W F Crowley

Massachusetts General Hospital, Boston, Massachusetts, United States

Are you W F Crowley?

Claim your profile

Publications (97)499.35 Total impact

  • Source
    M I Stamou · K H Cox · William F Crowley
    [Show abstract] [Hide abstract]
    ABSTRACT: Over the last 30 years, research groups around the world have been investigating the genetic basis of IGD utilizing different strategies based on complex cases that harbor structural abnormalities or single pleiotropic genes, endogamous pedigrees, candidate gene approaches as well as pathway gene analyses. While such traditional approaches, based on well-validated tools, have been critical to establish the field, new strategies, such as next-generation-sequencing (NGS), are now providing speed and robustness, but also revealing a surprising number of variants in known IGD genes in both patients and healthy controls. Thus, before the field moves forward with new genetic tools and continues discovery efforts, we must reassess what we know about IGD genetics and prepare to hold our work to a different standard. The purpose of this review is to:1) look back at the strategies used to discover the "known" genes implicated in the rare forms of IGD 2) examine the strengths and weaknesses of the methodologies used to validate genetic variation, 3) substantiate the role of "known" genes in the pathophysiology of the disease and 4) project forward as we embark upon a widening utilization of these new and powerful technologies for gene discovery.
    Full-text · Article · Sep 2015 · Endocrine reviews
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Missense mutations in TUBB3, the gene that encodes the neuronal-specific protein β-tubulin isotype 3, can cause isolated or syndromic congenital fibrosis of the extraocular muscles, a form of complex congenital strabismus characterized by cranial nerve misguidance. One of the eight TUBB3 mutations reported to cause congenital fibrosis of the extraocular muscles, c.1228G>A results in a TUBB3 E410K amino acid substitution that directly alters a kinesin motor protein binding site. We report the detailed phenotypes of eight unrelated individuals who harbour this de novo mutation, and thus define the 'TUBB3 E410K syndrome'. Individuals harbouring this mutation were previously reported to have congenital fibrosis of the extraocular muscles, facial weakness, developmental delay and possible peripheral neuropathy. We now confirm by electrophysiology that a progressive sensorimotor polyneuropathy does indeed segregate with the mutation, and expand the TUBB3 E410K phenotype to include Kallmann syndrome (hypogonadotropic hypogonadism and anosmia), stereotyped midface hypoplasia, intellectual disabilities and, in some cases, vocal cord paralysis, tracheomalacia and cyclic vomiting. Neuroimaging reveals a thin corpus callosum and anterior commissure, and hypoplastic to absent olfactory sulci, olfactory bulbs and oculomotor and facial nerves, which support underlying abnormalities in axon guidance and maintenance. Thus, the E410K substitution defines a new genetic aetiology for Moebius syndrome, Kallmann syndrome and cyclic vomiting. Moreover, the c.1228G>A mutation was absent in DNA from ∼600 individuals who had either Kallmann syndrome or isolated or syndromic ocular and/or facial dysmotility disorders, but who did not have the combined features of the TUBB3 E410K syndrome, highlighting the specificity of this phenotype-genotype correlation. The definition of the TUBB3 E410K syndrome will allow clinicians to identify affected individuals and predict the mutation based on clinical features alone.
