ER stress-mediated Abeta neurotoxicity.
    Full-text · Article · Sep 2008 · The Journal of Cell Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Apoptosis repressor with CARD (ARC) possesses the ability not only to block activation of caspase 8 but to modulate caspase-independent mitochondrial events associated with cell death. However, it is not known how ARC modulates both caspase-dependent and caspase-independent cell death. Here, we report that ARC is a Ca2+-dependent regulator of caspase 8 and cell death. We found that in Ca2+ overlay and Stains-all assays, ARC protein bound to Ca2+ through the C-terminal proline/glutamate-rich (P/E-rich) domain. ARC expression reduced not only cytosolic Ca2+ transients but also cytotoxic effects of thapsigargin, A23187, and ionomycin, for which the Ca2+-binding domain of ARC was indispensable. Conversely, direct interference of endogenous ARC synthesis by targeting ARC enhanced such Ca2+-mediated cell death. In addition, binding and immunoprecipitation analyses revealed that the protein-protein interaction between ARC and caspase 8 was decreased by the increase of Ca2+ concentration in vitro and by the treatment of HEK293 cells with thapsigargin in vivo. Caspase 8 activation was also required for the thapsigargin-induced cell death and suppressed by the ectopic expression of ARC. These results suggest that calcium binding mediates regulation of caspase 8 and cell death by ARC.
    Preview · Article · Dec 2004 · Molecular and Cellular Biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ubiquitin/proteasome system has been proposed to play an important role in Alzheimer's disease (AD) pathogenesis. However, the critical factor(s) modulating both amyloid-beta peptide (Abeta) neurotoxicity and ubiquitin/proteasome system in AD are not known. We report the isolation of an unusual ubiquitin-conjugating enzyme, E2-25K/Hip-2, as a mediator of Abeta toxicity. The expression of E2-25K/Hip-2 was upregulated in the neurons exposed to Abeta(1-42) in vivo and in culture. Enzymatic activity of E2-25K/Hip-2 was required for both Abeta(1-42) neurotoxicity and inhibition of proteasome activity. E2-25K/Hip-2 functioned upstream of apoptosis signal-regulating kinase 1 (ASK1) and c-Jun N-terminal kinase (JNK) in Abeta(1-42) toxicity. Further, the ubiquitin mutant, UBB+1, a potent inhibitor of the proteasome which is found in Alzheimer's brains, was colocalized and functionally interacted with E2-25K/Hip-2 in mediating neurotoxicity. These results suggest that E2-25K/Hip-2 is a crucial factor in regulating Abeta neurotoxicity and could play a role in the pathogenesis of Alzheimer's disease.
    No preview · Article · Oct 2003 · Molecular Cell
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ubiquitin/proteasome system has been proposed to play an important role in Alzheimer's disease (AD) pathogenesis. However, the critical factor(s) modulating both amyloid-β peptide (Aβ) neurotoxicity and ubiquitin/proteasome system in AD are not known. We report the isolation of an unusual ubiquitin-conjugating enzyme, E2-25K/Hip-2, as a mediator of Aβ toxicity. The expression of E2-25K/Hip-2 was upregulated in the neurons exposed to Aβ1-42 in vivo and in culture. Enzymatic activity of E2-25K/Hip-2 was required for both Aβ1-42 neurotoxicity and inhibition of proteasome activity. E2-25K/Hip-2 functioned upstream of apoptosis signal-regulating kinase 1 (ASK1) and c-Jun N-terminal kinase (JNK) in Aβ1-42 toxicity. Further, the ubiquitin mutant, UBB+1, a potent inhibitor of the proteasome which is found in Alzheimer's brains, was colocalized and functionally interacted with E2-25K/Hip-2 in mediating neurotoxicity. These results suggest that E2-25K/Hip-2 is a crucial factor in regulating Aβ neurotoxicity and could play a role in the pathogenesis of Alzheimer's disease.
    Preview · Article · Sep 2003 · Molecular Cell

Publication Stats

250 Citations
62.33 Total Impact Points

Institutions

  • 2008-2015
    • Seoul National University
      • • Department of Biomedical Sciences
      • • Department of Biological Sciences
      • • Department of Internal Medicine
      Sŏul, Seoul, South Korea