Haris Alexopoulos

University of Oxford, Oxford, England, United Kingdom

Are you Haris Alexopoulos?

Claim your profile

Publications (7)47.9 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Brain glucose sensing is critical for healthy energy balance, but how appropriate neurocircuits encode both small changes and large background values of glucose levels is unknown. Here, we report several features of hypothalamic orexin neurons, cells essential for normal wakefulness and feeding: (i) A distinct group of orexin neurons exhibits only transient inhibitory responses to sustained rises in sugar levels; (ii) this sensing strategy involves time-dependent recovery from inhibition via adaptive closure of leak-like K(+) channels; (iii) combining transient and sustained glucosensing allows orexin cell firing to maintain sensitivity to small fluctuations in glucose levels while simultaneously encoding a large range of baseline glucose concentrations. These data provide insights into how vital behavioral orchestrators sense key features of the internal environment while sustaining a basic activity tone required for the stability of consciousness.
    Full-text · Article · Sep 2008 · Proceedings of the National Academy of Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gap junctions play a key role in the operation of neuronal networks by enabling direct electrical and metabolic communication between neurons. Suitable models to investigate their role in network operation and plasticity are invertebrate motor networks, which are built of comparatively few identified neurons, and can be examined throughout development; an excellent example is the lobster stomatogastric nervous system. In invertebrates, gap junctions are formed by proteins that belong to the innexin family. Here, we report the first molecular characterization of two crustacean innexins: the lobster Homarus gammarus innexin 1 (Hg-inx1) and 2 (Hg-inx2). Phylogenetic analysis reveals that innexin gene duplication occurred within the arthropod clade before the separation of insect and crustacean lineages. Using in situ hybridization, we find that each innexin is expressed within the adult and developing lobster stomatogastric nervous system and undergoes a marked down-regulation throughout development within the stomatogastric ganglion (STG). The number of innexin expressing neurons is significantly higher in the embryo than in the adult. By combining in situ hybridization, dye and electrical coupling experiments on identified neurons, we demonstrate that adult neurons that express at least one innexin are dye and electrically coupled with at least one other STG neuron. Finally, two STG neurons display no detectable amount of either innexin mRNAs but may express weak electrical coupling with other STG neurons, suggesting the existence of other forms of innexins. Altogether, we provide evidence that innexins are expressed within small neuronal networks built of dye and electrically coupled neurons and may be developmentally regulated.
    Preview · Article · Jan 2007 · European Journal of Neuroscience
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glucose-inhibited neurons orchestrate behavior and metabolism according to body energy levels, but how glucose inhibits these cells is unknown. We studied glucose inhibition of orexin/hypocretin neurons, which promote wakefulness (their loss causes narcolepsy) and also regulate metabolism and reward. Here we demonstrate that their inhibition by glucose is mediated by ion channels not previously implicated in central or peripheral glucose sensing: tandem-pore K(+) (K(2P)) channels. Importantly, we show that this electrical mechanism is sufficiently sensitive to encode variations in glucose levels reflecting those occurring physiologically between normal meals. Moreover, we provide evidence that glucose acts at an extracellular site on orexin neurons, and this information is transmitted to the channels by an intracellular intermediary that is not ATP, Ca(2+), or glucose itself. These results reveal an unexpected energy-sensing pathway in neurons that regulate states of consciousness and energy balance.
    Full-text · Article · Jul 2006 · Neuron
  • Source
    Denis Burdakov · Haris Alexopoulos
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypothalamic neurons that produce the peptide transmitters hypocretins/orexins have attracted much recent attention. They provide direct and predominantly excitatory inputs to all major brain areas except the cerebellum, with the net effect of stimulating wakefulness and arousal. These inputs are essential for generating sustained wakefulness in mammals, and defects in hypocretin signalling result in narcolepsy. In addition, new roles for hypocretins/orexins are emerging in reward-seeking, learning, and memory. Recent studies also indicate that hypocretin/orexin neurons can alter their intrinsic electrical activity according to ambient fluctuations in the levels of nutrients and appetite-regulating hormones. These intriguing electrical responses are perhaps the strongest candidates to date for the elusive neural correlates of after-meal sleepiness and hunger-induced wakefulness. Hypocretin/orexin neurons may thus directly translate rises and falls in body energy levels into different states of consciousness.
    Full-text · Article · Oct 2005 · Journal of Cellular and Molecular Medicine
  • Source
    Denis Burdakov · Haris Alexopoulos · Angela Vincent · Frances M Ashcroft
    [Show abstract] [Hide abstract]
    ABSTRACT: The activity of hypothalamic neurons that release the neuropeptides orexin-A and orexin-B is essential for normal wakefulness. Orexin neurons fire spontaneously and are hyperpolarized and inhibited by physiological neuromodulators, but the intrinsic determinants of their electrical activity are poorly understood. We show that mouse orexin neurons coexpress orexin-A and orexin-B, and possess a low-voltage-activated A-type K(+) current (A-current) likely to be composed of Kv4.3 subunits. The A-current enhances the inhibitory influence of hyperpolarizing currents via two mechanisms: by delaying the resumption of spiking after hyperpolarization and by increasing the slope of the relation between the firing frequency and injected current. These results identify an important determinant of the firing dynamics of orexin neurons, and support the idea that the A-current can control neuronal gain.
    Full-text · Article · Jan 2005 · European Journal of Neuroscience
  • Source

    Preview · Article · Nov 2004 · Current Biology
  • Source
    J M Blagburn · H Alexopoulos · JA Davies · J P Bacon
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the Drosophila shaking-B gene perturb synaptic transmission and dye coupling in the giant fiber escape system. The GAL4 upstream activation sequence system was used to express a neuronal-synaptobrevin-green fluorescent protein (nsyb-GFP) construct in the giant fibers (GFs); nsyb-GFP was localized where the GFs contact the peripherally synapsing interneurons (PSIs) and the tergotrochanteral motorneurons (TTMns). Antibody to Shaking-B protein stained plaquelike structures in the same regions of the GFs, although not all plaques colocalized with nsyb-GFP. Electron microscopy showed that the GF-TTMn and GF-PSI contacts contained many chemical synaptic release sites. These sites were interposed with extensive regions of close membrane apposition (3.25 nm +/- 0.12 separation), with faint cross striations and a single-layered array of 41-nm vesicles on the GF side of the apposition. These contacts appeared similar to rectifying electrical synapses in the crayfish and were eliminated in shaking-B2 mutants. At mutant GF-TTMn and GF-PSI contacts, chemical synapses and small regions of close membrane apposition, more similar to vertebrate gap junctions, were not affected. Gap junctions with more vertebratelike separation of membranes (1.41 nm +/- 0.08) were abundant between peripheral perineurial glial processes; these were unaffected in the mutants.
    Full-text · Article · Mar 1999 · The Journal of Comparative Neurology

Publication Stats

394 Citations
47.90 Total Impact Points

Institutions

  • 2004-2008
    • University of Oxford
      • Weatherall Institute of Molecular Medicine
      Oxford, England, United Kingdom
  • 2007
    • University of Sussex
      • School of Life Sciences
      Brighton, England, United Kingdom