Johanna Myllyharju

University of Oulu, Uleoborg, Northern Ostrobothnia, Finland

Are you Johanna Myllyharju?

Claim your profile

Publications (123)606.65 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective: Small-molecule hypoxia-inducible factor-prolyl 4-hydroxylase (HIF-P4H) inhibitors are being explored in clinical studies for the treatment of anemia. HIF-P4H-2 (also known as PHD2 or EglN1) inhibition improves glucose and lipid metabolism and protects against obesity and metabolic dysfunction. We studied here whether HIF-P4H-2 inhibition could also protect against atherosclerosis. Approach and results: Atherosclerosis development was studied in low-density lipoprotein (LDL) receptor-deficient mice treated with an oral HIF-P4H inhibitor, FG-4497, and in HIF-P4H-2-hypomorphic/C699Y-LDL receptor-mutant mice, all mice being fed a high-fat diet. FG-4497 administration to LDL receptor-deficient mice reduced the area of atherosclerotic plaques by ≈50% when compared with vehicle-treated controls and also reduced their weight gain, insulin resistance, liver, and white adipose tissue (WAT) weights, adipocyte size, number of inflammation-associated WAT macrophage aggregates and the high-fat diet-induced increases in serum cholesterol levels. The levels of atherosclerosis-protecting circulating autoantibodies against copper-oxidized LDL were increased. The decrease in atherosclerotic plaque areas correlated with the reductions in weight, serum cholesterol levels, and WAT macrophage aggregates and the autoantibody increase. FG-4497 treatment stabilized HIF-1α and HIF-2α and altered the expression of glucose and lipid metabolism and inflammation-associated genes in liver and WAT. The HIF-P4H-2-hypomorphic/C699Y-LDL receptor-mutant mice likewise had a ≈50% reduction in atherosclerotic plaque areas, reduced WAT macrophage aggregate numbers, and increased autoantibodies against oxidized LDL, but did not have reduced serum cholesterol levels. Conclusions: HIF-P4H-2 inhibition may be a novel strategy for protecting against the development of atherosclerosis. The mechanisms involve beneficial modulation of the serum lipid profile and innate immune system and reduced inflammation.
    No preview · Article · Feb 2016 · Arteriosclerosis Thrombosis and Vascular Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Wnts can be considered as candidates for the Congenital Anomaly of Kidney and Urinary Tract, CAKUT diseases since they take part in the control of kidney organogenesis. Of them Wnt5a is expressed in ureteric bud (UB) and its deficiency leads to duplex collecting system (13/90) uni- or bilateral kidney agenesis (10/90), hypoplasia with altered pattern of ureteric tree organization (42/90) and lobularization defects with partly fused ureter trunks (25/90) unlike in controls. The UB had also notably less tips due to Wnt5a deficiency being at E15.5 306 and at E16.5 765 corresponding to 428 and 1022 in control (p<0.02; p<0.03) respectively. These changes due to Wnt5a knock out associated with anomalies in the ultrastructure of the UB daughter epithelial cells. The basement membrane (BM) was malformed so that the BM thickness increased from 46.3 nm to 71.2 nm (p<0.01) at E16.5 in the Wnt5a knock out when compared to control. Expression of a panel of BM components such as laminin and of type IV collagen was also reduced due to the Wnt5a knock out. The P4ha1 gene that encodes a catalytic subunit of collagen prolyl 4-hydroxylase I (C-P4H-I) in collagen synthesis expression and the overall C-P4H enzyme activity were elevated by around 26% due to impairment in Wnt5a function from control. The compound Wnt5a+/-;P4ha1+/- embryos demonstrated Wnt5a-/- related defects, for example local hyperplasia in the UB tree. A R260H WNT5A variant was identified from renal human disease cohort. Functional studies of the consequence of the corresponding mouse variant in comparison to normal ligand reduced Wnt5a-signalling in vitro. Together Wnt5a has a novel function in kidney organogenesis by contributing to patterning of UB derived collecting duct development contributing putatively to congenital disease.
