Marie-Jeanne Clément

Université d'Évry-Val-d'Essonne, Évry-Petit-Bourg, Île-de-France, France

Are you Marie-Jeanne Clément?

Claim your profile

Publications (17)54.38 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Cucurbitacins are cytotoxic triterpenoid sterols isolated from plants. One of their earliest cellular effect is the aggregation of actin associated with blockage of cell migration and division that eventually lead to apoptosis. We unravel here that cucurbitacin I actually induces the co-aggregation of actin with phospho-myosin II. This co-aggregation most probably results from the stimulation of the Rho/ROCK pathway and the direct inhibition of the LIMKinase. We further provide data that suggest that the formation of these co-aggregates is independent of a putative pro-oxidant status of cucurbitacin I. The results help to understand the impact of cucurbitacins on signal transduction and actin dynamics and open novel perspectives to use it as drug candidates for cancer research.
    No preview · Article · Dec 2015 · Biochemical pharmacology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microtubules are highly dynamic αβ-tubulin polymers. In vitro and in living cells, microtubules are most often cold and nocodazole sensitive. When present, the MAP6/STOP family of proteins protects microtubules from cold and nocodazole induced depolymerization but the molecular and structure determinants by which these proteins stabilize microtubules remain under debate. We show here that a short protein fragment from MAP6-N which encompasses its Mn1 and Mn2 modules (MAP690-177) recapitulates the function of the full-length MAP6-N protein toward microtubules, i.e. its ability to stabilize microtubules in vitro and in cultured cells in ice-cold condition or in the presence of nocodazole. We further show for the first time, using biochemical assays and NMR spectroscopy, that these effects result from the binding of MAP690-177 to microtubules with a 1:1 MAP690-177:tubulin heterodimer stoichiometry. NMR data demonstrate that the binding of MAP690-177 to microtubules involve its two Mn modules but that a single one is also able to interact with microtubules in a closely similar manner. This suggests that the Mn modules represent each a full microtubule binding domain and that MAP6 proteins may stabilize microtubules by bridging tubulin heterodimers from adjacent protofilaments or within a protofilament. Finally, we demonstrate that Ca(2+)-calmodulin competes with microtubules for MAP690-177 binding and that the binding mode of MAP690-177 to microtubules and Ca(2+)-calmodulin involves a common stretch of residues on the MAP690-177 side. This result accounts for the regulation of microtubule stability in cold condition by Ca(2+)-calmodulin.
    Full-text · Article · Jul 2013 · Journal of Biological Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Being able to differentiate local fluctuations from global folding-unfolding dynamics of a protein is of major interest for improving our understanding of structure-function determinants. The maltose binding protein (MBP), a protein that belongs to the maltose transport system, has a structure composed of two globular domains separated by a rigid-body "hinge bending". Here we determined, by using hydrogen exchange (HX) nuclear magnetic resonance experiments, the apparent stabilization free energies of 101 residues of MBP bound to β-cyclodextrin (MBP-βCD) under native conditions. We observed that the last helix of MBP (helix α14) has a lower protection factor than the rest of the protein. Further, HX experiments were performed using guanidine hydrochloride under subdenaturing conditions to discriminate between local fluctuations and global unfolding events and to determine the MBP-βCD energy landscape. The results show that helix α4 and a part of helices α5 and α6 are clearly grouped into a subdenaturing folding unit and represent a partially folded intermediate under native conditions. In addition, we observed that amide protons located in the hinge between the two globular domains share similar ΔG(gu)(app) and m values and should unfold simultaneously. These observations provide new points of view for improving our understanding of the thermodynamic stability and the mechanisms that drive folding-unfolding dynamics of proteins.
    No preview · Article · Oct 2012 · Biochemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Connexins are structurally related transmembrane proteins that assemble to form gap junction channels involved in the mediation of intercellular communication. It has been shown that the intracellular tail of connexin43 (Cx43) interacts with tubulin and microtubules with putative impacts on its own intracellular trafficking, its activity in channel communication, and its interference with specific growth factor signal transduction cascades. We demonstrate here that the microtubule binding of Cx43 is mainly driven by a short region of 26 amino acid residues located within the intracellular tail of Cx43. The nuclear magnetic resonance structural analysis of a peptide (K26D) corresponding to this region shows that this peptide is unstructured when free in solution and adopts a helix conformation upon binding with tubulin. In addition, the resulting K26D-tubulin molecular complex defines a new structural organization that could be shared by other microtubule partners. Interestingly, the K26D-tubulin interaction is prevented by the phosphorylation of K26D at a src kinase specific site. Altogether, the results elucidate the mechanism of the interaction of Cx43 with the microtubule cytoskeleton and propose a pathway for understanding the microtubule-dependent regulation of Cx43 gap junctional communications and the involvement of Cx43 in TGF-β signal transduction.
