Junko Shibato

Hoshi University, Edo, Tokyo, Japan

Are you Junko Shibato?

Claim your profile

Publications (80)190.27 Total impact

  • Source

    Full-text · Dataset · Dec 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Scope: There is a growing necessity for efficacious natural supplements with antioxidant effects on brain, in particular hippocampal, function. One such compound, which also has a neuroprotective effect, is the carotenoid astaxanthin (ASX). Despite ASX's potential benefit to the brain, very little is known about its effect on hippocampal plasticity and cognition. Thus, we investigated the effect of ASX on adult hippocampal neurogenesis (AHN) and spatial memory using a mouse model. Methods and results: Dose-response was examined in mice fed ASX-supplemented diets (0%, 0.02%, 0.1%, and 0.5%) to define the effect of ASX on AHN. In conjunction with AHN results, hippocampus-dependent cognitive function was assessed. We delineated molecular mechanisms associated with ASX-enhanced AHN using DNA microarray analysis. Results revealed that ASX enhanced cell proliferation and survival at 0.1% and 0.5% doses. Newborn mature neurons were higher only with 0.5% ASX, which also enhanced spatial memory. Transcriptomic profiling revealed potential AHN-associated molecules (Prl, Itga4 and Il4) that were ASX induced. Their downstream factors, identified through Ingenuity Pathway Analysis, were positively correlated with ASX-induced increases in spatial memory. Conclusion: ASX supplementation enhanced AHN and spatial memory, and a DNA microarray approach provided, for the first time, novel molecular insights into ASX action. This article is protected by copyright. All rights reserved.
    No preview · Article · Dec 2015 · Molecular Nutrition & Food Research
  • Source
    Jang Soo Yook · Junko Shibato · Randeep Rakwal · Hideaki Soya
    [Show abstract] [Hide abstract]
    ABSTRACT: Naturally occurring astaxantin (ASX) is one of the noticeable carotenoid and dietary supplement, which has strong antioxidant and anti-inflammatory properties, and neuroprotective effects in the brain through crossing the blood–brain barrier. Specially, we are interested in the role of ASX as a brain food. Although ASX has been suggested to have potential benefit to the brain function, the underlying molecular mechanisms and events mediating such effect remain unknown. Here we examined molecular factors in the hippocampus of adult mouse fed ASX diets (0.1% and 0.5% doses) using DNA microarray (Agilent 4×44K whole mouse genome chip) analysis. In this study, we described in detail our experimental workflow and protocol, and validated quality controls with the housekeeping gene expression (Gapdh and Beta-actin) on the dye-swap based approach to advocate our microarray data, which have been uploaded to Gene Expression Omnibus (accession number GSE62197) as a gene resource for the scientific community. This data will also form an important basis for further detailed experiments and bioinformatics analysis with an aim to unravel the potential molecular pathways or mechanisms underlying the positive effects of ASX supplementation on the brain, in particular the hippocampus.
    Preview · Article · Nov 2015 · Genomics Data
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present study continues our previous research on investigating the biological effects of low-level gamma radiation in rice at the heavily contaminated Iitate village in Fukushima, by extending the experiments to unraveling the leaf proteome. 14-days-old plants of Japonica rice (Oryza sativa L. cv. Nipponbare) were subjected to gamma radiation level of upto 4 μSv/h, for 72 h. Following exposure, leaf samples were taken from the around 190 μSv/3 d exposed seedling and total proteins were extracted. The gamma irradiated leaf and control leaf (harvested at the start of the experiment) protein lysates were used in a 2-D differential gel electrophoresis (2D-DIGE) experiment using CyDye labeling in order to asses which spots were differentially represented, a novelty of the study. 2D-DIGE analysis revealed 91 spots with significantly different expression between samples (60 positive, 31 negative). MALDI-TOF and TOF/TOF mass spectrometry analyses revealed those as comprising of 59 different proteins (50 up-accumulated, 9 down-accumulated). The identified proteins were subdivided into 10 categories, according to their biological function, which indicated that the majority of the differentially expressed proteins consisted of the general (non-energy) metabolism and stress response categories. Proteome-wide data point to some effects of low-level gamma radiation exposure on the metabolism of rice leaves.