    Full-text · Article · Jan 2016 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: We show here that mice hypomorphic for hypoxia-inducible factor prolyl 4-hydroxylase-2 (HIF-P4H-2) (Hif-p4h-2gt/gt), the main regulator of the stability of the HIFα subunits, have normoxic stabilization of HIF-1α and HIF-2α in their skeletal muscles. The size of the capillaries, but not their number, was increased in the skeletal muscles of the Hif-p4h-2gt/gt mice, whereas the amount of glycogen was reduced. The expression levels of genes for glycolytic enzymes, glycogen branching enzyme 1 and monocarboxylate transporter 4, were increased in the Hif-p4h-2gt/gt skeletal muscles, whereas no significant increases were detected in the levels of any vasculature-influencing factor studied. Serum lactate levels of the Hif-p4h-2gt/gt mice recovered faster than those of the wild type following exercise. The Hif-p4h-2gt/gt mice had elevated hepatic phosphoenolpyruvate carboxykinase activity, which may have contributed to the faster clearance of lactate. The Hif-p4h-2gt/gt mice had smaller infarct size following limb ischemia-reperfusion injury. The increased capillary size correlated with the reduced infarct size. Following ischemia-reperfusion, glycogen content and ATP/ADP and CrP/Cr levels of the skeletal muscle of the Hif-p4h-2gt/gt mice were higher than in the wild type. The higher glycogen content correlated with increased expression of phosphofructokinase messenger RNA (mRNA) and the increased ATP/ADP and CrP/Cr levels with reduced apoptosis, suggesting that HIF-P4H-2 deficiency supported energy metabolism during ischemia-reperfusion and protection against injury. Key messages: HIF-P4H-2 deficiency protects skeletal muscle from ischemia-reperfusion injury.The mechanisms involved are mediated via normoxic HIF-1α and HIF-2α stabilization.HIF-P4H-2 deficiency increases capillary size but not number.HIF-P4H-2 deficiency maintains energy metabolism during ischemia-reperfusion.
    No preview · Article · Oct 2015 · Journal of Molecular Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Overcoming resistance to chemotherapy is a major challenge in colorectal cancer (CRC) treatment, especially since the underlying molecular mechanisms remain unclear. We show that silencing of the prolyl hydroxylase domain protein PHD1, but not PHD2 or PHD3, prevents p53 activation upon chemotherapy in different CRC cell lines, thereby inhibiting DNA repair and favoring cell death. Mechanistically, PHD1 activity reinforces p53 binding to p38α kinase in a hydroxylation-dependent manner. Following p53-p38α interaction and chemotherapeutic damage, p53 can be phosphorylated at serine 15 and thus activated. Active p53 allows nucleotide excision repair by interacting with the DNA helicase XPB, thereby protecting from chemotherapy-induced apoptosis. In accord with this observation, PHD1 knockdown greatly sensitizes CRC to 5-FU in mice. We propose that PHD1 is part of the resistance machinery in CRC, supporting rational drug design of PHD1-specific inhibitors and their use in combination with chemotherapy. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.
    Full-text · Article · Aug 2015 · EMBO Molecular Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: Collagen prolyl 4-hydroxylases (C-P4Hs I-III) catalyze formation of 4-hydroxyproline (4Hyp) residues required to form triple-helical collagen molecules. Vertebrate C-P4Hs are α2β2 tetramers differing in their catalytic α subunits. C-P4H-I is the major isoenzyme in most cells and inactivation of its catalytic subunit (P4ha1(-/-)) leads to embryonic lethality in mouse, whereas P4ha1(+/-) mice have no abnormalities. To study the role of C-P4H-II, which predominates in chondrocytes, we generated P4ha2(-/-) mice. Surprisingly, they had no apparent phenotypic abnormalities. To assess possible functional complementarity, we established P4ha1(+/-);P4ha2(-/-) mice. They were smaller than their littermates, had moderate chondrodysplasia and developed kyphosis. A transient inner cell death phenotype was detected in their developing growth plates. The columnar arrangement of proliferative chondrocytes was impaired, the amount of 4Hyp and the Tm of collagen II were reduced and the extracellular matrix (ECM) was softer in the growth plates of newborn P4ha1(+/-);P4ha2(-/-) mice. No signs of uncompensated ER stress were detected in the mutant growth plate chondrocytes. Some of these defects were also found in P4ha2(-/-) mice, although in a much milder form. Our data show that C-P4H-I can to a large extent compensate for the lack of C-P4H-II in proper endochondral bone development, but their combined partial and complete inactivation, respectively, leads to biomechanically impaired ECM, moderate chondrodysplasia and kyphosis. Our mouse data suggest that inactivating mutations in human P4HA2 are not likely to lead to skeletal disorders and a simultaneous decrease in P4HA1 function would most probably be required to generate such a disease phenotype. Copyright © 2015, The American Society for Biochemistry and Molecular Biology.
