Chiara Brullo

Università degli Studi di Genova, Genova, Liguria, Italy

Are you Chiara Brullo?

Claim your profile

Publications (62)

  • Chiara Brullo · Roberta Ricciarelli · Jos Prickaerts · [...] · Olga Bruno
    [Show abstract] [Hide abstract] ABSTRACT: Phosphodiesterase type 4D (PDE4D) has been indicated as a promising target for treating neurodegenerative pathologies such as Alzheimer's Disease (AD). By preventing cAMP hydrolysis, PDE4 inhibitors (PDE4Is) increase the cAMP response element-binding protein (CREB) phosphorylation, synaptic plasticity and long-term memory formation. Pharmacological and behavioral studies on our hit GEBR-7b demonstrated that selective PDE4DIs could improve memory without causing emesis and sedation. The hit development led to new molecule series, herein reported, characterized by a catechol structure bonded to five member heterocycles. Molecular modeling studies highlighted the pivotal role of a polar alkyl chain in conferring selective enzyme interaction. Compound 8a showed PDE4D3 selective inhibition and was able to increase intracellular cAMP levels in neuronal cells, as well as in the hippocampus of freely moving rats. Furthermore, 8a was able to readily cross the blood-brain barrier and enhanced memory performance in mice without causing any emetic-like behavior. These data support the view that PDE4D is an adequate molecular target to restore memory deficits in different neuropathologies, including AD, and also indicate compound 8a as a promising candidate for further preclinical development.
    Article · Aug 2016 · European Journal of Medicinal Chemistry
  • Elena Cichero · Chiara Brullo · Olga Bruno · Paola Fossa
    [Show abstract] [Hide abstract] ABSTRACT: The development of selective ligands binding to specific PDE isoforms represents an urgent need in medicinal chemistry, being a necessary strategy to identify many more drug-like compounds, to be investigated for several therapies. Concerning inflammation, rational design of selective PDE7 inhibitors over PDE4 could lead to derivatives endowed with a better safety profile, showing limited side-effects. In this context, thieno[3,2-d]pyrimidin-4(3H)-one-based compounds have been recently studied as a series of potent phosphodiesterase type 7 (PDE7) inhibitors, most of them being selective over other PDE enzymes, such as PDE4B. This work describes a computational study based on docking calculations followed by Comparative Molecular Fields Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA), in order to better elucidate the pharmacophore features of this series of PDE7 inhibitors. The results reveal the ligand-based approach as a promising strategy to better investigate the potency and selectivity issues of PDE7 inhibitors. In addition, the results also allowed robust statistical models able to predict the potency and selectivity trend of new analogues prior to synthesis to be obtained.
    Article · Jan 2016 · RSC Advances
  • [Show abstract] [Hide abstract] ABSTRACT: Introduction: The Bcr-Abl inhibitor imatinib was approved in 2001 for chronic myeloid leukemia therapy, and dramatically changed the lives of patients affected by this disease. Since it also inhibits platelet derived growth factor receptor (PDGFR) and c-Kit, imatinib is used for various other tumors caused by abnormalities of one or both these two enzymes. Areas covered: This review presents an overview on imatinib formulations and derivatives, synthetic methodologies and therapeutic uses that have appeared in the patent literature since 2008. Expert opinion: Innovative imatinib formulations, such as nanoparticles containing the drug, will improve its bioavailability. Moreover, oral solutions or high imatinib content tablets or capsules will improve patient compliance. Some solid formulations and innovative syntheses that have appeared in the last few years will reduce the cost of the drug, offering big advantages for poor countries. Some recently patented efficacious imatinib derivatives are in preclinical studies and could enter clinical trials in the next few years. Overall, Bcr-Abl inhibitors constitute a very appealing research field that can be expected to expand further.