    Full-text · Article · Jan 2013 · Brain
  • [Show abstract] [Hide abstract]
    ABSTRACT: A genome-wide association study has identified three loci (five independent signals) that confer risk for polycystic ovary syndrome (PCOS) in Han Chinese women. Replication is necessary to determine whether the same variants confer risk for PCOS in women of European ancestry. The objective of the study was to test whether these PCOS risk variants in Han Chinese women confer risk for PCOS in women of European ancestry. This was a case-control study. The study was conducted at deCODE Genetics in Iceland and two academic medical centers in the United States. Cases were 376 Icelandic women and 565 and 203 women from Boston, MA, and Chicago, IL, respectively, all diagnosed with PCOS by the National Institutes of Health criteria. Controls were 16,947, 483, and 189 women not known to have PCOS from Iceland, Boston, and Chicago, respectively. There were no interventions. Main outcomes were allele frequencies for seven variants in PCOS cases and controls. Two strongly correlated Han Chinese PCOS risk variants on chromosome 9q33.3, rs10986105[C], and rs10818854[A], were replicated in samples of European ancestry with odds ratio of 1.68 (P = 0.00033) and odds ratio of 1.53 (P = 0.0019), respectively. Other risk variants at 2p16.3 (rs13405728), 2p21 (rs12468394, rs12478601, and rs13429458), and 9q33.3 (rs2479106), or variants correlated with them, did not associate with PCOS. The same allele of rs10986105 that increased the risk of PCOS also increased the risk of hyperandrogenism in women without PCOS from Iceland and demonstrated a stronger risk for PCOS defined by the National Institutes of Health criteria than the Rotterdam criteria. We replicated one of the five Chinese PCOS association signals, represented by rs10986105 and rs10818854 on 9q33, in individuals of European ancestry. Examination of the subjects meeting at least one of the Rotterdam criteria for PCOS suggests that the variant may be involved in the hyperandrogenism and possibly the irregular menses of PCOS.
    No preview · Article · Apr 2012 · The Journal of Clinical Endocrinology and Metabolism
  • William F Crowley
    [Show abstract] [Hide abstract]
    ABSTRACT: During the past several years, one of the most interesting and challenging issues in endocrine genetics is determining how to integrate the findings and approaches traditionally used to understand the powerful, single-gene mutations causing endocrine syndromes with those newer techniques used to dissect the complex genetic architecture of polygenic conditions. With this overriding consideration in mind, it makes sense to begin these considerations with recent novel findings derived from the study of a particularly prismatic monogenic disorder, isolated GnRH deficiency, in defining an area of neuroendocrinology and development. Careful study of this human disease model has been employed successfully by several groups to provide unique windows through which to gain an improved understanding of the challenging issues of the developmental biology of the GnRH neurons where previous nonhuman approaches have had significant technical limitations. For example, study of this disorder has provided the field of neuroendocrinology with several unique insights into the surprising origins and early development of the GnRH neuronal network. Its associated clinical phenotypes have helped to unearth a growing list of genes responsible for GnRH neuronal specification, migration, and neuroendocrine function. Finally, this human genetic model is beginning to provide increasing evidence of interactions between these single genes, clearly demonstrating that an oligogenic genetic architecture underlies this condition.
    No preview · Article · Nov 2011 · Molecular Endocrinology
  • William F Crowley

    No preview · Article · Jun 2011 · Molecular and Cellular Endocrinology
  • Source
    S B Seminara · W F Crowley
    [Show abstract] [Hide abstract]
    ABSTRACT: In order to find novel modulators of gonadotrophin-releasing hormone (GnRH) secretion, genetic tools were employed in patients with idiopathic hypogonadotrophic hypogonadism (IHH). Mutations in a G-protein coupled receptor, GPR54, were identified, making this receptor a genetic determinant and indisputable gatekeeper of normal reproductive function. This article places these investigations into historical context and reviews some of the new findings relevant to this pathway. © 2008 The Author. Journal compilation
    Preview · Article · Jul 2008 · Journal of Neuroendocrinology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Rotterdam criteria for polycystic ovary syndrome (PCOS) defines discrete subgroups whose phenotypes are not yet clear. The phenotypic characteristics of women in the PCOS subgroups defined by the Rotterdam criteria were compared. The study was observational. Subjects were studied in an outpatient setting in Boston and Reykjavik. Four subgroups of subjects with PCOS defined by 1) irregular menses (IM), hyperandrogenism (HA), and polycystic ovary morphology (PCOM, n = 298); 2) IM/HA (n = 7); 3) HA/PCOM (n = 77); and 4) IM/PCOM (n = 36) and a group of controls (n = 64), aged 18-45 yr, were examined. Subjects underwent a physical exam; fasting blood samples for androgens, gonadotropins, and metabolic parameters; and a transvaginal ultrasound. The phenotype was compared between groups. Ninety-seven percent of women with IM/HA had PCOM. Therefore, the groups with and without PCOM were combined. The Ferriman-Gallwey score and androgen levels were highest in the hyperandrogenic groups (IM/HA and HA/PCOM), whereas ovarian volume was higher in all PCOS subgroups compared with controls, as expected based on the definitions of the PCOS subgroups. Body mass index and insulin levels were highest in the IM/HA subgroup. Subjects with PCOS defined by IM/HA are the most severely affected women on the basis of androgen levels, ovarian volumes, and insulin levels. Their higher body mass index partially accounts for the increased insulin levels, suggesting that weight gain exacerbates the symptoms of PCOS.