    No preview · Article · May 2015 · Journal of Biological Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Muscle is an integrated tissue composed of distinct cell types and extracellular matrix. While much emphasis has been placed on the factors required for the specification of the cells that comprise muscle, little is known about the crosstalk between them that enables the development of a patterned and functional tissue. We find in mice that deletion of lysyl oxidase (Lox), an extracellular enzyme regulating collagen maturation and organization, uncouples the balance between the amount of myofibers and that of muscle connective tissue (MCT). We show that Lox secreted from the myofibers attenuates TGFβ signaling, an inhibitor of myofiber differentiation and promoter of MCT development. We further demonstrate that a TGFβ-Lox feedback loop between the MCT and myofibers maintains the dynamic developmental homeostasis between muscle components while also regulating MCT organization. Our results allow a better understanding of diseases such as Duchenne muscular dystrophy, in which LOX and TGFβ signaling have been implicated and the balance between muscle constituents is disturbed. © 2015. Published by The Company of Biologists Ltd.
    No preview · Article · Mar 2015 · Development
  • [Show abstract] [Hide abstract]
    ABSTRACT: We identified six patients presenting with a strikingly similar clinical phenotype of profound syndromic intellectual disability of unknown etiology. All patients lived in the same village. Extensive genealogical work revealed that the healthy parents of the patients were all distantly related to a common ancestor from the 17th century, suggesting autosomal recessive inheritance. In addition to intellectual disability, the clinical features included hypotonia, strabismus, difficulty to fix the eyes to an object, planovalgus in the feet, mild contractures in elbow joints, interphalangeal joint hypermobility and coarse facial features that develop gradually during childhood. The clinical phenotype did not fit any known syndrome. Genome-wide SNP genotyping of the patients and genetic mapping revealed the longest shared homozygosity at 3p22.1-3p21.1 encompassing 11.5Mb, with no other credible candidate loci emerging. Single point parametric linkage analysis showed logarithm of the odds score of 11 for the homozygous region, thus identifying a novel intellectual disability predisposition locus. Whole-genome sequencing of one affected individual pinpointed three genes with potentially protein damaging homozygous sequence changes within the predisposition locus: transketolase (TKT), prolyl 4-hydroxylase transmembrane (P4HTM), and ubiquitin specific peptidase 4 (USP4). The changes were found in heterozygous form with 0.3-0.7% allele frequencies in 402 whole-genome sequenced controls from the north-east of Finland. No homozygotes were found in this nor additional control data sets. Our study facilitates clinical and molecular diagnosis of patients with this novel autosomal recessive intellectual disability syndrome. However, further studies are needed to unambiguously identify the underlying genetic defect.
    No preview · Article · Oct 2014 · European Journal of Medical Genetics
  • Johanna Myllyharju
    [Show abstract] [Hide abstract]
    ABSTRACT: Growth plate is a specialized cartilaginous structure that mediates the longitudinal growth of skeletal bones. It consists of ordered zones of chondrocytes that secrete an extracellular matrix (ECM) composed of specific types of collagens and proteoglycans. Several heritable human skeletal dysplasias are caused by mutations in these ECM components and this review focuses on the roles of type II, IX, X, and XI collagens, aggrecan, matrilins, perlecan, and cartilage oligomeric matrix protein in the growth plate as deduced from human disease phenotypes and mouse models. Substantial advances have been achieved in deciphering the interaction networks and individual roles of these components in the construction of the growth plate ECM. Furthermore, ER stress and other cellular responses have been identified as key downstream effects of the ECM mutations contributing to abnormal growth plate development. The next challenge is to utilize the molecular level knowledge for the development of potential therapeutics.
