James A H Murray

University of South Wales, Понтиприте, Wales, United Kingdom

Are you James A H Murray?

Claim your profile

Publications (81)531.1 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Higher plant vasculature is characterized by two distinct developmental phases. Initially, a well-defined radial primary pattern is established. In eudicots, this is followed by secondary growth, which involves development of the cambium and is required for efficient water and nutrient transport and wood formation. Regulation of secondary growth involves several phytohormones, and cytokinins have been implicated as key players, particularly in the activation of cell proliferation, but the molecular mechanisms mediating this hormonal control remain unknown. Here we show that the genes encoding the transcription factor AINTEGUMENTA (ANT) and the D-type cyclin CYCD3;1 are expressed in the vascular cambium of Arabidopsis roots, respond to cytokinins and are both required for proper root secondary thickening. Cytokinin regulation of ANT and CYCD3 also occurs during secondary thickening of poplar stems, suggesting this represents a conserved regulatory mechanism.
    Full-text · Article · Sep 2015 · Biology Open
  • [Show abstract] [Hide abstract]
    ABSTRACT: In angiosperms, double fertilization of the egg and central cell of the megagametophyte leads to development of the embryo and endosperm respectively. Control of cell cycle progression in the megagametophyte is essential for successful fertilization and development. Central cell-targeted expression of the D-type cyclin CYCD7;1 (CYCD7;1 OE) using the imprinted FWA promoter overcomes cycle arrest of the central cell in the Arabidopsis female gametophyte in the unfertilized ovule leading to multinucleate central cells at high frequency. Unlike FERTILIZATION-INDEPENDENT SEED (fis) mutants but similar to lethal RETINOBLASTOMA-RELATED (rbr) mutants, no seed coat development is triggered. Unlike loss of rbr, post-fertilization CYCD7;1 OE in the endosperm enhances the number of nuclei during syncytial endosperm development, and induces partial abortion of developing seeds, associated with enhanced size of surviving seeds. The frequency of lethality was less than the frequency of multi-nucleate central cells, indicating that these aspects are not causally linked. These larger seeds contain larger embryos comprised of more cells of wild type size, surrounded by a seed coat composed of more cells. Seedlings arising from these larger seeds displayed faster seedling establishment and early growth. Two different embryo lethal mutants similarly also conferred enlarged seed size in surviving siblings, consistent with seed size increase being a general response to sibling lethality although the cellular mechanisms were found to be distinct. Our data suggest that a tight control of CYCD activity in the central cell and in the developing endosperm is required for optimal seed formation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
    No preview · Article · Aug 2015 · The Plant Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During plant epidermal development, many cell types are generated from protodermal cells, a process requiring complex coordination of cell division, growth, endoreduplication and the acquisition of differentiated cellular morphologies. Here we show that the Arabidopsis phytocalpain DEFECTIVE KERNEL 1 (DEK1) promotes the differentiated epidermal state. Plants with reduced DEK1 activity produce cotyledon epidermis with protodermal characteristics, despite showing normal growth and endoreduplication. Furthermore, in non-embryonic tissues (true leaves, sepals), DEK1 is required for epidermis differentiation maintenance. We show that the HD-ZIP IV family of epidermis-specific differentiation-promoting transcription factors are key, albeit indirect, targets of DEK1 activity. We propose a model in which DEK1 influences HD-ZIP IV gene expression, and thus epidermis differentiation, by promoting cell adhesion and communication in the epidermis.