    Preview · Article · May 2007 · Journal of Clinical Endocrinology & Metabolism
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Idiopathic hypogonadotropic hypogonadism (IHH) due to defects of gonadotropin-releasing hormone (GnRH) secretion and/or action is a developmental disorder of sexual maturation. To date, several single-gene defects have been implicated in the pathogenesis of IHH. However, significant inter- and intrafamilial variability and apparent incomplete penetrance in familial cases of IHH are difficult to reconcile with the model of a single-gene defect. We therefore hypothesized that mutations at different IHH loci interact in some families to modify their phenotypes. To address this issue, we studied 2 families, one with Kallmann syndrome (IHH and anosmia) and another with normosmic IHH, in which a single-gene defect had been identified: a heterozygous FGF receptor 1 (FGFR1) mutation in pedigree 1 and a compound heterozygous gonadotropin-releasing hormone receptor (GNRHR) mutation in pedigree 2, both of which varied markedly in expressivity within and across families. Further candidate gene screening revealed a second heterozygous deletion in the nasal embryonic LHRH factor (NELF) gene in pedigree 1 and an additional heterozygous FGFR1 mutation in pedigree 2 that accounted for the considerable phenotypic variability. Therefore, 2 different gene defects can synergize to produce a more severe phenotype in IHH families than either alone. This genetic model could account for some phenotypic heterogeneity seen in GnRH deficiency.
    Full-text · Article · Mar 2007 · Journal of Clinical Investigation
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The phenotype of women with polycystic ovary syndrome (PCOS) is variable, depending on the ethnic background. The phenotypes of women with PCOS in Iceland and Boston were compared. The study was observational with a parallel design. Subjects were studied in an outpatient setting. Women, aged 18-45 yr, with PCOS defined by hyperandrogenism and fewer than nine menses per year, were examined in Iceland (n = 105) and Boston (n = 262). PCOS subjects underwent a physical exam, fasting blood samples for androgens, gonadotropins, metabolic parameters, and a transvaginal ultrasound. The phenotype of women with PCOS was compared between Caucasian women in Iceland and Boston and among Caucasian, African-American, Hispanic, and Asian women in Boston. Androstenedione (4.0 +/- 1.3 vs. 3.5 +/- 1.2 ng/ml; P < 0.01) was higher and testosterone (54.0 +/- 25.7 vs. 66.2 +/- 35.6 ng/dl; P < 0.01), LH (23.1 +/- 15.8 vs. 27.6 +/- 16.2 IU/liter; P < 0.05), and Ferriman Gallwey score were lower (7.1 +/- 6.0 vs. 15.4 +/- 8.5; P < 0.001) in Caucasian Icelandic compared with Boston women with PCOS. There were no differences in fasting blood glucose, insulin, or homeostasis model assessment in body mass index-matched Caucasian subjects from Iceland or Boston or in different ethnic groups in Boston. Polycystic ovary morphology was demonstrated in 93-100% of women with PCOS in all ethnic groups. The data demonstrate differences in the reproductive features of PCOS without differences in glucose and insulin in body mass index-matched populations. These studies also suggest that measuring androstenedione is important for the documentation of hyperandrogenism in Icelandic women. Finally, polycystic ovary morphology by ultrasound is an almost universal finding in women with PCOS as defined by hyperandrogenism and irregular menses.