    No preview · Article · Oct 2015 · Plant signaling & behavior
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: N-Methyl-D-aspartate receptors (NMDAr) are involved in multiple physiological functions and neuropsychiatric disorders. Dizocilpine (commonly referred to as MK-801) is a well-known non-competitive NMDAr antagonist with psychotomimetic properties. A combination of electrophysiological and molecular analyses reveals not only the synchrony of baseline oscillations by MK-801, but also more importantly new insight into differential gene expressions in the cerebral cortex, midbrain, hippocampus, ventral striatum, amygdala, and hypothalamus regions after acute low-dose (0.08 mg/kg) MK-801 treatment; only the ventral striatum showed increased gene expression at a high dose (0.16 mg/kg) of MK-801. We believe that our present study will contribute in the understanding of the pathogenic mechanisms of neuropsychiatric disorders.
    Full-text · Article · Aug 2015
  • Source

    Preview · Article · Aug 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The use of lavender oil (LO) - a commonly, used oil in aromatherapy, with well-defined volatile components linalool and linalyl acetate - in non-traditional medicine is increasing globally. To understand and demonstrate the potential positive effects of LO on the body, we have established an animal model in this current study, investigating the orally administered LO effects genome wide in the rat small intestine, spleen, and liver. The rats were administered LO at 5 mg/kg (usual therapeutic dose in humans) followed by the screening of differentially expressed genes in the tissues, using a 4×44-K whole-genome rat chip (Agilent microarray platform; Agilent Technologies, Palo Alto, CA, USA) in conjunction with a dye-swap approach, a novelty of this study. Fourteen days after LO treatment and compared with a control group (sham), a total of 156 and 154 up (≧ 1.5-fold)- and down (≦ 0.75-fold)-regulated genes, 174 and 66 up- (≧ 1.5-fold)- and down (≦ 0.75-fold)-regulated genes, and 222 and 322 up- (≧ 1.5-fold)- and down (≦ 0.75-fold)-regulated genes showed differential expression at the mRNA level in the small intestine, spleen and liver, respectively. The reverse transcription-polymerase chain reaction (RT-PCR) validation of highly up- and down-regulated genes confirmed the regulation of the Papd4, Lrp1b, Alb, Cyr61, Cyp2c, and Cxcl1 genes by LO as examples in these tissues. Using bioinformatics, including Ingenuity Pathway Analysis (IPA), differentially expressed genes were functionally categorized by their Gene Ontology (GO) and biological function and network analysis, revealing their diverse functions and potential roles in LO-mediated effects in rat. Further IPA analysis in particular unraveled the presence of novel genes, such as Papd4, Or8k5, Gprc5b, Taar5, Trpc6, Pld2 and Onecut3 (up-regulated top molecules) and Tnf, Slc45a4, Slc25a23 and Samt4 (down-regulated top molecules), to be influenced by LO treatment in the small intestine, spleen and liver, respectively. These results are the first such inventory of genes that are affected by lavender essential oil (LO) in an animal model, forming the basis for further in-depth bioinformatics and functional analyses and investigation.