    Full-text · Article · May 2015 · Development
  • Source
    Ricardo S Randall · Emily Sornay · Walter Dewitte · James A H Murray
    [Show abstract] [Hide abstract]
    ABSTRACT: Plant lateral aerial organ (LAO) growth is determined by the number and size of cells comprising the organ. Genetic alteration of one parameter is often accompanied by changes in the other, such that the overall effect on final LAO size is minimized, suggested to be caused by an active organ level 'compensation mechanism'. For example, the aintegumenta (ant) mutant exhibits reduced cell number but increased cell size in LAOs. The ANT transcription factor regulates the duration of the cell division phase of LAO growth, and its ectopic expression is correlated with increased levels of the cell cycle regulator CYCD3;1. This has previously led to the suggestion that ANT regulates CYCD3;1. It is shown here that while ANT is required for normal cell proliferation in petals, CYCD3;1 is not, suggesting that ANT does not regulate CYCD3;1 during petal growth. Moreover CYCD3;1 expression was similar in wild-type and ant-9 flowers. In contrast to the compensatory changes between cell size and number in ant mutants, cycd3;1 mutants show increased petal cell size unaccompanied by changes in cell number, leading to larger organs. However, loss of CYCD3;1 in the ant-9 mutant background leads to a phenotype consistent with compensation mechanisms. These apparently arbitrary examples of compensation are reconciled through a model of LAO growth in which distinct phases of division and cell expansion occupy differing lengths of a defined overall growth window. This leads to the proposal that many observations of 'compensation mechanisms' might alternatively be more simply explained as emergent properties of LAO development. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
    Full-text · Article · May 2015 · Journal of Experimental Botany
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In Arabidopsis, stem cells maintain the provision of new cells for root growth. They surround a group of slowly dividing cells named the quiescent center (QC), and, together, they form the stem cell niche (SCN). The QC acts as the signaling center of the SCN, repressing differentiation of the surrounding stem cells [1] and providing a pool of cells able to replace damaged stem cells [2, 3]. Maintenance of the stem cells depends on the transcription factor WUSCHEL-RELATED HOMEOBOX 5 (WOX5), which is specifically expressed in the QC [4]. However, the molecular mechanisms by which WOX5 promotes stem cell fate and whether WOX5 regulates proliferation of the QC are unknown. Here, we reveal a new role for WOX5 in restraining cell division in the cells of the QC, thereby establishing quiescence. In contrast, WOX5 and CYCD3;3/CYCD1;1 both promote cell proliferation in the nascent columella. The additional QC divisions occurring in wox5 mutants are suppressed in mutant combinations with the D type cyclins CYCD3;3 and CYCD1;1. Moreover, ectopic expression of CYCD3;3 in the QC is sufficient to induce cell division in the QC. WOX5 thus suppresses QC divisions that are otherwise promoted by CYCD3;3 and CYCD1;1, in part by interacting with the CYCD3;3 promoter to repress CYCD3;3 expression in the QC. Therefore, we propose a specific role for WOX5 in initiating and maintaining quiescence of the QC by excluding CYCD activity from the QC.
    Full-text · Article · Aug 2014 · Current Biology
  • Source
    Simon Scofield · Angharad Jones · James A H Murray

    Preview · Article · Jun 2014 · Journal of Experimental Botany
  • Simon Scofield · Walter Dewitte · Jeroen Nieuwland · James A.H. Murray
    [Show abstract] [Hide abstract]
    ABSTRACT: The Arabidopsis class-1 KNOX gene SHOOT MERISTEMLESS (STM) encodes a homeodomain transcription factor essential for shoot apical meristem (SAM) formation and sustained activity. STM activates cytokinin biosynthesis in the SAM, but it is unclear the extent to which STM function is mediated through cytokinin. Here we show that STM inhibits cellular differentiation and endoreduplication, acting through cytokinin and the cytokinin-inducible CYCD3 cell cycle regulators, establishing a mechanistic link to cell cycle control which provides sustained mitotic activity to maintain a pool of undifferentiated cells in the SAM. Equivalent functions are revealed for the related KNOX genes KNAT1/BP and KNAT2 through ectopic expression. STM is also required for proper meristem organisation and can induce de novo meristem formation when expressed ectopically, even when cytokinin levels are reduced or cytokinin signaling is impaired. This function in meristem establishment and organisation can be replaced by KNAT1/BP, but not KNAT2, despite its activation of CK responses, suggesting promotion of CK responses alone is insufficient for SAM organisation. We propose that STM has dual cellular and meristem-organisational functions that are differentially represented in the class-1 KNOX gene family and have differing requirements for CK and CYCD3. This article is protected by copyright. All rights reserved.