    No preview · Article · May 2012 · Biochemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: The dynamics of microtubules is essential for many microtubule-dependent cellular functions such as the mitosis. It has been recognized for a long time that GTP hydrolysis in αβ-tubulin polymers plays a critical role in this dynamics. However, the effects of the changes in the nature of the guanosine nucleotide at the E-site in β-tubulin on microtubule structure and stability are still not well understood. In the present work, we performed all-atom molecular dynamics simulations of a αβα-tubulin heterotrimer harboring a guanosine nucleotide in three different states at the E-site: GTP, GDP-Pi and GDP. We found that changes in the nucleotide state is associated with significant conformational variations at the α-tubulin N- and β-tubulin M-loops which impact the interactions between tubulin protofilaments. The results also show that GTP hydrolysis reduces αβ-tubulin interdimer contacts in favor of intradimer interface. From an atomistic point view, we propose a role for α-tubulin glutamate residue 254 in catalytic magnesium coordination and identified a water molecule in the nucleotide binding pocket which is most probably required for nucleotide hydrolysis. Finally, the results are discussed with reference to the role of taxol in microtubule stability and the recent tubulin-sT2R crystal structures.
    No preview · Article · Apr 2012 · Journal of Computer-Aided Molecular Design
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fucoidan is a potent inhibitor of the human complement system whose activity is mediated through interactions with certain proteins belonging to the classical pathway, particularly the protein C4. Branched fucoidan oligosaccharides displayed a higher anticomplementary activity as compared to linear structures. Nuclear magnetic resonance (NMR) characterization of the branched oligosaccharides and saturation transfer difference-NMR experiment of the interaction with the protein C4 allowed the identification of the glycan residues in close contact with the target protein. Transferred nuclear Overhauser effect spectroscopy experiment and molecular modeling of fucoidan oligosaccharides indicated that the presence of side chains reduces the flexibility of the oligosaccharide backbone, which thus adopts a conformation which is very close to the one recognized by the protein C4. Together, these results suggest that branching of fucoidan oligosaccharides, determining their conformational state, has a major impact on their anticomplementary activity.
    No preview · Article · Mar 2010 · Glycobiology
  • [Show abstract] [Hide abstract]
    ABSTRACT: The description of the molecular mechanisms of interaction between tubulin or microtubules and partners at atomic scale is expected to have critical impacts on the understanding of basic physiological processes. This information will also help the design of future drug candidates that may be used to fight various pathologies such as cancer or neurological diseases. For these reasons, this aspect of tubulin research has been tackled since the seventies using many different methods and at different scales. NMR appears as a unique approach to provide, with atomic resolution, the solution structure and dynamical properties of tubulin/microtubule partners in free and bound states. Though tubulin is not directly amenable to solution NMR, the NMR ligand-based experiments allow one to obtain valuable data on the molecular mechanisms that sustain structure-function relationship, in particular atomic details on the partner binding site. We will first describe herein some basic principles of solution NMR spectroscopy that should not be missed for a comprehensive reading of NMR reports. A series of results will then be presented to illustrate the wealth and variety of NMR experiments and how this approach enlightens tubulin/microtubules interaction with partners.
    No preview · Article · Jan 2010 · Methods in cell biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: FtsZ is a prokaryotic tubulin-like protein. Despite a low degree of sequence identity with tubulin, it presents the same folding pattern and some similar functions, notably in cell division. Indeed, FtsZ and tubulin polymerize to form bundles and microtubules, respectively, which are essential for cell cytokinesis. We previously demonstrated that peptides derived from the N-terminal stathmin domain interact with tubulin and impede microtubule formation. We demonstrated here that I19L, the most efficient of these peptides, also alters FtsZ bundling assembly in vitro. STD-NMR and TRNOESY experiments revealed that I19L interacts with FtsZ and folds upon its binding but in a way different from what we observed with tubulin. These NMR data were used in molecular modeling calculations to propose models of the I19L-FtsZ complex. Interestingly, two models, consistent with NMR data, show an interaction of I19L near the T7 loop or near the GTP binding site of FtsZ, explaining the modifications of the bundling assembly observed with this peptide. The fine analysis of the structural differences of the complexes of I19L with FtsZ and tubulin should help for the rational development of new specific antibiotic agents.