    Preview · Article · Jul 2015 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Our six-week treadmill running training (forced exercise) model has revealed that mild exercise (ME) with an intensity below the lactate threshold (LT) is sufficient to enhance spatial memory, while intense exercise (IE) above the LT negates such benefits. To help understand the unrevealed neuronal and signaling/molecular mechanisms of the intensity-dependent cognitive change, in this rat model, we here investigated plasma corticosterone concentration as a marker of stress, adult hippocampal neurogenesis (AHN) as a potential contributor to this ME-induced spatial memory, and comprehensively delineated the hippocampal transcriptomic profile using a whole-genome DNA microarray analysis approach through comparison with IE. Results showed that only IE had the higher corticosterone concentration than control, and that the less intense exercise (ME) is better suited to improve AHN, especially in regards to the survival and maturation of newborn neurons. DNA microarray analysis using a 4 x 44 K Agilent chip revealed that ME regulated more genes than did IE (ME: 604 genes, IE: 415 genes), and only 41 genes were modified with both exercise intensities. The identified molecular components did not comprise well-known factors related to exercise-induced AHN, such as brain-derived neurotrophic factor. Rather, network analysis of the data using Ingenuity Pathway Analysis algorithms revealed that the ME-influenced genes were principally related to lipid metabolism, protein synthesis and inflammatory response, which are recognized as associated with AHN. In contrast, IE-influenced genes linked to excessive inflammatory immune response, which is a negative regulator of hippocampal neuroadaptation, were identified. Collectively, these results in a treadmill running model demonstrate that long-term ME, but not of IE, with minimizing running stress, has beneficial effects on increasing AHN, and provides an ME-specific gene inventory
    Full-text · Article · Jun 2015 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Toward twin goals of identifying molecular factors in brain injured by ischemic stroke, and the effects of neuropeptide pituitary adenylate-cyclase activating polypeptide (PACAP) on the ischemic brain, we have established the permanent middle cerebral artery occlusion (PMCAO) mouse model and utilized the Agilent mouse whole genome 4 × 44 K DNA chip. PACAP38 (1 pmol) injection was given intracerebroventrically in comparison to a control saline (0.9% NaCl) injection, to screen genes responsive to PACAP38. Two sets of tissues were prepared, whole hemispheres (ischemic and non-ischemic) and infract core and penumbra regions at 6 and 24 h. In this study, we have detailed the experimental design and protocol used therein and explained the quality controls for the use of total RNA in the downstream DNA microarray experiment utilizing a two-color dye-swap approach for stringent and confident gene identification published in a series of papers by Hori and coworkers (Hori et al., 2012–2015).
    Full-text · Article · Mar 2015 · Genomics Data
  • Source

    Full-text · Article · Mar 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previously, studying the development, especially of corticospinal neurons, it was concluded that the main compensatory mechanism after unilateral brain injury in rat at the neonatal stage was due in part to non-lesioned ipsilateral corticospinal neurons that escaped selection by axonal elimination or neuronal apoptosis. However, previous results suggesting compensatory mechanism in neonate brain were not correlated with high functional recovery. Therefore, what is the difference among neonate and adult in the context of functional recovery and potential mechanism(s) therein? Here, we utilized a brain unilateral decortication mouse model and compared motor functional recovery mechanism post-neonatal brain hemisuction (NBH) with adult brain hemisuction (ABH). Three analyses were performed: (1) Quantitative behavioral analysis of forelimb movements using ladder walking test; (2) neuroanatomical retrograde tracing analysis of unlesioned side corticospinal neurons; and (3) differential global gene expressions profiling in unlesioned-side neocortex (rostral from bregma) in NBH and ABH on a 8 × 60 K mouse whole genome Agilent DNA chip. Behavioral data confirmed higher recovery ability in NBH over ABH is related to non-lesional frontal neocortex including rostral caudal forelimb area. A first inventory of differentially expressed genes genome-wide in the NBH and ABH mouse model is provided as a resource for the scientific community.
    Full-text · Article · Dec 2014 · International Journal of Molecular Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nelumbo nucifera (Gaertn.) or lotus, is an aquatic plant native to India, and presently consumed as food mainly in China and Japan. Lotus is also widely used in Indian and Chinese traditional medicine. Extracts from different parts of the lotus plant have been reported to show diverse biological activities – antioxidant, free radical scavenging, anti-inflammatory and immunomodulatory. Despite this, little work has been done in isolating and identifying proteins responsible for these activities, or yet importantly to establish a lotus proteome. The aim of our group is to develop a proteome catalogue of the lotus plant, starting with its seed, the nutrient rich food source. In this present study, the seed endosperm – most abundant and nutrient storage tissue – was targeted for protein extraction by testing five different extraction protocols, followed by their proteomic analyses using complementary 1DE and 2DE approaches in conjunction with tandem mass spectrometry. The inventory of 66 non-redundant proteins obtained by 1DE-MS and the 30 obtained by 2DE-MS provides the first catalogue of the lotus seed endosperm, where the most abundant protein functions were in categories of metabolic activities related to carbohydrate metabolism and nutrient storage.This article is protected by copyright. All rights reserved
