Hsu-Feng Lu

Fu Jen Catholic University, T’ai-pei, Taipei, Taiwan

Are you Hsu-Feng Lu?

Claim your profile

Publications (86)153.92 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Sulforaphane (SFN), one of the isothiocyanates, is a biologically active compound extracted from cruciferous vegetables, and has been shown to induce cytotoxic effects on many human cancer cells including human leukemia cells. However, the exact molecular mechanism and altered gene expression associated with apoptosis is unclear. In this study, we investigated SFN-induced cytotoxic effects and whether or not they went through cell-cycle arrest and induction of apoptosis and further examined molecular mechanism and altered gene expression in human leukemia HL-60 cells. Cell viability, cell-cycle distribution, sub-G1 (apoptosis), reactive oxygen species (ROS) and Ca(2+) production, levels of mitochondrial membrane potential (ΔΨm ), and caspase-3, -8, and -9 activities were assayed by flow cytometry. Apoptosis-associated proteins levels and gene expressions were examined by Western blotting and cDNA microarray assays, respectively. Results indicated that SFN decreased viable cells, induced G2/M phase arrest and apoptosis based on sub-G1 phase development. Furthermore, SFN increased ROS and Ca(2+) production and decreased the levels of ΔΨm and activated caspase-3, -8, and -9 activities in HL-60 cells. SFN significantly upregulated the expression of BAX, Bid, Fas, Fas-L, caspase-8, Endo G, AIF, and cytochrome c, and inhibited the antiapoptotic proteins such as Bcl-x and XIAP, that is associated with apoptosis. We also used cDNA microarray to confirm several gene expressions such as caspase -8, -3, -4, -6, and -7 that are affected by SFN. Those results indicated that SFN induced apoptosis in HL-60 cells via Fas- and mitochondria-dependent pathways. © 2016 Wiley Periodicals, Inc. Environ Toxicol, 2016.
    No preview · Article · Feb 2016 · Environmental Toxicology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Obesity is closely associated with metabolic syndrome, type 2 diabetes mellitus (T2DM) and cardiovascular diseases. Our previous reports uncover the significant associations between interleukin-4 (IL-4)/IL-4 receptor genotypes and T2DM, as well as IL-4 genotypes and high density lipoprotein-cholesterol. Theses observations suggest that IL-4 harbors the capacity to regulate lipid metabolism. The present study is aimed at further elucidating regulatory roles of IL-4 to lipid metabolism by identifying putative proteins in 3T3-L1 adipocytes which are differentially expressed under IL-4 treatment. Proteins in mature 3T3-L1 adipocytes with altered expression levels under IL-4 treatment were identified by proteomic strategy. Our results revealed that IL-4 up-regulated levels of ATP synthase δ chain, Cytochrome c reductase, Pyrophsphatase and Vimentin, whereas, Alpha-enolase, Gelsolin, Vinculin and Valosin were down-regulated. These observations suggest that IL-4 promotes energy metabolism and inhibit lipid deposits in adipocytes by up-regulating proteins accelerating ATP synthesis. Our results suggest that IL-4 facilitates adipocytes metabolism to catabolism with a favorable condition for lipolysis. These catabolized lipids in adipocytes triggered by IL-4 might either be released into periphery or metabolized intracellularlly, and modulate systemic energy metabolism.
