Stephen L Hauser

University of California, San Francisco, San Francisco, California, United States

Are you Stephen L Hauser?

Claim your profile

Publications (281)2878.92 Total impact

  • Stephen L. Hauser · Jorge R. Oksenberg · Sergio E. Baranzini
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple sclerosis (MS), a frequent cause of neurological disease arising in early to middle adulthood, has a complex etiology involving both genetic and environmental factors. Recent years have witnessed great progress in the dissection of the fundamental genetic etiology underlying MS risk. To date, more than 100 variants that modulate disease susceptibility have been identified. The most important factor genome-wide resides in the major histocompatibility complex (MHC) region (odds ratio [OR] 3.1); the primary signal maps to the class II DR locus (primarily DRB1*1501) and a secondary signal maps to the A locus in the class 1 region. Other MS-associated variants are widely distributed across the genome and all have small effect (OR. = 1.1-1.35); importantly, most cluster nearby genes known to affect immune function although as the MS genetic map expands some contribution of nervous system and vitamin D-associated pathways are also becoming evident. Taken together, a new genetic landscape of MS is now available for the research community that should help clarify the underlying biology of this disease and, hopefully, lead to new methods of treatment, early detection, and perhaps prevention.
    No preview · Chapter · Dec 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple sclerosis (MS) is an autoimmune disease of the central nervous system, with a strong genetic component. Over 100 genetic loci have been implicated in susceptibility to MS in European populations, the most prominent being the 15:01 allele of the HLA-DRB1 gene. The prevalence of MS is high in European populations including those of Ashkenazi origin, and low in African and Asian populations including those of Jewish origin. Here we identified and extracted a total of 213 Ashkenazi MS cases and 546 ethnically matched healthy control individuals from two previous genome-wide case-control association analyses, and 72 trios (affected proband and two unaffected parents) from a previous genome-wide transmission disequilibrium association study, using genetic data to define Ashkenazi. We compared the pattern of genetic risk between Ashkenazi and non-Ashkenazi Europeans. We also sought to identify novel Ashkenazi-specific risk loci by performing association tests on the subset of Ashkenazi cases, controls, probands, and parents from each study. The HLA-DRB1*15:01 allele and the non-HLA risk alleles were present at relatively low frequencies among Ashkenazi and explained a smaller fraction of the population-level risk when compared to non-Ashkenazi Europeans. Alternative HLA susceptibility alleles were identified in an Ashkenazi-only association study, including HLA-A*68:02 and one or both genes in the HLA-B*38:01-HLA-C*12:03 haplotype. The genome-wide screen in Ashkenazi did not reveal any loci associated with MS risk. These results suggest that genetic susceptibility to MS in Ashkenazi Jews has not been as well established as that of non-Ashkenazi Europeans. This implies value in studying large well-characterized Ashkenazi populations to accelerate gene discovery in complex genetic diseases.
    Full-text · Article · Dec 2015 · BMC Medical Genetics
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite recent progress in the characterization of genetic loci associated with multiple sclerosis (MS) risk, the ubiquitous linkage disequilibrium operating across the genome has stalled efforts to distinguish causative variants from proxy single-nucleotide polymorphisms (SNPs). Here, we have identified through fine mapping and meta-analysis EVI5 as the most plausible disease risk gene within the 1p22.1 locus. We further show that an exonic SNP associated with risk induces changes in superficial hydrophobicity patterns of the coiled-coil domain of EVI5, which, in turns, affects the EVI5 interactome. Immunoprecipitation of wild-type and mutated EVI5 followed by mass spectrometry generated a roster of disease-specific interactors functionally linked to lipid metabolism. Among the exclusive binding partners of the risk variant, we describe the novel interaction with sphingosine 1-phosphate lyase (SGPL1)—a key enzyme for the creation of the sphingosine-1 phosphate gradient, which is relevant to the pathogenic process and therapeutic management of MS.
    No preview · Article · Oct 2015 · Human Molecular Genetics
  • [Show abstract] [Hide abstract]