    Article · Sep 2015 · Expert Opinion on Therapeutic Patents
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Fyn is a member of the Src-family of non-receptor protein-tyrosine kinases. Its abnormal activity has been shown to be related to various human cancers as well as to severe pathologies, such as Alzheimer's and Parkinson's diseases. Herein, a structure-based drug design protocol was employed aimed at identifying novel Fyn inhibitors. Two hits from commercial source (1, 2) were found active against Fyn with Ki of about 2 µM while derivative 4a, derived from our internal library, showed a Ki of 0.9 µM. A hit-to-lead optimization effort was then initiated on derivative 4a to improve its potency. Slightly modifications rapidly determine an increase in the binding affinity, with the best inhibitors 4c and 4d having Ki of 70 nM and 95 nM, respectively. Both compounds were found able to inhibit the phosphorylation of the protein Tau in an Alzheimer's model cell line and showed antiproliferative activities against different cancer cell lines.
    Full-text available · Article · Apr 2015 · Journal of Medicinal Chemistry
  • Chiara Brullo · Matteo Massa · Carla Villa · [...] · Olga Bruno
    [Show abstract] [Hide abstract] ABSTRACT: A new series of selective PDE4D inhibitors has been designed and synthesized by replacing 3-methoxy group with 3-difluoromethoxy isoster moiety in our previously reported cathecolic structures. All compounds showed a good PDE4D3 inhibitory activity, most of them being inactive toward other PDE4 isoforms (PDE4A4, PDE4B2 and PDE4C2). Compound 3b, chosen among the synthesized compounds as the most promising in terms of inhibitory activity, selectivity and safety, showed an improved pharmacokinetic profile compared to its non fluorinated analogue. Spontaneous locomotor activity, assessed in an open field apparatus, showed that, differently from rolipram and diazepam, selective PDE4D inhibitors, such as compounds 3b, 5b and 7b, did not affect locomotion, whereas compound 1b showed a tendency to reduce the distance traveled and to prolong the immobility period, possibly due to a poor selectivity. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Article · Apr 2015 · Bioorganic & medicinal chemistry
  • F Musumeci · S Schenone · C Brullo · [...] · C Tintori
    [Show abstract] [Hide abstract] ABSTRACT: Hematopoietic cell kinase (Hck) is a member of the Src-family of non-receptor tyrosine kinases, which plays many roles in signalling pathways involved in the regulation of cell processes. Hck is expressed in cells of hematopoietic origin, specifically myelomonocytic cells and B lymphocytes. It participates in phagocytosis, adhesion, migration, regulation of protrusion formation on cell membrane, lysosome exocytosis, podosome formation and actin polymerization. More importantly from a medicinal chemistry point of view, high levels of Hck are involved in chronic myeloid leukemia and other hematologic tumors. Furthermore, Hck activity has been associated with virus infections including HIV-1. In particular, Hck is activated by the HIV-1 accessory protein Nef, a multifunctional HIV-1 protein that accelerates progression to AIDS and enhances the infectivity of progeny viruses. Nef binding to Hck leads to kinase activation which is important in AIDS pathogenesis. For these reasons, Hck represents a potentially good therapeutic target for the treatment of both specific cancers and HIV infection. This article summarizes Hck biological activities connected with malignancies and HIV infection, many of which have been only recently reported, and presents an overview of the compounds endowed with Hck inhibitory activity, especially focusing on the medicinal chemistry aspect.
    Article · Feb 2015 · Current Medicinal Chemistry
  • Source
    Andrea Desogus · Silvia Schenone · Chiara Brullo · [...] · Francesca Musumeci
    [Show abstract] [Hide abstract] ABSTRACT: Introduction: Breakpoint cluster region Abelson (Bcr-Abl) tyrosine kinase (TK) is a constitutively activated cytoplasmic TK and is the underlying cause of chronic myeloid leukemia (CML). To date, imatinib represents the frontline treatment for CML therapy. The development of resistance has prompted the search for novel Bcr-Abl inhibitors. Areas covered: This review presents a short overview of drugs already approved for CML therapy and of the compounds that are in clinical trials. The body of the article deals with Bcr-Abl inhibitors patented since 2008, focusing on their chemical features. Expert opinion: The search for Bcr-Abl inhibitors is very active. We believe that a number of patented compounds could enter clinical trials and some could be approved for CML therapy in the next few years. Overall, Bcr-Abl inhibitors constitute a very appealing research field that can be expected to expand further.