    No preview · Article · Apr 2013 · The Plant Journal
  • Source
    Bo Wen · Jeroen Nieuwland · James A H Murray
    [Show abstract] [Hide abstract]
    ABSTRACT: The coordination of plant cell division and expansion controls plant morphogenesis, development, and growth. Cyclin-dependent kinases (CDKs) are not only key regulators of cell division but also play an important role in cell differentiation. In plants, CDK activity is modulated by the binding of INHIBITOR OF CDK/KIP-RELATED PROTEIN (ICK/KRP). Previously, ICK2/KRP2 has been shown to mediate auxin responses in lateral root initiation. Here are analysed the roles of all ICK/KRP genes in root growth. Analysis of ick/krp null-mutants revealed that only ick3/krp5 was affected in primary root growth. ICK3/KRP5 is strongly expressed in the root apical meristem (RAM), with lower expression in the expansion zone. ick3/krp5 roots grow more slowly than wildtype controls, and this results not from reduction of division in the proliferative region of the RAM but rather reduced expansion as cells exit the meristem. This leads to shorter final cell lengths in different tissues of the ick3/krp5 mutant root, particularly the epidermal non-hair cells, and this reduction in cell size correlates with reduced endoreduplication. Loss of ICK3/KRP5 also leads to delayed germination and in the mature embryo ICK3/KRP5 is specifically expressed in the transition zone between root and hypocotyl. Cells in the transition zone were smaller in the ick3/krp5 mutant, despite the absence of endoreduplication in the embryo suggesting a direct effect of ICK3/KRP5 on cell growth. It is concluded that ICK3/KRP5 is a positive regulator of both cell growth and endoreduplication.
    Full-text · Article · Mar 2013 · Journal of Experimental Botany
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aims: Chloroquine (CQ) kills Plasmodium falciparum by binding heme, preventing its detoxification to hemozoin in the digestive vacuole (DV) of the parasite. CQ resistance (CQR) is associated with mutations in the DV membrane protein P. falciparum chloroquine resistance transporter (PfCRT), mediating the leakage of CQ from the DV. However, additional factors are thought to contribute to the resistance phenotype. This study tested the hypothesis that there is a link between glutathione (GSH) and CQR. Results: Using isogenic parasite lines carrying wild-type or mutant pfcrt, we reveal lower levels of GSH in the mutant lines and enhanced sensitivity to the GSH synthesis inhibitor l-buthionine sulfoximine, without any alteration in cytosolic de novo GSH synthesis. Incubation with N-acetylcysteine resulted in increased GSH levels in all parasites, but only reduced susceptibility to CQ in PfCRT mutant-expressing lines. In support of a heme destruction mechanism involving GSH in CQR parasites, we also found lower hemozoin levels and reduced CQ binding in the CQR PfCRT-mutant lines. We further demonstrate via expression in Xenopus laevis oocytes that the mutant alleles of Pfcrt in CQR parasites selectively transport GSH. Innovation: We propose a mechanism whereby mutant pfcrt allows enhanced transport of GSH into the parasite's DV. The elevated levels of GSH in the DV reduce the level of free heme available for CQ binding, which mediates the lower susceptibility to CQ in the PfCRT mutant parasites. Conclusion: PfCRT has a dual role in CQR, facilitating both efflux of harmful CQ from the DV and influx of beneficial GSH into the DV.