    ABSTRACT: Association studies have greatly refined the understanding of how variation within the human leukocyte antigen (HLA) genes influences risk of multiple sclerosis. However, the extent to which major effects are modulated by interactions is poorly characterized. We analyzed high-density SNP data on 17,465 cases and 30,385 controls from 11 cohorts of European ancestry, in combination with imputation of classical HLA alleles, to build a high-resolution map of HLA genetic risk and assess the evidence for interactions involving classical HLA alleles. Among new and previously identified class II risk alleles (HLA-DRB1*15:01, HLA-DRB1*13:03, HLA-DRB1*03:01, HLA-DRB1*08:01 and HLA-DQB1*03:02) and class I protective alleles (HLA-A*02:01, HLA-B*44:02, HLA-B*38:01 and HLA-B*55:01), we find evidence for two interactions involving pairs of class II alleles: HLA-DQA1*01:01–HLA-DRB1*15:01 and HLA-DQB1*03:01–HLA-DQB1*03:02. We find no evidence for interactions between classical HLA alleles and non-HLA risk-associated variants and estimate a minimal effect of polygenic epistasis in modulating major risk alleles.
    No preview · Article · Sep 2015 · Nature Genetics
  • [Show abstract] [Hide abstract]
    ABSTRACT: To assess the influence of common mitochondrial DNA (mtDNA) sequence variation on multiple sclerosis (MS) risk in cases and controls part of an international consortium. We analyzed 115 high-quality mtDNA variants and common haplogroups from a previously published genome-wide association study among 7,391 cases from the International Multiple Sclerosis Genetics Consortium and 14,568 controls from the Wellcome Trust Case Control Consortium 2 project from 7 countries. Significant single nucleotide polymorphism and haplogroup associations were replicated in 3,720 cases and 879 controls from the University of California, San Francisco. An elevated risk of MS was detected among haplogroup JT carriers from 7 pooled clinic sites (odds ratio [OR] = 1.15, 95% confidence interval [CI] = 1.07-1.24, p = 0.0002) included in the discovery study. The increased risk of MS was observed for both haplogroup T (OR = 1.17, 95% CI = 1.06-1.29, p = 0.002) and haplogroup J carriers (OR = 1.11, 95% CI = 1.01-1.22, p = 0.03). These haplogroup associations with MS were not replicated in the independent sample set. An elevated risk of primary progressive (PP) MS was detected for haplogroup J participants from 3 European discovery populations (OR = 1.49, 95% CI = 1.10-2.01, p = 0.009). This elevated risk was borderline significant in the US replication population (OR = 1.43, 95% CI = 0.99-2.08, p = 0.058) and remained significant in pooled analysis of discovery and replication studies (OR = 1.43, 95% CI = 1.14-1.81, p = 0.002). No common individual mtDNA variants were associated with MS risk. Identification and validation of mitochondrial genetic variants associated with MS and PPMS may lead to new targets for treatment and diagnostic tests for identifying potential responders to interventions that target mitochondria. © 2015 American Academy of Neurology.
    No preview · Article · Jul 2015 · Neurology
  • [Show abstract] [Hide abstract]
    ABSTRACT: In multiple sclerosis (MS), upper cervical cord gray matter (GM) atrophy correlates more strongly with disability than does brain or cord white matter (WM) atrophy. The corresponding relationships in the thoracic cord are unknown owing to technical difficulties in assessing GM and WM compartments by conventional magnetic resonance imaging techniques. To investigate the associations between MS disability and disease type with lower thoracic cord GM and WM areas using phase-sensitive inversion recovery magnetic resonance imaging at 3 T, as well as to compare these relationships with those obtained at upper cervical levels. Between July 2013 and March 2014, a total of 142 patients with MS (aged 25-75 years; 86 women) and 20 healthy control individuals were included in this cross-sectional observational study conducted at an academic university hospital. Total cord areas (TCAs), GM areas, and WM areas at the disc levels C2/C3, C3/C4, T8/9, and T9/10. Area differences between groups were assessed, with age and sex as covariates. Patients with relapsing MS (RMS) had smaller thoracic cord GM areas than did age- and sex-matched control individuals (mean differences [coefficient of variation (COV)]: 0.98 mm2 [9.2%]; P = .003 at T8/T9 and 0.93 mm2 [8.0%]; P = .01 at T9/T10); however, there were no significant differences in either the WM area or TCA. Patients with progressive MS showed smaller GM areas (mean differences [COV]: 1.02 mm2 [10.6%]; P < .001 at T8/T9 and 1.37 mm2 [13.2%]; P < .001 at T9/T10) and TCAs (mean differences [COV]: 3.66 mm2 [9.0%]; P < .001 at T8/T9 and 3.04 mm2 [7.2%]; P = .004 at T9/T10) compared with patients with RMS. All measurements (GM, WM, and TCA) were inversely correlated with Expanded Disability Status Scale score. Thoracic cord GM areas were correlated with lower limb function. In multivariable models (which also included cord WM areas and T2 lesion number, brain WM volumes, brain T1 and fluid-attenuated inversion recovery lesion loads, age, sex, and disease duration), cervical cord GM areas had the strongest correlation with Expanded Disability Status Scale score followed by thoracic cord GM area and brain GM volume. Thoracic cord GM atrophy can be detected in vivo in the absence of WM atrophy in RMS. This atrophy is more pronounced in progressive MS than RMS and correlates with disability and lower limb function. Our results indicate that remarkable cord GM atrophy is present at multiple cervical and lower thoracic levels and, therefore, may reflect widespread cord GM degeneration.
    No preview · Article · Jun 2015