    Preview · Article · Dec 2015 · SpringerPlus
  • [Show abstract] [Hide abstract]
    ABSTRACT: Solanum lyratum (SLEC) Thunberg (Solanaceae) has been used as a traditional herbal medicine in China for centuries. Numerous studies have shown that SLEC Thunberg (Solanaceae) extract inhibited cancer cell growth in vitro. Herein, we investigated cell death-induced by EcoAc, water, chloroform, butanol extract of SLEC in human oral cancer cell lines (HSC-3, SAS, and CAL-27) in vitro. Different SLEC extract induced cytotoxic effects in human oral cancer cells were examined by contrast phase microscopy. We selected the chloroform extract of SLEC to examine the cytotoxic effects by using DAPI staining, comet assays, flow cytometric assay, Western blotting and examination of confocal laser microscopy. SLEC decreased the percentage of viable cells, induced G0/G1 arrest and apoptosis. These effects were concentration- and time-dependent manners. SLEC increased protein levels of p21, p16, CDK2, and cyclin D1 in HSC-3, SAS, and CAL-27 cells. Also, SLEC increased CDK6 in HSC-3 and CAL-27 cells, but inhibited CDK6 in SAS cells. Cyclin E in HSC-3 and SAS cells was increased by SLEC, but it was inhibited in CAL-27 cells. SLEC suppressed the anti-apoptotic proteins Bcl-2 and Bcl-xl, but increased the pro-apoptotic proteins Bax and Bad in HSC-3, SAS, and CAL-27 cells. SLEC promoted the production of reactive oxygen species (ROS) and Ca (2+), decreased the mitochondrial membrane potential (ΔΨm) and stimulated NO production in HSC-3, SAS, and CAL-27 cells. Specific caspase inhibitors (caspase-8 inhibitor: Z-IETD-FMK; caspase-9 inhibitor: Z-LEHD-FMK and caspase-3 inhibitor: Z-DEVD-FMK) for caspase-8, -9, and -3 blocked SLE-activated caspase-8, -9, and -3 activities which were associated with an increase in the percentage of viable cells. Taken together, SLE induced G0/G1 arrest and apoptosis via extrinsic- and intrinsic-dependent pathways in HSC-3, SAS, and CAL-27 cells.
    No preview · Article · Oct 2015 · The American Journal of Chinese Medicine
  • Source

    Full-text · Dataset · Aug 2015
  • Source

    Full-text · Dataset · Aug 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although reports have shown that α-phellandrene (α-PA) is one of the monoterpenes and is often used in the food and perfume industry, our previous studies have indicated that α-PA promoted immune responses in normal mice in vivo. However, there is no available information to show that α-PA induced cell apoptosis in cancer cells, thus, we investigated the effects of α-PA on the cell morphology, viability, cell cycle distribution, and apoptosis in mice leukemia WEHI-3 cells in vitro. Results indicated that α-PA induced cell morphological changes and decreased viability, induced G0/G1 arrest and sub-G1 phase (apoptosis) in WEHI-3 cells. α-PA increased the productions of reactive oxygen species (ROS) and Ca(2+) and decreased the levels of mitochondrial membrane potential (ΔΨm ) in dose- and time-dependent manners in WEHI-3 cells that were analyzed by flow cytometer. Results from confocal laser microscopic system examinations show that α-PA promoted the release of cytochrome c, AIF, and Endo G from mitochondria in WEHI-3 cells. These results are the first findings to provide new information for understanding the mechanisms by which α-PA induces cell cycle arrest and apoptosis in WEHI-3 cells in vitro. © 2015 Wiley Periodicals, Inc. Environ Toxicol, 2015. © 2015 Wiley Periodicals, Inc.
    No preview · Article · Jul 2015 · Environmental Toxicology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cantharidin (CTD) induces cytotoxic effects in different types of human cancer cell; however, to date, there have been no studies on the effects of CTD on gene expression in human lung cancer cells and the potential associated signaling pathways. Therefore, the present study aimed to investigate how CTD affects the expression of key genes and functional pathways of human H460 lung cancer cells using complementary DNA microarray analysis. Human H460 lung cancer cells were cultured for 24 h in the presence or absence of 10 µM CTD; gene expression was then examined using microarray analysis. The results indicated that 8 genes were upregulated > 4‑fold, 29 genes were upregulated >3‑4‑fold and 156 genes were upregulated >2‑3‑fold. In addition, 1 gene was downregulated >4 fold, 14 genes were downregulated >3‑4‑fold and 150 genes were downregulated >2‑3 fold in H460 cells following exposure to CTD. It was found that CTD affected DNA damage genes, including DNIT3 and GADD45A, which were upregulated 2.26‑ and 2.60‑fold, respectively, as well as DdiT4, which was downregulated 3.14‑fold. In addition, the expression of genes associated with the cell cycle progression were altered, including CCND2, CDKL3 and RASA4, which were upregulated 2.72‑, 2.19‑ and 2.72‑fold, respectively; however, CDC42EP3 was downregulated 2.16‑fold. Furthermore, apoptosis‑associated genes were differentially expressed, including CARD6, which was upregulated 3.54‑fold. In conclusion, the present study demonstrated that CTD affected the expression of genes associated with DNA damage, cell cycle progression and apoptotic cell death in human lung cancer H460 cells.