    Full-text · Article · Dec 2014 · Proteomics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In two separate experiments, voluntary resistance wheel running with 30% of body weight (RWR), rather than wheel running (WR), led to greater enhancements, including adult hippocampal neurogenesis and cognitive functions, in conjunction with hippocampal brain-derived neurotrophic factor (BDNF) signaling (Lee et al., J Appl Physiol, 2012; Neurosci Lett., 2013). Here we aimed to unravel novel molecular factors and gain insight into underlying molecular mechanisms for RWR-enhanced hippocampal functions; a high-throughput whole-genome DNA microarray approach was applied to rats performing voluntary running for 4 weeks. RWR rats showed a significant decrease in average running distances although average work levels increased immensely, by about 11-fold compared to WR, resulting in muscular adaptation for the fast-twitch plantaris muscle. Global transcriptome profiling analysis identified 128 (sedentary × WR) and 169 (sedentary × RWR) up-regulated (>1.5-fold change), and 97 (sedentary × WR) and 468 (sedentary × RWR) down-regulated (<0.75-fold change) genes. Functional categorization using both pathway- or specific-disease-state-focused gene classifications and Ingenuity Pathway Analysis (IPA) revealed expression pattern changes in the major categories of disease and disorders, molecular functions, and physiological system development and function. Genes specifically regulated with RWR include the newly identified factors of NFATc1, AVPR1A, and FGFR4, as well as previously known factors, BDNF and CREB mRNA. Interestingly, RWR down-regulated multiple inflammatory cytokines (IL1B, IL2RA, and TNF) and chemokines (CXCL1, CXCL10, CCL2, and CCR4) with the SYCP3, PRL genes, which are potentially involved in regulating hippocampal neuroplastic changes. These results provide understanding of the voluntary-RWR-related hippocampal transcriptome, which will open a window to the underlying mechanisms of the positive effects of exercise, with therapeutic value for enhancing hippocampal functions.
    Full-text · Article · Nov 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the summer of 2012, 1 year after the nuclear accident in March 2011 at the Fukushima Daiichi nuclear power plant, we examined the effects of gamma radiation on rice at a highly contaminated field of Iitate village in Fukushima, Japan. We investigated the morphological and molecular changes on healthy rice seedlings exposed to continuous low-dose gamma radiation up to 4 µSv h(-1), about 80 times higher than natural background level. After exposure to gamma rays, expression profiles of selected genes involved in DNA replication/repair, oxidative stress, photosynthesis, and defense/stress functions were examined by RT-PCR, which revealed their differential expression in leaves in a time-dependent manner over 3 days (6, 12, 24, 48, and 72h). For example, OsPCNA mRNA rapidly increased at 6, 12, and 24h, suggesting that rice cells responded to radiation stress by activating a gene involved in DNA repair mechanisms. At 72h, genes related to the phenylpropanoid pathway (OsPAL2) and cell death (OsPR1oa) were strongly induced, indicating activation of defense/stress responses. We next profiled the transcriptome using a customized rice whole-genome 4×44K DNA microarray at early (6h) and late (72h) time periods. Low-level gamma radiation differentially regulated rice leaf gene expression (induced 4481 and suppressed 3740 at 6h and induced 2291 and suppressed 1474 genes at 72h) by at least 2-fold. Using the highly upregulated and downregulated gene list, MapMan bioinformatics tool generated diagrams of early and late pathways operating in cells responding to gamma ray exposure. An inventory of a large number of gamma radiation-responsive genes provides new information on novel regulatory processes in rice.
    Full-text · Article · Sep 2014 · Journal of Heredity
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pituitary adenylate-cyclase activating polypeptide (PACAP) has neuroprotective and axonal guidance functions, but the mechanisms behind such actions remain unclear. Previously we examined effects of PACAP (PACAP38, 1 pmol) injection intracerebroventrically in a mouse model of permanent middle cerebral artery occlusion (PMCAO) along with control saline (0.9% NaCl) injection. Transcriptomic and proteomic approaches using ischemic (ipsilateral) brain hemisphere revealed differentially regulated genes and proteins by PACAP38 at 6 and 24 h post-treatment. However, as the ischemic hemisphere consisted of infarct core, penumbra, and non-ischemic regions, specificity of expression and localization of these identified molecular factors remained incomplete. This led us to devise a new experimental strategy wherein, ischemic core and penumbra were carefully sampled and compared to the corresponding contralateral (healthy) core and penumbra regions at 6 and 24 h post PACAP38 or saline injections. Both reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting were used to examine targeted gene expressions and the collapsin response mediator protein 2 (CRMP2) protein profiles, respectively. Clear differences in expression of genes and CRMP2 protein abundance and degradation product/short isoform was observed between ischemic core and penumbra and also compared to the contralateral healthy tissues after PACAP38 or saline treatment. Results indicate the importance of region-specific analyses to further identify, localize and functionally analyse target molecular factors for clarifying the neuroprotective function of PACAP38.