  • No preview · Conference Paper · May 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aims of this study were: (i) to determine to what degree multiple sclerosis-associated loci discovered in European populations also influence susceptibility in African Americans; (ii) to assess the extent to which the unique linkage disequilibrium patterns in African Americans can contribute to localizing the functionally relevant regions or genes; and (iii) to search for novel African American multiple sclerosis-associated loci. Using the ImmunoChip custom array we genotyped 803 African American cases with multiple sclerosis and 1516 African American control subjects at 130 135 autosomal single nucleotide polymorphisms. We conducted association analysis with rigorous adjustments for population stratification and admixture. Of the 110 non-major histocompatibility complex multiple sclerosis-associated variants identified in Europeans, 96 passed stringent quality control in our African American data set and of these, >70% (69) showed over-representation of the same allele amongst cases, including 21 with nominally significant evidence for association (one-tailed test P < 0.05). At a further eight loci we found nominally significant association with an alternate correlated risk-tagging single nucleotide polymorphism from the same region. Outside the regions known to be associated in Europeans, we found seven potentially associated novel candidate multiple sclerosis variants ( P < 10–4), one of which (rs2702180) also showed nominally significant evidence for association (one-tailed test P = 0.034) in an independent second cohort of 620 African American cases and 1565 control subjects. However, none of these novel associations reached genome-wide significance (combined P = 6.3 x 10–5). Our data demonstrate substantial overlap between African American and European multiple sclerosis variants, indicating common genetic contributions to multiple sclerosis risk.
    No preview · Article · Mar 2015 · Brain
  • Source
    Stephen L. Hauser