    Full-text available · Article · Feb 2015 · Expert Opinion on Therapeutic Patents
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: c-Src is a tyrosine kinase belonging to the Src-family kinases. It is overexpressed and/or hyperactivated in a variety of cancer cells, thus its inhibition has been predicted to have therapeutic effects in solid tumors. Recently, the pyrazolo[3,4-d]pyrimidine 3 was reported as a dual c-Src/Abl inhibitor. Herein we describe a multidisciplinary drug discovery approach for the optimization of the lead 3 against c-Src. Starting from the X-ray crystal structure of c-Src in complex with 3, Monte Carlo free energy perturbation calculations were applied to guide the design of c-Src inhibitors with improved activities. As a result, the introduction of a meta hydroxyl group on the C4 anilino ring was computed to be particularly favorable. The potency of the synthesized inhibitors was increased with respect to the starting lead 3. The best identified compounds were also found active in the inhibition of neuroblastoma cell proliferation. Furthermore, compound 29 also showed in vivo activity in xenograft model using SH-SY5Y cells.
    Full-text available · Article · Dec 2014 · Journal of Medicinal Chemistry
  • Chiara Brullo · Matteo Massa · Massimo Rocca · [...] · Olga Bruno
    [Show abstract] [Hide abstract] ABSTRACT: A new series of 3-(cyclopentyloxy)-4-methoxyphenyl derivatives, structurally related to our hit GEBR-4a (1) and GEBR-7b (2), has been designed by changing length and functionality of the chain linking the catecholic moiety to the terminal cycloamine portion. Among the numerous molecules synthesized, compounds 8, 10a, and 10b showed increased potency as PDE4D enzyme inhibitors with respect to 2 and a good selectivity against PDE4A4, PDE4B2, and PDE4C2 enzymes, without both cytotoxic and genotoxic effects. The ability to enhance cAMP level in neuronal cells was assessed for compound 8. SAR considerations, also confirmed by in silico docking simulations, evidenced that both chain and amino terminal function characterized by higher hydrophilicity are required for a good and selective inhibitor-catalytic pocket interaction.
    Article · Aug 2014 · Journal of Medicinal Chemistry
  • [Show abstract] [Hide abstract] ABSTRACT: Nitrogen-containing heterocycles are widely distributed in nature and essential for life, playing a vital role in the metabolism of all living cells. In one way or another, protein phosphorylation is involved in and regulates every cellular process. Even complex functions such as memory can ultimately be traced to the phosphorylation of a specific protein. The family of human protein kinases, of which there are 538 members, represents the third largest and the most important enzyme class; they are estimated to be responsible for modifying one-third of the human proteome. These enzymes catalyze the transfer of the gamma phosphate group from ATP to specific serine, threonine or tyrosine hydroxy groups on target protein substrates involved in a number of cell signaling pathways.
    Article · May 2014 · ChemInform
  • M. Bertolotto · C. Brullo · L. Ottonello · [...] · O. Bruno
    Article · May 2014 · European Journal of Clinical Investigation
  • Source
    Rita Selvatici · Chiara Brullo · Olga Bruno · Susanna Spisani
    [Show abstract] [Hide abstract] ABSTRACT: N-formyl-methionyl-leucyl-phenylalanine (fMLF), its methyl ester fMLF-OMe and interleukin 8 (IL8) play a pivotal role in neutrophil chemotaxis regulation in the latter and early stages, respectively, but the mechanisms through which the signal transduction pathways activate this function are not yet completely understood. Compounds 3l and 3r, a new class of arylcarbamoyl-imidazo-pyrazoles derivatives, were described as the first example of compounds able to inhibit human neutrophil chemotaxis induced by both fMLF-OMe and IL8. Here, we report their effects on superoxide production and lysozyme release. No inhibition was observed, thus they could be defined as "pure" chemotactic antagonists. Therefore, such molecules were used to highlight specific kinases involved in neutrophil chemotaxis. Our data provide support that compounds 3l and 3r strongly inhibit p38 MAPK with either fMLF-OMe or IL8 chemoattractants, while they show different signaling pathways regarding PKC isoforms suggesting that a fine tuning of the neutrophil activation occurs through differences in the activation of signaling pathways. Neither fMLF-OMe nor IL8 were able to obtain activation of the PI3K/Akt pathway. Since anomalous activation of neutrophil recruitment is one of the causes of many inflammatory diseases, the good versatility of our derivatives could represent the most important characteristic of these new molecules in the development of novel therapeutics.