    No preview · Article · Oct 2009 · Biochemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microtubules are cytoskeletal components involved in multiple cell functions such as mitosis, motility, or intracellular traffic. In vivo, these polymers made of alphabeta-tubulin nucleate mostly from the centrosome to establish the interphasic microtubule network or, during mitosis, the mitotic spindle. Centrosomal P4.1-associated protein (CPAP; also named CENPJ) is a centrosomal protein involved in the assembly of centrioles and important for the centrosome function. This protein contains a microtubule-destabilizing region referred to as PN2-3. Here we decrypt the microtubule destabilization activity of PN2-3 at the molecular level and show that it results from the sequestration of tubulin by PN2-3 in a non-polymerizable 1:1 complex. We also map the tubulin/PN2-3 interaction both on the PN2-3 sequence and on the tubulin surface. NMR and CD data on free PN2-3 in solution show that this is an intrinsically unstructured protein that comprises a 23-amino acid residue alpha-helix. This helix is embedded in a 76-residue region that interacts strongly with tubulin. The interference of PN2-3 with well characterized tubulin properties, namely GTPase activity, nucleotide exchange, vinblastine-induced self-assembly, and stathmin family protein binding, highlights the beta subunit surface located at the intermolecular longitudinal interface when tubulin is embedded in a microtubule as a tubulin/PN2-3 interaction area. These findings characterize the PN2-3 fragment of CPAP as a protein with an unprecedented tubulin sequestering mechanism distinct from that of stathmin family proteins.
    Full-text · Article · Feb 2009 · Journal of Biological Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Benomyl, a tubulin-targeted antimitotic antifungal agent, belongs to the benzimidazole group of compounds, which are known to inhibit the binding of colchicine to tubulin. Therefore, benomyl was thought to bind at or near the colchicine-binding site on tubulin. However, recent mutational studies in yeast and fluorescence studies involving competitive binding of benomyl and colchicine on goat brain tubulin suggested that benomyl may bind to tubulin at a site distinct from the colchicine-binding site. We set out to examine whether colchicine and benomyl bind to tubulin at distinct sites using a human cervical cancer (HeLa) cell line with the thinking that these agents should exert either additive or synergistic activity on cell proliferation if their binding sites on tubulin are different. We found that benomyl and colchicine synergistically inhibited the proliferation of HeLa cells and blocked their cell cycle progression at mitosis. The synergistic activity of benomyl and colchicine was also apparent from their strong depolymerizing effects on both the spindle and interphase microtubules when used in combinations, providing further evidence that these agents bind to tubulin at different sites. Using NMR spectroscopy, we finally demonstrated that benomyl and colchicine bind to tubulin at different sites and that the binding of colchicine seems to positively influence the binding of benomyl to tubulin and vice versa. Further, an analysis of the saturation transfer difference NMR data yielded an interesting insight into the colchicine-tubulin interaction. The data presented in this study provided a mechanistic understanding of the synergistic effects of benomyl and colchicine on HeLa cell proliferation.
    Full-text · Article · Jan 2009 · Biochemistry
  • Marie-Jeanne Clément · Philippe Savarin · Jérôme Coutant · Flavio Toma · Patrick Curmi
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the NMR assignment of the PN2-3 subdomain of the CPAP protein. It has been previously shown that this motif interacts with tubulin, inhibits microtubule nucleation from the centrosome and depolymerizes taxol-stabilized microtubules.