    Preview · Article · Nov 2006 · Journal of Clinical Endocrinology & Metabolism
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As representatives of 50 leading academic medical centers focusing on clinical research and many of academic medicine's scientific leaders, the Clinical Research Forum and Association of American Physicians disagree with the JCI's recent editorials on the NIH Roadmap, Elias Zerhouni's leadership, and the future directions of biomedical research.
    Full-text · Article · Sep 2006 · Journal of Clinical Investigation
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Kisspeptins are products of the KiSS-1 gene, which bind to a G protein-coupled receptor known as GPR54. Mutations or targeted disruptions in the GPR54 gene cause hypogonadotropic hypogonadism in humans and mice, suggesting that kisspeptin signaling may be important for the regulation of gonadotropin secretion. To examine the effects of kisspeptin-54 (metastin) and kisspeptin-10 (the biologically active C-terminal decapeptide) on gonadotropin secretion in the mouse, we administered the kisspeptins directly into the lateral cerebral ventricle of the brain and demonstrated that both peptides stimulate LH secretion. Further characterization of kisspeptin-54 demonstrated that it stimulated both LH and FSH secretion, at doses as low as 1 fmol; moreover, this effect was shown to be blocked by pretreatment with acyline, a potent GnRH antagonist. To learn more about the functional anatomy of kisspeptins, we mapped the distribution of KiSS-1 mRNA in the hypothalamus. We observed that KiSS-1 mRNA is expressed in areas of the hypothalamus implicated in the neuroendocrine regulation of gonadotropin secretion, including the anteroventral periventricular nucleus, the periventricular nucleus, and the arcuate nucleus. We conclude that kisspeptin-GPR54 signaling may be part of the hypothalamic circuitry that governs the hypothalamic secretion of GnRH.
    Preview · Article · Oct 2004 · Endocrinology
  • Source
    Sarah M Leupen · Stuart A Tobet · W F Crowley · Kai Kaila
    [Show abstract] [Hide abstract]
    ABSTRACT: In mature central neurons, chloride extrusion mediated by the K-Cl cotransporter KCC2 appears to be largely responsible for the Cl(-) driving force that allows gamma-aminobutyric acid(A) (GABA(A)) receptor activation to trigger a hyperpolarization. In its absence, GABA's effect is typically depolarizing and often excitatory. We examined the colocalization of KCC2 and GnRH in adult male and female mice using a combined in situ hybridization-immunofluorescence procedure. We found that KCC2 was localized to approximately 34% of GnRH neurons. This proportion was similar in females and males. However, females exhibited a marked rostrocaudal gradient of colocalization that was not seen in males. By contrast, KCC2 was localized to nearly all vasopressin neurons of the supraoptic nucleus. These results indicate that a substantial fraction of GnRH neurons may be depolarized and excited by GABA(A) receptor activation throughout life, supporting the existence of functionally heterogeneous subpopulations.