    Preview · Article · Mar 2015 · Molecular Medicine Reports
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to investigate whether Hirsutella sinensis mycelium (HSM) has any antifatigue effect, using a forced swimming model in rats. Forty rats were randomly divided into five groups, each containing eight animals. The control group received 2 ml/kg body weight of distilled water and a positive control group was administered 1.13 ml/kg Quaker Essence of Chicken. The treated swimming groups were administered HSM powder manufactured by Chang Gung Biotechnology Corporation, Ltd., at doses of 63 mg/kg, 189 mg/kg or 378 mg/kg body weight/day, respectively for a period of six weeks. The above experiment was repeated with another 40 rats but for a period of eight weeks. At the end of the experiments, rats were placed in a swimming apparatus and the total swimming time until exhaustion was recorded. Pre-/post-exercise concentrations of serum urea nitrogen (BUN) and lactic acid were also determined. There were no deaths during the study. Physical and behavioral examinations did not reveal any treatment-related adverse effects after dosing. Changes in lactate levels were dose-dependent for the 8- but not the 6-week treatment. BUN levels were more affected by the 8-week treatment of HSM but not significantly altered in the 6-week treatment groups. The 8-week treatment groups showed a significant increase in swimming time to exhaustion compared to the control groups, which was not dose-dependent. For the 6-week treatment, only the middle and high doses increased swimming time to exhaustion. Conjugated diene contents were significantly higher in rats treated at any HSM dose for 8-weeks than the control groups. Swimming did not alter levels of liver glycogen when compared to the control sub-groups. Results of this study demonstrate that HSM improves physical endurance, which may be beneficial in treating conditions where fatigue is a factor and other antifatigue treatments are contraindicated.
    No preview · Article · Mar 2015 · In vivo (Athens, Greece)
  • [Show abstract] [Hide abstract]
    ABSTRACT: Numerous evidences have shown that plant flavonoids (naturally occurring substances) have been reported to have chemopreventive activities and protect against experimental carcinogenesis. Kaempferol, one of the flavonoids, is widely distributed in fruits and vegetables, and may have cancer chemopreventive properties. However, the precise underlying mechanism regarding induced DNA damage and suppressed DNA repair system are poorly understood. In this study, we investigated whether kaempferol induced DNA damage and affected DNA repair associated protein expression in human leukemia HL-60 cells in vitro. Percentages of viable cells were measured via a flow cytometry assay. DNA damage was examined by Comet assay and DAPI staining. DNA fragmentation (ladder) was examined by DNA gel electrophoresis. The changes of protein levels associated with DNA repair were examined by Western blotting. Results showed that kaempferol dose-dependently decreased the viable cells. Comet assay indicated that kaempferol induced DNA damage (Comet tail) in a dose-dependent manner and DAPI staining also showed increased doses of kaempferol which led to increased DNA condensation, these effects are all of dose-dependent manners. Western blotting indicated that kaempferol-decreased protein expression associated with DNA repair system, such as phosphate-ataxia-telangiectasia mutated (p-ATM), phosphate-ataxia-telangiectasia and Rad3-related (p-ATR), 14-3-3 proteins sigma (14-3-3σ), DNA-dependent serine/threonine protein kinase (DNA-PK), O(6)-methylguanine-DNA methyltransferase (MGMT), p53 and MDC1 protein expressions, but increased the protein expression of p-p53 and p-H2AX. Protein translocation was examined by confocal laser microscopy, and we found that kaempferol increased the levels of p-H2AX and p-p53 in HL-60 cells. Taken together, in the present study, we found that kaempferol induced DNA damage and suppressed DNA repair and inhibited DNA repair associated protein expression in HL-60 cells, which may be the factors for kaempferol induced cell death in vitro.