    Preview · Article · Mar 2015 · Annals of Neurology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple sclerosis (MS) is characterized by temporal and spatial dissemination of demyelinating lesions in the central nervous system. Associated neurodegenerative changes contributing to disability have been recognized even at early disease stages. Recent studies show the importance of gray matter damage for the accrual of clinical disability rather than white matter where demyelination is easily visualized by MRI. The susceptibility to MS is influenced by genetic risk, but genetic factors associated with the disability are not known. We used MRI data to determine cortical thickness in 557 MS cases and 75 controls and in another cohort of 219 cases. We identified 9 areas showing different thickness between cases and controls (regions of interest, ROI) (8 of them were negatively correlated with Kurtzke's expanded disability status scale, EDSS) and conducted genome-wide association (GWA) in 464 and 211 cases available from the two data sets. No marker exceeded genome-wide significance in the discovery cohort. We next combined nominal statistical evidence of association with physical evidence of interaction from a curated human protein interaction network, and searched for subnetworks enriched with nominally associated genes and searched for commonalities between the two data sets.This network-based pathway analysis of GWAS detected gene sets involved in glutamate signaling, neural development and an adjustment of intracellular calcium concentration. We report here for the first time gene sets associated with cortical thinning of MS. These genes are potentially correlated with disability of MS.
    Full-text · Article · Feb 2015 · Genes Brain and Behavior
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Converging evidence implicates immune abnormalities in schizophrenia (SCZ), and recent genome-wide association studies (GWAS) have identified immune-related single-nucleotide polymorphisms (SNPs) associated with SCZ. Using the conditional false discovery rate (FDR) approach, we evaluated pleiotropy in SNPs associated with SCZ (n=21 856) and multiple sclerosis (MS) (n=43 879), an inflammatory, demyelinating disease of the central nervous system. Because SCZ and bipolar disorder (BD) show substantial clinical and genetic overlap, we also investigated pleiotropy between BD (n=16 731) and MS. We found significant genetic overlap between SCZ and MS and identified 21 independent loci associated with SCZ, conditioned on association with MS. This enrichment was driven by the major histocompatibility complex (MHC). Importantly, we detected the involvement of the same human leukocyte antigen (HLA) alleles in both SCZ and MS, but with an opposite directionality of effect of associated HLA alleles (that is, MS risk alleles were associated with decreased SCZ risk). In contrast, we found no genetic overlap between BD and MS. Considered together, our findings demonstrate genetic pleiotropy between SCZ and MS and suggest that the MHC signals may differentiate SCZ from BD susceptibility.
    Full-text · Article · Feb 2015 · Molecular Psychiatry
  • Stephen L Hauser