    Full-text · Article · Aug 2003 · Endocrinology
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Measurement of estradiol (E(2)) plays a critical role in the diagnosis and clinical management of reproductive disorders. The challenge for all currently available direct methods for measuring E(2) is to provide accuracy and precision across a wide dynamic range. METHODS: We describe the development and multi-site performance evaluation of a direct E(2) assay on the Architect i2000. Assay performance and method comparisons were performed by testing specimens from men, healthy women with regular menstrual cycles, and post-menopausal women using the Architect assay and isotope dilution, gas chromatography-mass spectrometry (ID/GC-MS). Reference intervals were established by testing prospectively collected daily blood draws from 42 healthy women, 72 postmenopausal women and 101 males. RESULTS: No unexpected cross-reactivity or interference was observed for over 40 compounds tested. Recovery was 100+/-10% in the presence of estrone and estriol. Functional sensitivity (%CV<20%) was <15 pg/ml.(1) The imprecision of the assay was <7.1% (total CV), <2.5%, and <2.3% for control sera containing 45, 190, and 600 pg/ml estradiol, respectively. The assay had a correlation of y=1.033 x+0.3156, r(2)=0.99, n=131 compared to ID/GC-MS. Reference intervals for the current Architect Estradiol assay are reported. CONCLUSIONS: Format changes resulted in dramatic improvement in the performance and accuracy of this direct, fully automated assay. The assay is standardized by ID/GC-MS. The assay is clinically useful for serum concentrations from 15 to >4000 pg/ml
    No preview · Article · Jan 2002
  • S B Seminara · W F Crowley

    No preview · Article · Jul 2001 · Endocrinology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the GnRH receptor (GNRHR) have been described as a cause of reproductive failure in a subset of patients with idiopathic hypogonadotropic hypogonadism (IHH). Given the apparent rarity of these mutations, we set out to determine the frequency and distribution of GNRHR mutations in a heterogeneous population of patients with IHH who were well characterized with respect to diagnosis, phenotype, and mode of inheritance and to define their distribution within the receptor protein. One hundred and eight probands with IHH were screened for mutations in the coding sequence of GNRHR. Forty-eight of the 108 patients had a normal sense of smell, whereas the remaining 60 had anosmia or hyposmia (Kallmann syndrome). Exon segments in the GNRHR were screened for mutations using temperature gradient gel electrophoresis, and all mutations were confirmed by direct sequencing. Five unrelated probands (3 men and 2 women), all normosmic, were documented to have changes in the coding sequence of the GNRHR. Two of these probands were from a subgroup of 5 kindreds consistent with a recessive mode of inheritance, establishing a GNRHR mutation frequency of 2 of 5 (40%) in patients with normosmic, autosomal recessive IHH. The remaining 3 probands with GNRHR mutations were from a subgroup of 18 patients without evidence of familial involvement, indicating a prevalence of 3 of 18 (16.7%) in patients with sporadic IHH and a normal sense of smell. Among the five individuals bearing GNRHR mutations, a broad spectrum of phenotypes was noted, including testicular sizes in the male that varied from prepubertal to the normal adult male range. Three probands had compound heterozygous mutations, and two had homozygous mutations. Of the eight DNA sequence changes identified, four were novel: Thr(32)Ile, Cys(200)Tyr, Leu(266)Arg, and Cys(279)TYR: COS-7 cells transiently transfected with complementary DNAs encoding the human GNRHR containing each of these four novel mutations failed to respond to GnRH agonist stimulation. We conclude that 1) the spectrum of phenotypes in patients with GNRHR mutations is much broader than originally anticipated; 2) the frequency of GNRHR mutations may be more common than previously appreciated in familial cases of normosmic IHH and infrequent in sporadic cases; and 3) functional mutations of the GNRHR are distributed widely throughout the protein.
    Full-text · Article · May 2001 · Journal of Clinical Endocrinology & Metabolism
  • Source
    F J Hayes · S DeCruz · S B Seminara · P A Boepple · W F Crowley
    [Show abstract] [Hide abstract]