    No preview · Article · Mar 2015 · The American Journal of Chinese Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chitosan and Agaricus blazei Murill (ABM) extracts possess antitumor activities. The aim of the present study was to investigate whether chitosan, ABM extract or the two in combination were effective against tumors in tumor‑bearing mice. The mice were subcutaneously injected with SK‑Hep 1 cells and were then were divided into the following six groups: Group 1, control group; group 2, chitosan 5 mg/kg/day; group 3, chitosan 20 mg/kg/day; group 4, ABM (246 mg/kg/day) and chitosan (5 mg/kg/day) combined; group 5, ABM (984 mg/kg/day) and chitosan (20 mg/kg/day) combined; and group 6, ABM (984 mg/kg/day). The mice were treated with the different concentrations of chitosan, ABM or combinations of the two for 6 weeks. The levels of glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT) and vascular endothelial growth factor (VEGF), and tissue histopathological features were examined in the surviving animals. Based on the results of the investigation, the treatments performed in groups 2, 3 and 4 were identified as being capable of reducing the weights of the tumors, however, group 4, which was treated with chitosan (5 mg/kg/day) in combination with ABM (246 mg/kg/day) was able to reduce the levels of GOT and VEGF. As a result, treatment with chitosan in combination with ABM may offer potential in cancer therapy and requires further investigation.
    Full-text · Article · Mar 2015 · Molecular Medicine Reports
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metastasis plays an important role in mortality of cancer patients. Migration and invasion are the major characteristics of tumor metastasis. The induction of matrix metalloproteinases (MMPs) such as MMP-2 and -9 are particularly important for the invasiveness of various cancer cells. Bufalin, a class of toxic steroids, was purified from the skin glands of Bufo gargarizans or Bufo melanostictus; it is known to inhibit proliferation of human cancer cells. In this study, we investigated the antiinvasive mechanisms of bufalin in the human hepatocellular cancer cell line SK-Hep1. Bufalin significantly reduced serum-induced cell invasion and migration. Furthermore, bufalin markedly inhibited MMP-2 and -9 activity, mRNA expression and protein levels in SK-Hep1 cells. Bufalin attenuated phosphoinisitide-3-kinase (PI3K) and phosphorylation of AKT which was associated with reduced levels of nuclear factor kappa B (NF-κB). Bufalin also suppressed protein levels of FAK and Rho A, VEGF, MEKK3, MKK7, and uPA and it diminished NF-κB translocation. Based on these observations, we propose that bufalin is acts as an antiinvasive agent by inhibiting MMP-2 and -9 and involving PI3K/AKT and NF-κB pathways. Bufalin is a potential therapeutic agent that may have efficacy in preventing the invasion and metastasis of malignant liver tumors. © 2013 Wiley Periodicals, Inc. Environ Toxicol, 2013.