    Full-text · Article · Dec 2012 · Antioxidants & Redox Signaling
  • Source
    James A H Murray · Angharad Jones · Christophe Godin · Jan Traas
    [Show abstract] [Hide abstract]
    ABSTRACT: The shoot apical meristem (SAM) is a small population of stem cells that continuously generates organs and tissues. This review covers our current understanding of organ initiation by the SAM in Arabidopsis thaliana. Meristem function and maintenance involves two major hormones, cytokinins and auxins. Cytokinins appear to play a major role in meristem maintenance and in controlling meristematic properties, such as cell proliferation. Self-organizing transport processes, which are still only partially understood, lead to the patterned accumulation of auxin at particular positions, where organs will grow out. A major downstream target of auxin-mediated growth regulation is the cell wall, which is a determinant for both growth rates and growth distribution, but feedbacks with metabolism and the synthetic capacity of the cytoplasm are crucial as well. Recent work has also pointed at a potential role of mechanical signals in growth coordination, but the precise mechanisms at work remain to be elucidated.
    Preview · Article · Oct 2012 · The Plant Cell
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In plants, where cells cannot migrate, asymmetric cell divisions (ACDs) must be confined to the appropriate spatial context. We investigate tissue-generating asymmetric divisions in a stem cell daughter within the Arabidopsis root. Spatial restriction of these divisions requires physical binding of the stem cell regulator SCARECROW (SCR) by the RETINOBLASTOMA-RELATED (RBR) protein. In the stem cell niche, SCR activity is counteracted by phosphorylation of RBR through a cyclinD6;1-CDK complex. This cyclin is itself under transcriptional control of SCR and its partner SHORT ROOT (SHR), creating a robust bistable circuit with either high or low SHR-SCR complex activity. Auxin biases this circuit by promoting CYCD6;1 transcription. Mathematical modeling shows that ACDs are only switched on after integration of radial and longitudinal information, determined by SHR and auxin distribution, respectively. Coupling of cell-cycle progression to protein degradation resets the circuit, resulting in a "flip flop" that constrains asymmetric cell division to the stem cell region.
    Full-text · Article · Aug 2012 · Cell
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is an increasing need for quantitative technologies suitable for molecular detection in a variety of settings for applications including food traceability and monitoring of genetically modified (GM) crops and their products through the food processing chain. Conventional molecular diagnostics utilising real-time polymerase chain reaction (RT-PCR) and fluorescence-based determination of amplification require temperature cycling and relatively complex optics. In contrast, isothermal amplification coupled to a bioluminescent output produced in real-time (BART) occurs at a constant temperature and only requires a simple light detection and integration device. Loop mediated isothermal amplification (LAMP) shows robustness to sample-derived inhibitors. Here we show the applicability of coupled LAMP and BART reactions (LAMP-BART) for determination of genetically modified (GM) maize target DNA at low levels of contamination (0.1-5.0% GM) using certified reference material, and compare this to RT-PCR. Results show that conventional DNA extraction methods developed for PCR may not be optimal for LAMP-BART quantification. Additionally, we demonstrate that LAMP is more tolerant to plant sample-derived inhibitors, and show this can be exploited to develop rapid extraction techniques suitable for simple field-based qualitative tests for GM status determination. We also assess the effect of total DNA assay load on LAMP-BART quantitation. LAMP-BART is an effective and sensitive technique for GM detection with significant potential for quantification even at low levels of contamination and in samples derived from crops such as maize with a large genome size. The resilience of LAMP-BART to acidic polysaccharides makes it well suited to rapid sample preparation techniques and hence to both high throughput laboratory settings and to portable GM detection applications. The impact of the plant sample matrix and genome loading within a reaction must be controlled to ensure quantification at low target concentrations.