    ABSTRACT: Studies of sex steroid regulation of gonadotropin secretion in the human male have focused primarily on the respective site(s) of negative feedback of testosterone (T) and estradiol (E(2)). The use of pharmacological doses of sex steroids in these studies has precluded conclusions about the relative roles of T and E(2) in gonadotropin feedback. Thus, the aims of the present study were to 1) determine the relative contributions of T vs. E(2) to the sex steroid component of gonadotropin regulation, and 2) distinguish the feedback effects of T that that are direct (i.e. mediated by the androgen receptor) vs. indirect (mediated by aromatization to E(2)). Two experimental interventions were used: 1) inhibition of aromatization by a selective aromatase inhibitor to examine the impact of selective E(2) withdrawal; and 2) acute medical castration to examine the effect of ablating both T and E(2). Sixteen normal (NL) men (mean age, 30.5 +/- 2.2 yr) were studied. Nine NL subjects were treated with the aromatase inhibitor, anastrozole (10 mg, orally, daily, for 5 days). Twelve NL men underwent medical castration with ketoconazole (1-g loading dose followed by 400 mg, orally, four times a day for 5 days). Ketoconazole-treated subjects received concomitant treatment with dexamethasone (0.5 mg twice daily) to prevent the development of adrenal insufficiency. Single blood samples were drawn daily between 0800-1000 h. To ensure that dexamethasone was not altering the gonadotropin response to sex steroid ablation by a direct pituitary effect, five GnRH-deficient men (mean age, 37.6 +/- 3.9 yr) underwent GnRH dose-response studies at baseline and after treatment with dexamethasone (0.5 mg twice daily). Aromatase blockade caused significant lowering of E(2) (33 +/- 3 to 14 +/- 1 pg/mL; P: < 0.0005) with a corresponding increase in T levels (563 +/- 42 to 817 +/- 81 ng/dL; P: < 0.05). Treatment with ketoconazole resulted in equivalent suppression of E(2) (41 +/- 4 to 14 +/- 1 pg/mL; P: < 0.0005), but also induced castrate levels of T (491 +/- 28 to 40 +/- 3 ng/dL; P: < 0.0005). Both treatment regimens were associated with a significant increase in gonadotropin levels. For LH, the percent increase in serum levels after castration was almost 3-fold greater than that seen after selective E(2) withdrawal (275 +/- 23% with ketoconazole vs. 95.6 +/- 21% with anastrozole; P: < 0.005). Despite the divergent changes in T levels with these two maneuvers (a marked decrease after ketoconazole and a significant increase with anastrozole), the percent rise in FSH levels was similar in the two protocols (91 +/- 6% vs. 71 +/- 7%, respectively; P: = NS). Inhibin B levels were unchanged after selective E(2) withdrawal (156 +/- 23 vs. 176 +/- 19 pg/mL), but decreased slightly with ketoconazole (156 +/- 15 to 131 +/- 11 pg/mL; P: < 0.05). In contrast to the effects of glucocorticoid administration on gonadotropin secretion in women, no significant changes were observed in the GnRH-deficient men treated with dexamethasone in terms of mean LH levels (19.8 +/- 3.2 vs. 23.3 +/- 5.4 IU/L), mean LH pulse amplitude after GnRH (16.0 +/- 2.5 vs. 19.0 +/- 5.1 IU/L), or mean FSH levels (8.0 +/- 1.9 vs. 9.2 +/- 2.4 IU/L, pre vs. post). These studies provide evidence of differential regulation of gonadotropin secretion by T in the human male. T exerts both direct and indirect feedback on LH secretion, whereas its effects on FSH appear to be mediated largely by aromatization to E(2). From these data we conclude that in terms of sex steroid feedback, E(2) is the predominant regulator of FSH secretion in the human male.
    Full-text · Article · Feb 2001 · Journal of Clinical Endocrinology & Metabolism
  • [Show abstract] [Hide abstract]
    ABSTRACT: Determining the physiologic influences that modulate GnRH secretion, the prime initiator of reproductive function in the human, is fundamental not only to our understanding of the rare condition of congenital idiopathic hypogonadotropic hypogonadism (IHH), but also common disorders such as constitutional delay of puberty and hypothalamic amenorrhea. IHH is characterized by low levels of sex steroids and gonadotropins, normal findings on radiographic imaging of the hypothalamic-pituitary regions, and normal baseline and reserve testing of the remainder of the hypothalamic-pituitary axes. Failure of the normal pattern of episodic GnRH secretion results in delay of puberty and infertility. IHH is characterized by rich clinical and genetic heterogeneity, variable modes of inheritance, and association with other anomalies. To date, 4 genes have been identified as causes of IHH in the human; KAL [the gene for X-linked Kallmann syndrome (IHH and anosmia)], DAX1 [the gene for X-linked adrenal hypoplasia congenita (IHH and adrenal insufficiency)], GNRHR (the GnRH receptor), and PC1 (the gene for prohormone convertase 1, causing a syndrome of IHH and defects in prohormone processing). As these mutations account for less than 20% of all IHH cases, discovery of additional gene mutations will continue to advance our understanding of this intriguing syndrome.