    No preview · Article · Jan 2015 · JAMA The Journal of the American Medical Association
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: When a research paper is accepted for publication in an NPG journal, authors are encouraged to submit the Final Author Version (the authors' accepted version of their manuscript) to PubMedCentral or other appropriate funding body's archive, for public release six months after publication. In addition, authors are encouraged to archive this version of the manuscript in their institution's repositories and, if they wish, on their personal websites, also six months after the original publication. Authors should cite the publication reference and DOI number on the first page of any deposited version, and provide a link from it to the URL of the published article on the journal's website.
    Full-text · Article · Jan 2015 · Nature Genetics
  • Source
    Stephen L Hauser
    [Show abstract] [Hide abstract]
    ABSTRACT: Autoimmune B cells play a major role in mediating tissue damage in multiple sclerosis (MS). In MS, B cells are believed to cross the blood-brain barrier and undergo stimulation, antigen-driven affinity maturation and clonal expansion within the supportive CNS environment. These highly restricted populations of clonally expanded B cells and plasma cells can be detected in MS lesions, in cerebrospinal fluid, and also in peripheral blood. In phase II trials in relapsing MS, monoclonal antibodies that target circulating CD20-positive B lymphocytes dramatically reduced disease activity. These beneficial effects occurred within weeks of treatment, indicating that a direct effect on B cells-and likely not on putative autoantibodies-was responsible. The discovery that depletion of B cells has an impact on MS biology enabled a paradigm shift in understanding how the inflammatory phase of MS develops, and will hopefully lead to development of increasingly selective therapies against culprit B cells and related humoral immune system pathways. More broadly, these studies illustrate how lessons learned from the bedside have unique power to inform translational research. They highlight the essential role of clinician scientists, currently endangered, who navigate the rocky and often unpredictable terrain between the worlds of clinical medicine and biomedical research. © The Author(s), 2014.
    Preview · Article · Dec 2014 · Multiple Sclerosis
  • [Show abstract] [Hide abstract]
    ABSTRACT: To present and assess a procedure for measurement of spinal cord total cross-sectional areas (TCA) and gray matter (GM) areas based on phase-sensitive inversion recovery imaging (PSIR). In vivo assessment of spinal cord GM and white matter (WM) could become pivotal to study various neurological diseases, but it is challenging because of insufficient GM/WM contrast provided by conventional magnetic resonance imaging (MRI). We acquired 2D PSIR images at 3T at each disc level of the spinal axis in 10 healthy subjects and measured TCA, cord diameters, WM and GM areas, and GM area/TCA ratios. Second, we investigated 32 healthy subjects at four selected levels (C2-C3, C3-C4, T8-T9, T9-T10, total acquisition time <8 min) and generated normative reference values of TCA and GM areas. We assessed test-retest, intra- and interoperator reliability of the acquisition strategy, and measurement steps. The measurement procedure based on 2D PSIR imaging allowed TCA and GM area assessments along the entire spinal cord axis. The tests we performed revealed high test-retest/intraoperator reliability (mean coefficient of variation [COV] at C2-C3: TCA = 0.41%, GM area = 2.75%) and interoperator reliability of the measurements (mean COV on the 4 levels: TCA = 0.44%, GM area = 4.20%; mean intraclass correlation coefficient: TCA = 0.998, GM area = 0.906). 2D PSIR allows reliable in vivo assessment of spinal cord TCA, GM, and WM areas in clinically feasible acquisition times. The area measurements presented here are in agreement with previous MRI and postmortem studies. J. Magn. Reson. Imaging 2014. © 2014 Wiley Periodicals, Inc.
    No preview · Article · Dec 2014 · Journal of Magnetic Resonance Imaging
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a precision medicine application developed for multiple sclerosis (MS): the MS BioScreen. This new tool addresses the challenges of dynamic management of a complex chronic disease; the interaction of clinicians and patients with such a tool illustrates the extent to which translational digital medicine – i.e. the application of information technology to medicine—has the potential to radically transform medical practice. We introduce three key evolutionary phases in displaying data to health care providers, patients, and researchers: visualization (accessing data), contextualization (understanding the data), and actionable interpretation (real-time use of the data to assist decision-making). Together these form the stepping-stones that are expected to accelerate standardization of data across platforms, promote evidence-based medicine, support shared decision-making, and ultimately lead to improved outcomes. ANN NEUROL 2014. © 2014 American Neurological Association
    Full-text · Article · Nov 2014 · Annals of Neurology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective: In multiple sclerosis (MS), cerebral gray matter (GM) atrophy correlates more strongly than white matter (WM) atrophy with disability. The corresponding relationships in the spinal cord (SC) are unknown due to technical limitations in assessing SC GM atrophy. Using phase-sensitive inversion recovery (PSIR) magnetic resonance imaging, we determined the association of the SC GM and SC WM areas with MS disability and disease type. Methods: A total of 113 MS patients and 20 healthy controls were examined at 3T with a PSIR sequence acquired at the C2/C3 disk level. Two independent, clinically masked readers measured the cord WM and GM areas. Correlations between cord areas and Expanded Disability Status Score (EDSS) were determined. Differences in areas between groups were assessed with age and sex as covariates. Results: Relapsing MS (RMS) patients showed smaller SC GM areas than age- and sex-matched controls (p = 0.008) without significant differences in SC WM areas. Progressive MS patients showed smaller SC GM and SC WM areas compared to RMS patients (all p ≤ 0.004). SC GM, SC WM, and whole cord areas inversely correlated with EDSS (rho: -0.60, -0.32, -0.42, respectively; all p ≤ 0.001). The SC GM area was the strongest correlate of disability in multivariate models including brain GM and WM volumes, fluid-attenuated inversion recovery lesion load, T1 lesion load, SC WM area, number of SC T2 lesions, age, sex, and disease duration. Brain and spinal GM independently contributed to EDSS. Interpretation: SC GM atrophy is detectable in vivo in the absence of WM atrophy in RMS. It is more pronounced in progressive MS than RMS and contributes more to patient disability than SC WM or brain GM atrophy.
    Full-text · Article · Oct 2014 · Annals of Neurology