    No preview · Article · Sep 2014 · Current Osteoporosis Reports
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Obesity is a major public health problem predisposing subjects to metabolic syndrome, type 2 diabetes and cardiovascular diseases. Specific prolyl 4-hydroxylases (P4Hs) regulate the stability of the hypoxia-inducible factor (HIF), a potent governor of metabolism, isoenzyme 2 being the main regulator. We investigated here whether HIF-P4H-2 inhibition could be used to treat obesity and its consequences. Hif-p4h-2-deficient mice, whether fed normal chow or a high-fat diet, had less adipose tissue, smaller adipocytes and less adipose tissue inflammation than their littermates. They also had improved glucose tolerance and insulin sensitivity. The mRNA levels of the HIF-1 targets glucose transporters, glycolytic enzymes and pyruvate dehydrogenase kinase-1 were increased in their tissues, while acetyl-CoA concentration was decreased. The hepatic mRNA level of the HIF-2 target insulin receptor substrate-2 was higher, while those of two key enzymes of fatty acid synthesis were lowered. Serum cholesterol levels and de novo lipid synthesis were decreased and the mice were protected against hepatic steatosis. Oral administration of a HIF-P4H inhibitor, FG-4497, to wild-type mice with a metabolic dysfunction phenocopied these beneficial effects. HIF-P4H-2 inhibition may be a novel therapy that not only protects against the development of obesity and its consequences but also reverses these conditions.
    Full-text · Article · May 2014 · Diabetes
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Collagen prolyl 4-hydroxylase (C-P4H) catalyzes the proline hydroxylation of procollagen, an essential modification in the maturation of collagens. C-P4H consists of two catalytic α subunits and two protein disulfide isomerase β subunits. The assembly of these subunits is unknown. The α subunit contains an N domain (1-143), a peptide-substrate-binding-domain (PSB, 144-244) and a catalytic domain (245-517). Here, we report the dimeric structure of the N-terminal region (1-244) of the α subunit. It is shown that the N domain has an important role in the assembly of the C-P4H tetramer, by forming an extended four-helix bundle that includes an antiparallel coiled-coil dimerization motif between the two α subunits. Complexes of this construct with a C-P4H inhibitor and substrate show the mode of peptide-binding to the PSB domain. Both peptides adopt a poly-(L)-proline-type-II helix conformation and bind in a curved, asymmetric groove lined by conserved tyrosines and an Arg-Asp salt bridge.
    Preview · Article · Oct 2013 · Structure
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Small-molecule inhibition of hypoxia-inducible factor prolyl 4-hydroxylases (HIF-P4Hs) is being explored for the treatment of anemia. Previous studies have suggested that HIF-P4H-2 inhibition may also protect the heart from an ischemic insult. Hif-p4h-2gt/gt mice, which have 76 to 93% knockdown of Hif-p4h-2 mRNA in endothelial cells, fibroblasts, and cardiomyocytes and normoxic stabilization of Hif-α, were subjected to ligation of the left anterior descending coronary artery (LAD). Hif-p4h-2 deficiency resulted in increased survival, better-preserved left ventricle (LV) systolic function, and a smaller infarct size. Surprisingly, a significantly larger area of the LV remained perfused during LAD ligation in Hif-p4h-2gt/gt hearts than in wild-type hearts. However, no difference was observed in collateral vessels, while the size of capillaries, but not their number, was significantly greater in Hif-p4h-2gt/gt hearts than in wild-type hearts. Hif-p4h-2gt/gt mice showed increased cardiac expression of endothelial Hif target genes for Tie-2, apelin, APJ, and endothelial nitric oxide (NO) synthase (eNOS) and increased serum NO concentrations. Remarkably, blockage of Tie-2 signaling was sufficient to normalize cardiac apelin and APJ expression and resulted in reversal of the enlarged-capillary phenotype and ischemic cardioprotection in Hif-p4h-2gt/gt hearts. Activation of the hypoxia response by HIF-P4H-2 inhibition in endothelial cells appears to be a major determinant of ischemic cardioprotection and justifies the exploration of systemic small-molecule HIF-P4H-2 inhibitors for ischemic heart disease.