    Full-text available · Article · Aug 2013 · European journal of pharmacology
  • Source
    Cristina Tintori · Ilaria Laurenzana · Francesco La Rocca · [...] · Maurizio Botta
    [Show abstract] [Hide abstract] ABSTRACT: Hematopoietic cell kinase (Hck) is a member of the Src family of non-receptor protein tyrosine kinases. High levels of Hck are associated with drug resistance in chronic myeloid leukemia. Furthermore, Hck activity has been connected with HIV-1. Herein, structure-based drug design efforts were aimed at identifying novel Hck inhibitors. First, an in-house library of pyrazolo[3,4-d]pyrimidine derivatives, which were previously shown to be dual Abl and c-Src inhibitors, was analyzed by docking studies within the ATP binding site of Hck to select the best candidates to be tested in a cell-free assay. Next, the same computational protocol was applied to screen a database of commercially available compounds. As a result, most of the selected compounds were found active against Hck, with Ki values ranging from 0.14 to 18.4 μM, confirming the suitability of the computational approach adopted. Furthermore, selected compounds showed an interesting antiproliferative activity profile against the human leukemia cell line KU-812, and one compound was found to block HIV-1 replication at sub-toxic concentrations.
    Full-text available · Article · Jun 2013 · ChemMedChem
  • [Show abstract] [Hide abstract] ABSTRACT: Starting from our in-house library of pyrazolo[3,4-d]pyrimidines, cross-docking simulation was conducted on Bcr-Abl T315I mutant to select new derivatives for biological investigations. Among the selected compounds (2a-e), derivative 2b showed a high activity against the Bcr-Abl T315I mutant (Ki = 36 nM). Binding free energy calculation (MM-GBSA), molecular interaction field (MIF) analysis and free energy perturbation (FEP) studies highlighted the importance of a bromine atom of the para position of the N1 side chain phenyl ring for the interaction with the hydrophobic region I in the T315I mutant. A series of 4-bromo derivatives was thus synthesized and biologically evaluated in cell-free assays (c-Src, Abl wt, Abl T315I mutant) and in the murine myeloid 32D cell lines expressing the human wild type p210-Bcr-Abl or the Bcr-Abl T315I mutant. Compound 2j was identified as the most promising derivative showing a good balance of different ADME properties, high activity in cell-free assays and an interesting sub-micromolar potency against T315I Bcr-Abl expressing cells. In addition, liposome encapsulated 2j was tested on 32D-p210 and 32D-T315I cell lines at concentrations of 0.1 and 1 μM in comparison with the DMSO dissolved 2j. Liposomal formulation increases the solubility of pyrazolo[3,4-d]pyrimidines preserving a good activity on leukemic T315I cells and avoiding the use of DMSO as solubilizing agent. In vivo studies on mice inoculated with 32D-T315I cells and treated for 17 days with 2j showed a more than 50% reduction in tumor volumes when compared to placebo treated mice.
    Article · Jun 2013 · Journal of Medicinal Chemistry
  • [Show abstract] [Hide abstract] ABSTRACT: Pim-1 is a serine/threonine kinase critically involved in the initiation and progression of various types of cancer, especially leukemia, lymphomas and solid tumors such as prostate, pancreas and colon, and is considered a potential drug target against these malignancies. In an effort to discover new potent Pim-1 inhibitors, a previously identified ATP-competitive indolyl-pyrrolone scaffold was expanded to derive structure-activity relationship data. A virtual screening campaign was also performed, which led to the discovery of additional ATP-competitive inhibitors as well as a series of 2-aminothiazole derivatives, which are noncompetitive with respect to both ATP and peptide substrate. This mechanism of action, which resembles allosteric inhibition, has not previously been characterized for Pim-1. Notably, further evaluation of the 2-aminothiazoles indicated a synergistic inhibitory effect in enzymatic assays when tested in combination with ATP-competitive inhibitors. A synergistic effect in the inhibition of cell proliferation by ATP-competitive and ATP-noncompetitive compounds was also observed in prostate cancer cell lines (PC3), where all Pim-1 inhibitors tested in showed synergism with the known anticancer agent, paclitaxel. These results further establish Pim-1 as a target in cancer therapy, and highlight the potential of these agents for use as adjuvant agents in the treatment of cancer diseases in which Pim-1 is associated with chemotherapeutic resistance.