    Full-text · Article · Jan 2015 · Environmental Toxicology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Osteosarcoma is the most common malignant primary bone tumor in children and young adults and lung metastasis is the main cause of death in those patients. Deguelin, a naturally occurring rotenoid, is known to be an Akt inhibitor and to exhibit cytotoxic effects, including antiproliferative and anticarcinogenic activities, in several cancers. In the present study, we determined if deguelin would inhibit migration and invasion in U-2 OS human osteosarcoma cells. Deguelin significantly inhibited migration and invasion of U-2 OS human osteosarcoma cells which was associated with a reduction of activities of matrix metalloproteinases-2 (MMP-2) and matrix metalloproteinases-9 (MMP-9). Furthermore, results from western blotting indicated that deguelin decreased the cell proliferation and cell growth-associated protein levels, such as SOS1, PKC, Ras, PI3K, p-AKT(Ser473), IRE-1α, MEKK3, iNOS, COX2, p-ERK1/2, p-JNK1/2, p-p38; the cell motility and focal adhesion-associated protein levels, such as Rho A, FAK, ROCK-1; the invasion-associated protein levels, such as TIMP1, uPA, MMP-2. MMP-9, MMP-13, MMP-1 and VEGF in U-2 OS cells. Confocal microscopy revealed that deguelin reduced NF-κB p65, Rho A and ROCK-1 protein levels in cytosol. MMP-7, MMP-9 and Rho A mRNA levels were suppressed by deguelin. These in vitro results provide evidence that deguelin may have potential as a novel anti-cancer agent for the treatment of osteosarcoma and provides the rationale for in vivo studies in animal models.
    Full-text · Article · Oct 2014 · Molecules
  • [Show abstract] [Hide abstract]
    ABSTRACT: There is evidence that Hirsutella sinensis may have antitumor activity. The aim of the present study was to determine the anti-hepatoma effects and food safety assessment of Hirsutella sinensis mycelium in vivo and in vitro. Effects on mutagenicity were determined using a bacterial reverse mutation assay employing the Salmonella typhimurium strains TA98, TA100, TA102, TA1535 and TA1537. There were no dose-dependent increases or decreases in the number of colonies both with and without metabolic S9 activation in Ames tests. Mice were inoculated with SK-Hep 1 cells and those developing tumors were treated with three different concentrations of Hirsutella sinensis mycelium. After six weeks, blood samples were collected and liver pathology was determined. Aspartate aminotransferase levels were significantly different only in the low-dose treatment group (106±27 IU/l, p=0.048), compared to the control group (162±80 IU/l). The tumor weight was significantly different only in the low-dose treatment group. We found that necrosis, hemorrhage and calcifications were presented in both control and experimental groups. Inhibition of tumor growth was observed only at the lowest dose.
    No preview · Article · Sep 2014 · In vivo (Athens, Greece)
  • [Show abstract] [Hide abstract]
    ABSTRACT: A number of experiments have demonstrated that benzyl-isothiocyanate (BITC) induces cytotoxic cell death through the induction of apoptosis in various human cancer cell lines. In the present study, we investigated the effects of BITC on the growth of A375.S2 cell xenograft tumors in nude BALB/c mice in vivo. The A375.S2 cancer cells were inoculated subcutaneously into the lower flanks of each nude mouse. After cancer cell inoculation, all animals were maintained in the animal room for seven days and all mice produced one palpable tumor. Animals were randomly divided into two groups, each mouse was individually given intraperitoneal injections of BITC (20 mg/kg) or not (control). Results from the in vivo experiments indicated that BITC did not significantly affect the body weight of nude BALB/c mice bearing xenograft A375.S2 cell tumors but did significantly decrease the tumor weight.
    No preview · Article · Sep 2014 · In vivo (Athens, Greece)
  • [Show abstract] [Hide abstract]
    ABSTRACT: α-phellandrene (α-PA), a cyclic monoterpene, is a natural compound reported to promote immune responses in normal BALB/c mice. The effects of α-PA on immune responses in a leukemia mouse model were examined. Mice were injected with mouse leukemia WEHI-3 cells and subsequently treated orally with or without α-PA (0, 25 and 50 mg/kg) and olive oil as positive control for two weeks. Leukocytes and splenocytes were isolated and cell markers for CD3, CD19, CD11b and Mac-3, phagocytosis and natural killer cell cytoxicity effects were analyzed by flow cytometry. α-PA increased the percentage of CD3 (T-cell marker), CD19 (B-cell marker) and MAC3 (macrophages) markers but reduced the percentage of CD11b (monocytes) cell surface markers. α-PA (25 and 50 mg/kg) increased phagocytosis of macrophages from blood samples and treatment promoted natural killer cell activity at 25 mg/kg from splenocytes. α-PA at 25 mg/kg also increased B- and T-cell proliferation.