    Full-text · Article · Apr 2012 · BMC Biotechnology
  • Source
    Carl Collins · Walter Dewitte · James A H Murray
    [Show abstract] [Hide abstract]
    ABSTRACT: Seed development in Arabidopsis is characterized by stereotypical division patterns, suggesting that coordinated control of cell cycle may be required for correct patterning and growth of the embryo and endosperm. D-type cyclins (CYCD) are key cell cycle regulators with roles in developmental processes, but knowledge regarding their involvement in seed development remains limited. Here, a family-wide gene expression, and loss- and gain-of-function approach was adopted to reveal additional functions for CYCDs in the development of seed tissues. CYCD genes have both discrete and overlapping tissue-specific expression patterns in the seed as revealed by GUS reporter gene expression. Analysis of different mutant combinations revealed that correct CYCD levels are required in seed development. The CYCD3 subgroup is specifically required as its loss caused delayed development, whereas overexpression in the embryo and endosperm of CYCD3;1 or a previously uncharacterized gene, CYCD7;1, variously leads to induced proliferation, abnormal phenotypes, and elevated seed abortion. CYCD3;1 overexpression provoked a delay in embryonic developmental progression and abnormalities including additional divisions of the hypophysis and suspensor, regions where CYCD3 genes are normally expressed, but did not affect endosperm development. Overexpression of CYCD7;1, not normally expressed in seed development, promoted overgrowth of both embryo and endosperm through increased division and cell enlargement. In contrast to post-germination growth, where pattern and organ size is not generally related to division, results suggest that a close control of cell division through regulation of CYCD activity is important during seed development in conferring both developmental rate and correct patterning.
    Preview · Article · Mar 2012 · Journal of Experimental Botany
  • Luis Sanz · James A. H. Murray · Walter Dewitte
    [Show abstract] [Hide abstract]
    ABSTRACT: Post-embryonic cell proliferation allows for the development of an extensive root system. Recent genetic analysis in Arabidopsis thaliana has revealed several mechanisms involved cell proliferation control during root development, including hormone signaling and regulatory loops. Furthermore, cell division responds to changes in redox status induced by environmental stresses, and we explore putative connections to the pathways that regulate cell proliferation.
    No preview · Chapter · Jan 2012
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The integration of cell division in root growth and development requires mediation of developmental and physiological signals through regulation of cyclin-dependent kinase activity. Cells within the pericycle form de novo lateral root meristems, and D-type cyclins (CYCD), as regulators of the G₁-to-S phase cell cycle transition, are anticipated to play a role. Here, we show that the D-type cyclin protein CYCD2;1 is nuclear in Arabidopsis thaliana root cells, with the highest concentration in apical and lateral meristems. Loss of CYCD2;1 has a marginal effect on unstimulated lateral root density, but CYCD2;1 is rate-limiting for the response to low levels of exogenous auxin. However, while CYCD2;1 expression requires sucrose, it does not respond to auxin. The protein Inhibitor-Interactor of CDK/Kip Related Protein2 (ICK2/KRP2), which interacts with CYCD2;1, inhibits lateral root formation, and ick2/krp2 mutants show increased lateral root density. ICK2/KRP2 can modulate the nuclear levels of CYCD2;1, and since auxin reduces ICK2/KRP2 protein levels, it affects both activity and cellular distribution of CYCD2;1. Hence, as ICK2/KRP2 levels decrease, the increase in lateral root density depends on CYCD2;1, irrespective of ICK2/CYCD2;1 nuclear localization. We propose that ICK2/KRP2 restrains root ramification by maintaining CYCD2;1 inactive and that this modulates pericycle responses to auxin fluctuations.