    No preview · Article · Jan 2009 · Biomolecular NMR Assignments
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In terms of background, the solution structure of monomeric peptide P1 (residues 649-683), located in the conserved membrane proximal region (MPER) of HIV-1 envelope glycoprotein gp41, is first reported here in dodecylphosphocholine (DPC) micelles. P1 is the minimal MPER region that permits interaction with the mucosal galactosyl ceramide HIV-receptor; it also contains epitopes recognized by major gp41-specific, broadly neutralizing immunoglobulin Gs (IgGs), 2F5 and 4E10, determinant in HIV fusion/infection. Our principal findings were as follows: the structural stability of P1 is pH dependent, as the alpha-helix comprising Q653 I682, present at pH 3.3, is destabilized at higher pH values. At pH 6, the E-rich N-terminal half of P1 (residues 650-666), partially overlapping the 2F5-specific epitope, becomes fully disordered, while the W-rich C-terminal half conserves two shorter helices (W666-W670 and W672-W680), separated by a well-defined bend overlapped by the 4E10-specific epitope. The two IgGs bind to P1 on DPC micelles with binding parameters (K(d)) in the nanomolar range. Next, P1 was derivatized with phosphatidylethanolamine at its C terminal and inserted into liposomes of varied lipid composition, thereby enabling P1 to move laterally. Alternatively, an infectious virus-binding assay was established. The K(d) of both 2F5 and 4E10 IgGs measured on viral liposome and virus are similar and much lower than for the binding of the free peptide. In conclusion, P1, in a lipid environment, is an optimized MPER-derived peptide suitable for designing an immunogen inducing broadly neutralizing antibodies to HIV.
    Full-text · Article · Oct 2008 · The FASEB Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein conjugates of oligosaccharides or peptides that mimic complex bacterial polysaccharide antigens represent alternatives to the classical polysaccharide-based conjugate vaccines developed so far. Hence, a better understanding of the molecular basis ensuring appropriate mimicry is required in order to design efficient carbohydrate mimic-based vaccines. This study focuses on the following two unrelated sets of mimics of the Shigella flexneri 5a O-specific polysaccharide (O-SP): (i) a synthetic branched pentasaccharide known to mimic the average solution conformation of S. flexneri 5a O-SP, and (ii) three nonapeptides selected upon screening of phage-displayed peptide libraries with two protective murine monoclonal antibodies (mAbs) of the A isotype specific for S. flexneri 5a O-SP. By inducing anti-O-SP antibodies upon immunization in mice when appropriately presented to the immune system, the pentasaccharide and peptides p100c and p115, but not peptide p22, were qualified as mimotopes of the native antigen. NMR studies based on transferred NOE (trNOE) experiments revealed that both kinds of mimotopes had an average conformation when bound to the mAbs that was close to that of their free form. Most interestingly, saturation transfer difference (STD) experiments showed that the characteristic turn conformations adopted by the major conformers of p100c and p115, as well as of p22, are clearly involved in mAb binding. These latter experiments also showed that the branched glucose residue of the pentasaccharide was a key part of the determinant recognized by the protective mAbs. Finally, by using NMR-derived pentasaccharide and peptide conformations coupled to STD information, models of antigen-antibody interaction were obtained. Most interestingly, only one model was found compatible with experimental data when large O-SP fragments were docked into one of the mIgA-binding sites. This newly made available system provides a new contribution to the understanding of the molecular mimicry of complex polysaccharides by peptides and short oligosaccharides.
    Full-text · Article · Jan 2006 · Journal of Biological Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microtubules are major cytoskeletal components involved in numerous cellular functions such as mitosis, cell motility, or intracellular traffic. These cylindrical polymers of alphabeta-tubulin assemble in a closely regulated dynamic manner. We have shown that the stathmin family proteins sequester tubulin in a nonpolymerizable ternary complex, through their stathmin-like domains (SLD) and thus contribute to the regulation of microtubule dynamics. We demonstrate here that short peptides derived from the N-terminal part of SLDs impede tubulin polymerization with various efficiencies and that phosphorylation of the most potent of these peptides reduces its efficiency as in full-length stathmin. To understand the mechanism of action of these peptides, we undertook a NMR-based structural analysis of the peptide-tubulin interaction with the most efficient peptide (I19L). Our results show that, while disordered when free in solution, I19L folds into a beta-hairpin upon binding to tubulin. We further identified, by means of saturation transfer difference NMR, hydrophobic residues located on the beta2-strand of I19L that are involved in its tubulin binding. These structural data were used together with tubulin atomic coordinates from the tubulin/RB3-SLD crystal structure to model the I19L/tubulin interaction. The model agrees with I19L acting through an autonomous tubulin capping capability to impede tubulin polymerization and provides information to help understand the variation of efficiency against tubulin polymerization among the peptides tested. Altogether these results enlighten the mechanism of tubulin sequestration by SLDs, while they pave the way for the development of protein-based compounds aimed at interfering with tubulin polymerization.