    No preview · Article · Jul 2014 · In vivo (Athens, Greece)
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lung cancer is one of the leading causes of death in cancer-related diseases. Cantharidin (CTD) is one of the components of natural mylabris (Mylabris phalerata Pallas). Numerous studies have shown that CTD induced cytotoxic effects on cancer cells. However, there is no report to demonstrate that CTD induced apoptosis in human lung cancer cells. Herein, we investigated the effect of CTD on the cell death via the induction of apoptosis in H460 human lung cancer cells. Flow cytometry assay was used for examining the percentage of cell viability, sub-G1 phase of the cell cycle, reactive oxygen species (ROS) and Ca2+ productions and the levels of mitochondrial membrane potential (∆Ψm). Annexin V/PI staining and DNA gel electrophoresis were also used for examining cell apoptosis. Western blot analysis was used to examine the changes of apoptosis associated protein expression and confocal microscopy for examining the translocation apoptosis associated protein. Results indicated that CTD significantly induced cell morphological changes and decreased the percentage of viable H460 cells. CTD induced apoptosis based on the occurrence of sub-G1 phase and DNA fragmentation. We found that CTD increased gene expression (mRNA) of caspase-3 and -8. Moreover, CTD increased ROS and Ca2+ production and decreased the levels of ∆Ψm. Western blot analysis results showed that CTD increased the expression of cleavage caspase-3 and -8, cytochrome c, Bax and AIF but inhibited the levels of Bcl-xL. CTD promoted ER stress associated protein expression such as GRP78, IRE1α, IRE1β, ATF6α and caspase-4 and it also promoted the expression of calpain 2 and XBP-1, but inhibited calpain 1 that is associated with apoptosis pathways. Based on those observations, we suggest that CTD may be used as a novel anticancer agent for the treatment of lung cancer in the future.
    Preview · Article · May 2014 · International Journal of Oncology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chrysophanol (1,8-dihydroxy-3-methylanthraquinone) is one of the anthraquinone compounds, and it has been shown to induce cell death in different types of cancer cells. The effects of chrysophanol on human lung cancer cell death have not been well studied. The purpose of this study is to examine chrysophanol-induced cytotoxic effects and also to investigate such influences that involved apoptosis or necrosis in A549 human lung cancer cells in vitro. Our results indicated that chrysophanol decreased the viable A549 cells in a dose- and time-dependent manner. Chrysophanol also promoted the release of reactive oxygen species (ROS) and Ca(2+) and decreased the levels of mitochondria membrane potential (ΔΨ(m) ) and adenosine triphosphate in A549 cells. Furthermore, chrysophanol triggered DNA damage by using Comet assay and DAPI staining. Importantly, chrysophanol only stimulated the cytocheome c release, but it did not activate other apoptosis-associated protein levels including caspase-3, caspase-8, Apaf-1, and AIF. In conclusion, human lung cancer A549 cells treated with chrysophanol exhibited a cellular pattern associated with necrotic cell death and not apoptosis in vitro. © 2012 Wiley Periodicals, Inc. Environ Toxicol 2012.