    No preview · Article · Nov 2000 · Journal of endocrinological investigation
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: GnRH receptor mutations have recently been identified in a small number of familial cases of nonanosmic hypogonadotropic hypogonadism. In the present report we studied a kindred in which two sisters with primary amenorrhea were affected with GnRH deficiency due to a compound heterozygote mutation (Gln(106)Arg, Arg(262)Gln) and performed extensive phenotyping studies. Baseline patterns of gonadotropin secretion and gonadotropin responsiveness to exogenous pulsatile GnRH were examined in the proband. Low amplitude pulses of both LH and free alpha-subunit (FAS) were detected during 24 h of every 10 min blood sampling. The proband then received exogenous pulsatile GnRH i.v. for ovulation induction, and daily blood samples for gonadotropins and sex steroids were monitored. At the conventional GnRH replacement dose for women with hypogonadotropic hypogonadism (75 ng/kg), no follicular development occurred. At a GnRH dose of 100 ng/kg, the level and pattern of gonadotropin secretion more closely mimicked the follicular phase of normal women; a single dominant follicle was recruited, and an endogenous LH surge was elicited. However, the luteal phase was inadequate, as assessed by progesterone levels. At a GnRH dose of 250 ng/kg, the gonadotropin and sex steroid dynamics reproduced those of normal ovulatory women in both the follicular and luteal phases, and the proband conceived. The FAS responses to both conventional and high dose GnRH were within the normal range. The following conclusions were made: 1) Increased doses of GnRH may be used effectively for ovulation induction in some patients with GnRH receptor mutations. 2) Higher doses of GnRH are required for normal luteal phase dynamics than for normal follicular phase function. 3) Hypersecretion of FAS in response to exogenous GnRH, which is a feature of congenital hypogonadotropic hypogonadism, was not seen in this patient with a GnRH receptor mutation.
    Full-text · Article · Mar 2000 · Journal of Clinical Endocrinology & Metabolism
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although delayed puberty is relatively common and often familial, its molecular and pathophysiologic basis is poorly understood. In contrast, the molecular mechanisms underlying some forms of hypogonadotropic hypogonadism (HH) are clearer, following the description of mutations in the genes KAL, GNRHR, and PROP1. Mutations in another gene, DAX1 (AHC), cause X-linked adrenal hypoplasia congenita and HH. Affected boys usually present with primary adrenal failure in infancy or childhood and HH at the expected time of puberty. DAX1 mutations have also been reported to occur with a wider spectrum of clinical presentations. These cases include female carriers of DAX1 mutations with marked pubertal delay and a male with incomplete HH and mild adrenal insufficiency in adulthood. Given this emerging phenotypic spectrum of clinical presentation in men and women with DAX1 mutations, we hypothesized that DAX1 might be a candidate gene for mutation in patients with idiopathic sporadic or familial HH or constitutional delay of puberty. Direct sequencing of DAX1 was performed in 106 patients, including 85 (80 men and 5 women) with sporadic HH or constitutional delay of puberty and patients from 21 kindreds with familial forms of these disorders. No DAX1 mutations were found in these groups of patients, although silent single nucleotide polymorphisms were identified (T114C, G498A). This study suggests that mutations in DAX1 are unlikely to be a common cause of HH or pubertal delay in the absence of a concomitant history of adrenal insufficiency.
    No preview · Article · Jan 2000 · Journal of Clinical Endocrinology & Metabolism
  • Source

    Full-text · Article · Dec 1999 · Human Reproduction

Publication Stats

4k Citations
499.35 Total Impact Points

Institutions

  • 1984-2015
    • Massachusetts General Hospital
      • • Reproductive Endocrine Unit
      • • Department of Medicine
      Boston, Massachusetts, United States
  • 1997-2011
    • Harvard University
      Cambridge, Massachusetts, United States
  • 1993-2004
    • Harvard Medical School
      • Department of Medicine
      Boston, Massachusetts, United States
  • 2000
    • University of Chicago
      Chicago, Illinois, United States