    Full-text · Article · Feb 2011 · The Plant Cell
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In plant post-embryonic epidermis mitogen-activated protein kinase (MAPK) signaling promotes differentiation of pavement cells and inhibits initiation of stomata. Stomata are cells specialized to modulate gas exchange and water loss. Arabidopsis MAPKs MPK3 and MPK6 are at the core of the signaling cascade; however, it is not well understood how the activity of these pleiotropic MAPKs is constrained spatially so that pavement cell differentiation is promoted only outside the stomata lineage. Here we identified a PP2C-type phosphatase termed AP2C3 (Arabidopsis protein phosphatase 2C) that is expressed distinctively during stomata development as well as interacts and inactivates MPK3, MPK4 and MPK6. AP2C3 co-localizes with MAPKs within the nucleus and this localization depends on its N-terminal extension. We show that other closely related phosphatases AP2C2 and AP2C4 are also MAPK phosphatases acting on MPK6, but have a distinct expression pattern from AP2C3. In accordance with this, only AP2C3 ectopic expression is able to stimulate cell proliferation leading to excess stomata development. This function of AP2C3 relies on the domains required for MAPK docking and intracellular localization. Concomitantly, the constitutive and inducible AP2C3 expression deregulates E2F-RB pathway, promotes the abundance and activity of CDKA, as well as changes of CDKB1;1 forms. We suggest that AP2C3 downregulates the MAPK signaling activity to help maintain the balance between differentiation of stomata and pavement cells.
    Full-text · Article · Dec 2010 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The real-time monitoring of polynucleotide amplification is at the core of most molecular assays. This conventionally relies on fluorescent detection of the amplicon produced, requiring complex and costly hardware, often restricting it to specialised laboratories. Here we report the first real-time, closed-tube luminescent reporter system for nucleic acid amplification technologies (NAATs) enabling the progress of amplification to be continuously monitored using simple light measuring equipment. The Bioluminescent Assay in Real-Time (BART) continuously reports through bioluminescent output the exponential increase of inorganic pyrophosphate (PPi) produced during the isothermal amplification of a specific nucleic acid target. BART relies on the coupled conversion of inorganic pyrophosphate (PPi) produced stoichiometrically during nucleic acid synthesis to ATP by the enzyme ATP sulfurylase, and can therefore be coupled to a wide range of isothermal NAATs. During nucleic acid amplification, enzymatic conversion of PPi released during DNA synthesis into ATP is continuously monitored through the bioluminescence generated by thermostable firefly luciferase. The assay shows a unique kinetic signature for nucleic acid amplifications with a readily identifiable light output peak, whose timing is proportional to the concentration of original target nucleic acid. This allows qualitative and quantitative analysis of specific targets, and readily differentiates between negative and positive samples. Since quantitation in BART is based on determination of time-to-peak rather than absolute intensity of light emission, complex or highly sensitive light detectors are not required. The combined chemistries of the BART reporter and amplification require only a constant temperature maintained by a heating block and are shown to be robust in the analysis of clinical samples. Since monitoring the BART reaction requires only a simple light detector, the iNAAT-BART combination is ideal for molecular diagnostic assays in both laboratory and low resource settings.
    Full-text · Article · Nov 2010 · PLoS ONE
  • Source
    Dataset: Movie S1
    [Show abstract] [Hide abstract]
    ABSTRACT: LAMP-BART of a ChAT dilution series: red - 1 ng, orange - 100 pg, green - 10 pg, blue - 1 pg, black - no-template control. Top row - ChAT DNA dilution series with decreasing amount of template (left to right); bottom row - no-template control. (0.85 MB MOV)
    Preview · Dataset · Nov 2010
  • Source
    Dataset: Table S1
    [Show abstract] [Hide abstract]
    ABSTRACT: Chlamydia strains tested for inclusivity. (0.03 MB DOC)
    Preview · Dataset · Nov 2010
  • Source
    Dataset: Table S2
    [Show abstract] [Hide abstract]
    ABSTRACT: Pathogenic bacteria and commensal organisms of the oropharynx and genital tract tested for cross-reactivity. (0.04 MB DOC)
    Preview · Dataset · Nov 2010

Publication Stats

6k Citations
531.10 Total Impact Points

Institutions

  • 2012-2015
    • University of South Wales
      Понтиприте, Wales, United Kingdom
  • 2009-2015
    • Cardiff University
      • School of Biosciences
      Cardiff, Wales, United Kingdom
  • 1993-2010
    • University of Cambridge
      • • Department of Chemical Engineering and Biotechnology
      • • Department of Genetics
      Cambridge, England, United Kingdom