    No preview · Article · May 2014 · Environmental Toxicology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Prostate cancer has its highest incidence and is becoming a major concern. Many studies have shown that traditional Chinese medicine exhibited antitumor responses. Quercetin, a natural polyphenolic compound, has been shown to induce apoptosis in many human cancer cell lines. Although numerous evidences show multiple possible signaling pathways of quercetin in apoptosis, there is no report to address the role of endoplasmic reticulum (ER) stress in quercetin-induced apoptosis in PC-3 cells. The purpose of this study was to investigate the effects of quercetin on the induction of the apoptotic pathway in human prostate cancer PC-3 cells. Cells were treated with quercetin for 24 and 48 h and at various doses (50-200 μM), and cell morphology and viability decreased significantly in dose-dependent manners. Flow cytometric assay indicated that quercetin at 150 μM caused G0/G1 phase arrest (31.4-49.7%) and sub-G1 phase cells (19.77%) for 36 h treatment and this effect is a time-dependent manner. Western blotting analysis indicated that quercetin induces the G0/G1 phase arrest via decreasing the levels of CDK2, cyclins E, and D proteins. Quercetin also stimulated the protein expression of ATF, GRP78, and GADD153 which is a hall marker of ER stress. Furthermore, PC-3 cells after incubation with quercetin for 48 h showed an apoptotic cell death and DNA damage which are confirmed by DAPI and Comet assays, leading to decrease the antiapoptotic Bcl-2 protein and level of ΔΨ(m) , and increase the proapoptotic Bax protein and the activations of caspase-3, -8, and -9. Moreover, quercetin promoted the trafficking of AIF protein released from mitochondria to nuclei. These data suggest that quercetin may induce apoptosis by direct activation of caspase cascade through mitochondrial pathway and ER stress in PC-3 cells. © 2012 Wiley Periodicals, Inc. Environ Toxicol, 2012.
    No preview · Article · Apr 2014 · Environmental Toxicology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Irinotecan HCl (CPT-11) is an anticancer prodrug, but there is no available information addressing CPT-11-inhibited leukemia cells in in vitro and in vivo studies. Therefore, we investigated the cytotoxic effects of CPT-11 in promyelocytic leukemia HL-60 cells and in vivo and tumor growth in a leukemia xenograft model. Effects of CPT-11 on HL-60 cells were determined using flow cytometry, immunofluorescence staining, comet assay, real-time PCR, and Western blotting. CPT-11 demonstrated a dose- and time-dependent inhibition of cell growth, induction of apoptosis, and cell-cycle arrest at G0/G1 phase in HL-60 cells. CPT-11 promoted the release of AIF from mitochondria and its translocation to the nucleus. Bid, Bax, Apaf-1, caspase-9, AIF, Endo G, caspase-12, ATF-6b, Grp78, CDK2, Chk2, and cyclin D were all significantly upregulated and Bcl-2 was down-regulated by CPT-11 in HL-60 cells. Induction of cell-cycle arrest by CPT-11 was associated with changes in expression of key cell-cycle regulators such as CDK2, Chk2, and cyclin D in HL-60 cells. To test whether CPT-11 could augment antitumor activity in vivo, athymic BALB/c(nu/nu) nude mice were inoculated with HL-60 cells, followed by treatment with either CPT-11. The treatments significantly inhibited tumor growth and reduced tumor weight and volume in the HL-60 xenograft mice. The present study demonstrates the schedule-dependent antileukemia effect of CPT-11 using both in vitro and in vivo models. CPT-11 could potentially be a promising agent for the treatment of promyelocytic leukemia and requires further investigation. © 2014 Wiley Periodicals, Inc. Environ Toxicol, 2014.
    No preview · Article · Jan 2014 · Environmental Toxicology
  • Source
    Dataset: MNF

    Full-text · Dataset · Dec 2013

Publication Stats

2k Citations
153.92 Total Impact Points

Institutions

  • 2009-2015
    • Fu Jen Catholic University
      T’ai-pei, Taipei, Taiwan
    • Jen-Teh Junior College Of Medicine, Nursing And Management
      Miao-li-chieh, Taiwan, Taiwan
  • 2006-2015
    • Cheng Hsin General Hospital
      T’ai-pei, Taipei, Taiwan
  • 2007
    • China Medical University (ROC)
      臺中市, Taiwan, Taiwan

We use cookies to give you the best possible experience on ResearchGate. Read our cookies policy to learn more.