    Article · Mar 2013 · ChemMedChem
  • [Show abstract] [Hide abstract] ABSTRACT: The recent launch onto the market of five VEGFR inhibitors indicates the therapeutic value of these agents and the importance of the research in the field of angiogenesis inhibitors for future oncologic therapy. In this perspective we briefly report the inhibitors which are in clinical use, while we dedicate two wider sections to the compounds which are in clinical trials and to the new derivatives appearing in the literature. We especially consider the medicinal chemistry aspect of the topic, report the structure-activity relationship studies and the binding mode of some inhibitors as well as the biological data of the compounds discovered in the past five years.
    Article · Oct 2012 · Journal of Medicinal Chemistry
  • Chiara Brullo · Susanna Spisani · Rita Selvatici · Olga Bruno
    [Show abstract] [Hide abstract] ABSTRACT: Title compounds (VI),(VII), and (XIII) are designed and synthesized as multi-target antiinflammatory agents.
    Article · Jun 2012 · ChemInform
  • [Show abstract] [Hide abstract] ABSTRACT: c-Src and Bcr-Abl are two cytoplasmatic tyrosine kinases (TKs) involved in the development of malignancies. In particular, Bcr-Abl is the etiologic agent of chronic myeloid leukemia, where Src is also involved; the latter is hyperactivated in several solid tumors. Because of the structural homology between Src and Abl, several compounds originally synthesized as Src inhibitors have also been shown to be Abl inhibitors, useful in overcoming the onset of some types of chronic myeloid leukemia resistances, which frequently appear in the advanced phases of pathology. In recent years, the development of such compounds has been promoted by both excellent preclinical and clinical results, and by the theory that dual or multi-targeted inhibitors might be more effective than selective inhibitors. This review is an update on the most important dual inhibitors already in clinical trials and includes information regarding compounds that have appeared in the literature in recent years.
    Article · Apr 2012 · Future medicinal chemistry
  • Source
    Chiara Brullo · Susanna Spisani · Rita Selvatici · Olga Bruno
    [Show abstract] [Hide abstract] ABSTRACT: Keywords: N-Aryl-2-phenyl-2,3-dihydro-imidazo[1,2-b]pyrazole-1-carboxamides IL8 fMLP-OMe Chemotaxis Human neutrophils Inflammation a b s t r a c t Anomalous activation of neutrophil recruitment is one of the causes of many inflammatory diseases. The chemoattractants N-formyl-methionyl-leucyl-phenylalanine (fMLP), and interleukine 8 (IL8) play a pivotal role in neutrophil chemotaxis regulation in the latter and early stages, respectively, probably by two independent mechanisms. We reported here synthesis and biological evaluation of new N-aryl-2-phenyl-2,3-dihydro-imidazo[1,2-b]pyrazole-1-carboxamides 7-substituted which were designed as possible multi-target antiinflammatory agents. Many of the title compounds showed a good inhibition, in the nano molar range, of human neutrophil chemotaxis selectively acting toward fMLP-OMe (methyl-ester of fMLP) or IL8 stimulus; whereas, two compounds showed an interesting dual activity inhibiting both fMLP-OMe and IL8-induced chemotaxis at nano molar concentration.
    Full-text available · Article · Dec 2011 · European Journal of Medicinal Chemistry
  • Chiara Brullo · Massimo Rocca · Paola Fossa · [...] · Olga Bruno
    [Show abstract] [Hide abstract] ABSTRACT: In pursuing our research on some 2,4-diamino-benzopyranopyrimidines and 2-amino-5,6-dihydrobenzo[h]quinazolines, previously reported as antiplatelet and analgesic/anti-inflammatory agents respectively, we designed and synthesized a new series of 5,6-dihydrobenzo[h]quinazoline 2,4-diamino substituted. The insertion of amino substituents at positions 2 and 4 of the benzoquinazoline scaffold resulted in compounds endowed with a potent ASA-like antiplatelet activity, combined with an anti-inflammatory activity comparable, in some cases, to that of indomethacin, used as a reference drug.
    Article · Dec 2011 · Bioorganic & medicinal chemistry letters