    Full-text · Article · Jun 2013 · Molecular and Cellular Biology
  • Johanna Myllyharju
    [Show abstract] [Hide abstract]
    ABSTRACT: A decrease in oxygenation is a life-threatening situation for most organisms. An evolutionarily conserved efficient and rapid hypoxia response mechanism activated by a hypoxia-inducible transcription factor (HIF) is present in animals ranging from the simplest multicellular phylum Placozoa to humans. In humans, HIF induces the expression of more than 100 genes that are required to increase oxygen delivery and to reduce oxygen consumption. As its name indicates HIF is found at protein level only in hypoxic cells, whereas in normoxia it is degraded by the proteasome pathway. Prolyl 4-hydroxylases, enzymes that require oxygen in their reaction, are the cellular oxygen sensors regulating the stability of HIF. In normoxia, 4-hydroxyproline residues formed in the α subunit of HIF by these enzymes lead to its ubiquitination by the Von Hippel Lindau E3 ubiquitin ligase and immediate destruction in proteasomes thus preventing the formation of a functional HIF αβ dimer. Prolyl 4-hydroxylation is inhibited in hypoxia, facilitating formation of the HIF dimer and activation of its target genes, such as those for erythropoietin and vascular endothelial growth factor. This review starts with a summary of the molecular and catalytic properties and individual functions of the four HIF prolyl 4-hydroxylase isoenzymes. Induction of the hypoxia response via inhibition of the HIF prolyl 4-hydroxylases may provide a novel therapeutic target in the treatment of hypoxia associated diseases. The current status of studies aiming at such therapeutic approaches is introduced in the final part of this review. Acta Physiologica © 2013 Scandinavian Physiological Society.
    No preview · Article · Mar 2013 · Acta Physiologica
  • Johanna Myllyharju · Peppi Koivunen
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Hypoxia-inducible transcription factor (HIF), an αβ dimer, is the key inducer of hypoxia responsive genes that operate both during normal development and pathological processes in association with decreased oxygen availability. The products of HIF target genes function in e.g. hematopoesis, angiogenesis, iron transport, glucose utilization, resistance to oxidative stress, cell proliferation, survival and apoptosis, extracellular matrix homeostasis, and tumorigenesis and metastasis. HIF is accumulated in hypoxia, whereas it is rapidly degraded in normoxic cells. The oxygen sensing mechanism behind this phenomenon is provided by HIF prolyl 4-hydroxylases (HIF-P4Hs, commonly known as PHDs and EglNs) that require oxygen in their reaction. In normoxia two prolines in the oxygen-dependent degradation domain of the HIFα subunit become hydroxylated by the HIF-P4Hs. The 4-hydroxyproline residues formed serve as recognition sites for the von Hippel-Lindau E3 ubiquitin ligase complex, and result in subsequent ubiquitination and instant proteasomal degradation of HIFα in normoxia. The HIF-P4H reaction is inhibited in hypoxia, HIFα evades degradation and forms a functional dimer with HIFβ leading to activation of the HIF target genes. The central role of HIF-P4Hs in the regulation of the hypoxia response pathway has provided an attractive possibility as a drug candidate for treatment of e.g. severe anemias and ischemic conditions and several companies are currently carrying out clinical studies on the use of HIF-P4H inhibitors to treat anemia in patients suffering from a kidney disease. Therefore, it is important to understand the effects of individual HIF-P4H isoenzymes on the hypoxia response and potential other pathways in vivo. Common and specific functions of the HIF-P4H isoenzymes are discussed in this review based on available data from cell biological studies and gene-modified animals.
    No preview · Article · Jan 2013 · Biological Chemistry
  • Source
    Alan D Winter · Gillian McCormack · Johanna Myllyharju · Antony P Page
    [Show abstract] [Hide abstract]
    ABSTRACT: Collagen prolyl 4-hydroxylases (C-P4H) are required for formation of extracellular matrices in higher eukaryotes. These enzymes convert proline residues within the repeat regions of collagen polypeptides to 4-hydroxyproline, a modification essential for the stability of the final triple helix. C-P4H are most often oligomeric complexes, with enzymatic activity contributed by the α subunits, and the β subunits formed by protein disulfide isomerase (PDI). Here, we characterize this enzyme class in the important human parasitic nematode Brugia malayi. All potential C-P4H subunits were identified by detailed bioinformatic analysis of sequence databases, function was investigated both by RNAi in the parasite and heterologous expression in Caenorhabditis elegans, whereas biochemical activity and complex formation were examined via co-expression in insect cells. Simultaneous RNAi of two B. malayi C-P4H α subunit-like genes resulted in a striking, highly penetrant body morphology phenotype in parasite larvae. This was replicated by single RNAi of a B. malayi C-P4H β subunit-like PDI. Surprisingly, however, the B. malayi proteins were not capable of rescuing a C. elegans α subunit mutant, whereas the human enzymes could. In contrast, the B. malayi PDI did functionally complement the lethal phenotype of a C. elegans β subunit mutant. Comparison of recombinant and parasite derived material indicates that enzymatic activity may be dependent on a non-reducible covalent link, present only in the parasite. We therefore demonstrate that C-P4H activity is essential for development of B. malayi and uncover a novel parasite-specific feature of these collagen biosynthetic enzymes that may be exploited in future parasite control.