  • No preview · Conference Paper · Sep 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: In multiple sclerosis (MS), lymphocyte-in particular B cell-transit between the central nervous system (CNS) and periphery may contribute to the maintenance of active disease. Clonally related B cells exist in the cerebrospinal fluid (CSF) and peripheral blood (PB) of MS patients; however, it remains unclear which subpopulations of the highly diverse peripheral B cell compartment share antigen specificity with intrathecal B cell repertoires and whether their antigen stimulation occurs on both sides of the blood-brain barrier. To address these questions, we combined flow cytometric sorting of PB B cell subsets with deep immune repertoire sequencing of CSF and PB B cells. Immunoglobulin (IgM and IgG) heavy chain variable (VH) region repertoires of five PB B cell subsets from MS patients were compared with their CSF Ig-VH transcriptomes. In six of eight patients, we identified peripheral CD27(+)IgD(-) memory B cells, CD27(hi)CD38(hi) plasma cells/plasmablasts, or CD27(-)IgD(-) B cells that had an immune connection to the CNS compartment. Pinpointing Ig class-switched B cells as key component of the immune axis thought to contribute to ongoing MS disease activity strengthens the rationale of current B cell-targeting therapeutic strategies and may lead to more targeted approaches.
    No preview · Article · Aug 2014 · Science translational medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective There is increasing evidence that altered glutamate (Glu) homeostasis is involved in the pathophysiology of multiple sclerosis (MS). The aim of this study was to evaluate the in vivo effects of excess brain Glu on neuroaxonal integrity measured by N-acetylaspartate (NAA), brain volume, and clinical outcomes in a large, prospectively followed cohort of MS subjects.Methods We used multivoxel spectroscopy at 3T to longitudinally estimate Glu and NAA concentrations from large areas of normal-appearing white and gray matter (NAWM and GM) in MS patients (n = 343) with a mean follow-up time of 5 years. Using linear mixed-effects models, Glu was examined as a predictor of NAA decline, annualized percentage brain volume change, and evolution of clinical outcomes (Multiple Sclerosis Functional Composite [MSFC], Paced Auditory Serial Addition Test-3 [PASAT], and Expanded Disability Status Scale). Glu/NAA ratio was tested as a predictor of brain volume loss and clinical outcomes.ResultsBaseline Glu[NAWM] was predictive of accelerated longitudinal decline in NAA[GM] (−0.06mM change in NAA[GM]/yr for each unit increase in Glu; p = 0.004). The sustained elevation of Glu[NAWM] was predictive of a loss of 0.28mM/yr in NAA[NAWM] (p < 0.001) and 0.15mM/yr in NAA[GM] (p = 0.056). Each 10% increase in Glu/NAA[NAWM] was associated with a loss of 0.33% brain volume/yr (p = 0.001), 0.009 standard deviations/yr in MSFC z-score (p < 0.001), and 0.17 points/yr on the PASAT (p < 0.001).InterpretationThese results indicate that higher Glu concentrations increase the rate of NAA decline, and higher Glu/NAA[NAWM] ratio increases the rate of decline of brain volume, MSFC, and PASAT. This provides evidence of a relationship between brain Glu and markers of disease progression in MS. Ann Neurol 2014
    No preview · Article · Aug 2014 · Annals of Neurology

Publication Stats

15k Citations
2,878.92 Total Impact Points

Institutions

  • 1993-2015
    • University of California, San Francisco
      • • Department of Neurology
      • • Department of Medicine
      • • Division of Hospital Medicine
      San Francisco, California, United States
  • 2012
    • University of San Francisco
      San Francisco, California, United States
    • Universitätsspital Basel
      Bâle, Basel-City, Switzerland
  • 2010
    • University of California, Berkeley
      • Division of Epidemiology
      Berkeley, California, United States
  • 2007
    • Multiple Sclerosis Research Center of New York
      New York City, New York, United States
  • 2004-2007
    • University of Cambridge
      • Department of Clinical Neurosciences
      Cambridge, England, United Kingdom
  • 1984-2005
    • Harvard Medical School
      • • Department of Genetics
      • • Department of Neurology
      Boston, MA, United States
  • 2002
    • Duke University
      Durham, North Carolina, United States
  • 1986-1993
    • Massachusetts General Hospital
      • Department of Neurology
      Boston, Massachusetts, United States
  • 1988
    • Harvard University
      Cambridge, Massachusetts, United States
  • 1982-1986
    • Brigham and Women's Hospital
      • • Department of Neurology
      • • Department of Medicine
      Boston, Massachusetts, United States
    • Boston Children's Hospital
      • Department of Neurology
      Boston, Massachusetts, United States
  • 1983
    • Dana-Farber Cancer Institute
      Boston, Massachusetts, United States