    Full-text · Article · Dec 2005 · Biochemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As part of a program for the development of synthetic vaccines against the pathogen Shigella flexneri, we used a combination of NMR and molecular modeling methods to study the conformations of the O-specific polysaccharide (O-SP) of S. flexneri 5a and of four related synthetic pentasaccharide fragments. The NMR study, based on the analysis of 1H and 13C chemical shifts, the evaluation of inter-residue distances, and the measurement of one- and three-bond heteronuclear coupling constants, showed that the conformation of one of the four pentasaccharides is similar to that of the native O-SP in solution. Interestingly, inhibition enzyme-linked immunosorbent assay demonstrated that a protective monoclonal antibody specific for S. flexneri 5a has a greater affinity for this pentasaccharide than for the others. We carried out a complete conformational search on the pentasaccharides using the CICADA algorithm interfaced with MM3 force field. We calculated Boltzmann-averaged inter-residue distances and 3JC,H coupling constants for the different conformational families and compared the results with NMR data for all pentasaccharides. Our experimental data are consistent with only one conformational family. We also used molecular modeling data to build models of the O-SP with the molecular builder program POLYS. The models that are in agreement with NMR data adopt right-handed 3-fold helical structures in which the branched glucosyl residue points outwards.
    Full-text · Article · Dec 2003 · Journal of Biological Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: A convergent chem. synthesis of the Me glycoside of the linear epitope a-D-Glcp-(1->3)-a-L-Rhap-(1->3)-a-L-Rhap-(1->3)-b-D-GlcNAcp-(1->2)-a-L-Rhap (EBCDA) corresponding to the ramification of the O-antigen of Shigella flexneri serotype 5a is described. The strategy relies on the prepn. of a key EB trichloroacetimidate donor and that of an appropriate CDA trisaccharide acceptor. Trichloroacetimidate chem. was used for the construction of all glycosidic linkages except that of DA, where a bromide donor was preferred. In depth anal. of the pentasaccharide EBCDA 1H and 13C NMR spectra shows that its conformation approaches that of the corresponding fragment in the native polysaccharide. [on SciFinder (R)]
    No preview · Article · Mar 2002 · Tetrahedron
  • Laurence A Mulard · Marie-Jeanne Clément · Anne Imberty · Muriel Delepierre
    [Show abstract] [Hide abstract]
    ABSTRACT: Convergent syntheses of the methyl glycosides of the branched pentasaccharide -L-Rhap-(12)-[-D-Glcp(13)]--L-Rhap-(13)--L-Rhap-(13)--D-GlcNAcp [A(E)BCD], featuring the biological repeating unit of the O-specific polysaccharide of Shigella flexneri serotype 5a, and of a related linear tetrasaccharide (EBCD) are described. The strategy, based on the trichloroacetimidate methodology, relied on the use of a key EB disaccharide donor and appropriate CD acceptors. The use of an isopropylidene acetal to block OH-4 and OH-6 of residue D was found to be a suitable alternative to the employment of the more commonly used benzylidene acetal. Conformational analysis of EBCD-OMe and A(E)BCD-OMe was based on analysis of 1H and 13C chemical shifts and inter-proton distances data obtained by NMR spectroscopy. The data showed that residue A had no influence on the conformational behaviour of residue E, although these two residues were involved in a 2,3-cis vicinal glycosylation pattern in A(E)BCD-OMe. Comparison of 1H and 13C chemical shifts of the two oligosaccharides with those of their corresponding sequences in the O-specific polysaccharide of S. flexneri 5a showed that the two oligosaccharides presented a distribution of solution conformations similar to that in the O-specific polysaccharide. The conformation of A(E)BCD-OMe was investigated by two approaches: (i) energy minimisation based on ROE-derived distances with the DISCOVER program and (ii) a conformational searching method (the CICADA algorithm interfaced with MM3 force-field). The minimised conformation obtained by the former approach was in total agreement with the average of the two major families of conformations resulting from the CICADA calculations.
    No preview · Article · Jan 2002

Publication Stats

234 Citations
54.38 Total Impact Points


  • 2009-2013
    • Université d'Évry-Val-d'Essonne
      • Laboratoire SABNP - Structure-Activité des Biomolécules Normales et Pathologiques
      Évry-Petit-Bourg, Île-de-France, France
  • 2010-2012
    • French Institute of Health and Medical Research
      • Unit of Structure and Activity of Normal and Pathological Biomolecules
      Lutetia Parisorum, Île-de-France, France
  • 2003
    • University of Grenoble
      Grenoble, Rhône-Alpes, France