    Full-text · Article · Dec 2012 · Journal of Biological Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aim: To establish whether eliminating Lysyl oxidase (LOX) gene would affect dentine formation. Methodology: Newborn wild-type (wt) and homo- and heterozygous LOX knock-out (Lox(-/-) and Lox(+/-) , respectively) mice were used to study developing tooth morphology and dentine formation. Collagen aggregation in the developing dentine was examined histochemically with picrosirius red (PSR) staining followed by polarized microscopy. Because Lox(-/-) die at birth, adult wt and Lox(+/-) mouse tooth morphologies were examined with FESEM. Human odontoblasts and pulp tissue were used to study the expression of LOX and its isoenzymes with Affymetrix cDNA microarray. Results: No differences between Lox(-/-) , Lox(+/-) and wt mice developing tooth morphology were seen by light microscopy. Histochemically, however, teeth in wt mice demonstrated yellow-orange and orange-red polarization colours with PSR staining, indicating thick and more densely packed collagen fibres, whilst in Lox(-/-) and Lox(+/-) mice, most of the polarization colours were green to green-yellow, indicating thinner, less aggregated collagen fibres. Fully developed teeth did not show any differences between Lox(+/-) and wt mice with FESEM. Human odontoblasts expressed LOX and three of four of its isoenzymes. Conclusions: The data indicate that LOX is not essential in dentinogenesis, even though LOX deletion may affect dentine matrix collagen thickness and packing. The absence of functional LOX may be compensated by LOX isoenzymes.
    Full-text · Article · Oct 2012 · International Endodontic Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An endoplasmic reticulum transmembrane prolyl 4-hydroxylase (P4H-TM) is able to hydroxylate the α subunit of the hypoxia-inducible factor (HIF) in vitro and in cultured cells, but nothing is known about its roles in mammalian erythropoiesis. We studied such roles here by administering a HIF-P4H inhibitor, FG-4497, to P4h-tm(-/-) mice. This caused larger increases in serum Epo concentration and kidney but not liver Hif-1α and Hif-2α protein and Epo mRNA levels than in wild-type mice, while the liver Hepcidin mRNA level was lower in the P4h-tm(-/-) mice than in the wild-type. Similar, but not identical, differences were also seen between FG-4497-treated Hif-p4h-2 hypomorphic (Hif-p4h-2(gt/gt)) and Hif-p4h-3(-/-) mice versus wild-type mice. FG-4497 administration increased hemoglobin and hematocrit values similarly in the P4h-tm(-/-) and wild-type mice, but caused higher increases in both values in the Hif-p4h-2(gt/gt) mice and in hematocrit value in the Hif-p4h-3(-/-) mice than in the wild-type. Hif-p4h-2(gt/gt)/P4h-tm(-/-) double gene-modified mice nevertheless had increased hemoglobin and hematocrit values without any FG-4497 administration, although no such abnormalities were seen in the Hif-p4h-2(gt/gt) or P4h-tm(-/-) mice. Our data thus indicate that P4H-TM plays a role in the regulation of EPO production, hepcidin expression, and erythropoiesis.
    Preview · Article · Sep 2012 · Blood
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hypoxia-inducible factors (HIFs) are the master regulators of hypoxia-responsive genes. They play a critical role in the survival, development and differentiation of chondrocytes in the avascular hypoxic fetal growth plate, which is rich in extracellular matrix (ECM) and in its main component, collagens. Several genes involved in the synthesis, maintenance and degradation of ECM are regulated by HIFs. Collagen prolyl 4-hydroxylases (C-P4Hs) are key enzymes in collagen synthesis, as the resulting 4-hydroxyprolines are necessary for the stability of all collagen molecules. The vertebrate C-P4Hs are α(2)β](2) tetramers with three isoforms of the catalytic α subunit, yielding C-P4Hs of types I-III. C-P4H-I is the main form in most cells, but C-P4H-II is the major form in chondrocytes. We postulated here that post-translational modification of collagens, particularly 4-hydroxylation of proline residues, could be one of the modalities by which HIF regulates the adaptive responses of chondrocytes in fetal growth plates. To address this hypothesis, we used primary epiphyseal growth plate chondrocytes isolated from newborn mice with conditionally inactivated genes for HIF-1α, HIF-2α or the von Hippel-Lindau (VHL) protein. The data obtained showed that C-P4H α(I) and α(II) mRNA levels were increased in hypoxic chondrocytes in a manner dependent on HIF-1 but not on HIF-2. Furthermore, the increases in the C-P4H mRNA levels were associated with both increased amounts of the C-P4H tetramers and augmented C-P4H activity in hypoxia. The hypoxia-inducibility of the C-P4H isoenzymes is thus likely to ensure sufficient C-P4H activity for collagen synthesis occurring in chondrocytes in a hypoxic environment.
    No preview · Article · Aug 2012 · Journal of Biological Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autosomal-recessive high-grade axial myopia was diagnosed in Bedouin Israeli consanguineous kindred. Some affected individuals also had variable expressivity of early-onset cataracts, peripheral vitreo-retinal degeneration, and secondary sight loss due to severe retinal detachments. Through genome-wide linkage analysis, the disease-associated gene was mapped to ∼1.7 Mb on chromosome 3q28 (the maximum LOD score was 11.5 at θ = 0 for marker D3S1314). Sequencing of the entire coding regions and intron-exon boundaries of the six genes within the defined locus identified a single mutation (c.1523G>T) in exon 10 of LEPREL1, encoding prolyl 3-hydroxylase 2 (P3H2), a 2-oxoglutarate-dependent dioxygenase that hydroxylates collagens. The mutation affects a glycine that is conserved within P3H isozymes. Analysis of wild-type and p.Gly508Val (c.1523G>T) mutant recombinant P3H2 polypeptides expressed in insect cells showed that the mutation led to complete inactivation of P3H2.
    Full-text · Article · Sep 2011 · The American Journal of Human Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The lysyl oxidase gene (LOX) inhibits Ras signaling in transformed fibroblasts and breast cancer cells. Its activity was mapped to the 162-amino-acid propeptide domain (LOX-PP) of the lysyl oxidase precursor protein. LOX-PP inhibits Erk signaling, motility, and tumor formation in a breast cancer xenograft model; however, its mechanism of action is largely unknown. Here, a copurification-mass spectrometry approach was taken using ectopically expressed LOX-PP in HEK293T cells and the heat shock/chaperone protein Hsp70 identified. Hsp70 interaction with LOX-PP was confirmed using coimmunoprecipitation of intracellularly and bacterially expressed and endogenous proteins. The interaction was mapped to the Hsp70 peptide-binding domain and to LOX-PP amino acids 26 to 100. LOX-PP association reduced Hsp70 chaperone activities of protein refolding and survival after heat shock. LOX-PP interacted with the Hsp70 chaperoned protein c-Raf. With the use of ectopic expression of LOX-PP wild-type and deletion proteins, small interfering RNA (siRNA) knockdown, and Lox(-/-) mouse embryo fibroblasts, LOX-PP interaction with c-Raf was shown to decrease downstream activation of MEK and NF-κB, migration, and anchorage-independent growth and reduce its mitochondrial localization. Thus, the interaction of LOX-PP with Hsp70 and c-Raf inhibits a critical intermediate in Ras-induced MEK signaling and plays an important role in the function of this tumor suppressor.
    Full-text · Article · Jul 2011 · Molecular and Cellular Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Histone methylations are important chromatin marks that regulate gene expression, genomic stability, DNA repair, and genomic imprinting. Histone demethylases are the most recent family of histone-modifying enzymes discovered. Here, we report the characterization of a small-molecule inhibitor of Jumonji C domain-containing histone demethylases. The inhibitor derives from a structure-based design and preferentially inhibits the subfamily of trimethyl lysine demethylases. Its methyl ester prodrug, methylstat, selectively inhibits Jumonji C domain-containing his-tone demethylases in cells and may be a useful small-molecule probe of chromatin and its role in epigenetics.
    Full-text · Article · Jun 2011 · Journal of the American Chemical Society