    Full-text · Article · Sep 2014 · International Journal of Molecular Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Low birth weight resulting from a non-optimal fetal environment is correlated epidemiologically to a higher risk of adult diseases, and which has also been demonstrated using animal models for maternal undernutrition. In this study, we subjected pregnant mice to 50% food restriction (FR), and profiled gene expression and promoter DNA methylation genome-wide using the fetal livers. The fact that effect of food restriction is opposite between before and after birth encouraged us to hunt for genes that are expressed oppositely to adult calorie restriction (CR) using the maternal livers. Among oppositely regulated genes, we identified trib1 (tribbles homolog 1). Using genetically modified mice, trib1 has been shown to have a demonstrable contribution to a risk of hypertriglyceridaemia and insulin resistance. Our data showed that the trib1 expression and its promoter DNA methylation could be affected physiologically (by maternal nutrition), and therefore might be a strong candidate gene for developmental origins of adult diseases. Furthermore, lepr (leptin receptor) gene was down-regulated by maternal FR, indicating its potential role in induction of obesity and diabetes. Gene expression as well as promoter DNA methylation profiling revealed that glucocorticoid receptor target genes were regulated by maternal FR. This supports previous studies that suggest an important role of fetal glucocorticoid exposure in the mechanism of developmental origins of diseases. Our transcriptomics profiling data also suggested that maternal FR impaired development of the immune system. An inventory of candidate genes responsible for developmental origins of health and disease is presented and discussed in this study.
    Full-text · Article · Apr 2014 · Congenital Anomalies
  • [Show abstract] [Hide abstract]
    ABSTRACT: High ozone (O 3) concentrations not only damage plant life but also cause considerable losses in plant productivity. To screen for molecular factors usable as potential biomarkers to identify for O 3-sensitive and -tolerant lines and design O 3 tolerant crops, our project examines the effects of O 3 on rice, using high-throughput omics approaches. In this study, we examined growth and yield parameters of 4 rice cultivars fumigated for a life-time with ambient air (mean O 3: 31.4-32.7 ppb) or filtered air (mean O 3: 6.6-8.3 ppb) in small open-top chambers (sOTCs) to select O 3-sensitive (indica cv Takanari) and O 3-tolerant (japonica cv Koshihikari) cultivars for analysis of seed transcriptomes using Agilent 4 × 44K rice oligo DNA chip. Total RNA from dry mature dehusked seeds of Takanari and Koshihikari cultivars was extracted using a modified protocol based on cethyltrimethylammonium bromide extraction buffer and phenol-chloroform-isoamylalcohol treatment, followed by DNA microarray analysis using the established dye-swap method. Direct comparison of Koshihikari and Takanari O 3 transcriptomes in seeds of rice plants fumigated with ambient O 3 in sOTCs successfully showed that genes encoding proteins involved in jasmonic acid, GABA biosynthesis, cell wall and membrane modification, starch mobilization, and secondary metabolite biosynthesis are differently regulated in sensitive cv Takanari and tolerant cv Koshihikari. MapMan analysis further mapped the molecular factors activated by O 3, confirming Takanari is rightly classified as an O 3 sensitive genotype.
    No preview · Article · Sep 2013 · Plant signaling & behavior
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human mesenchymal stem/stromal cells (hMSCs) have been reported to improve neural damage via anti-inflammation and multi-differentiation abilities. Here, we investigated immunosuppression effects of hMSCs by mixed-culturing with interferon-γ (IFNγ) stimulated BV-2 mouse microglial cells. We show that hMSCs decreased nitrite oxide (NO) production from BV-2 cells in cell density dependent manner. Aged hMSCs and peroxisome proliferator-activated receptor-γ (PPARγ) knockdown hMSCs decreased differentiation abilities but maintained NO suppressive function. We finally confirmed NO suppression activities of hMSCs in IFNγ-stimulated primary microglia/macrophages. It suggested that hMSCs significantly modified NO production in activated phagocytes and it might be preserved in late passage cultures.
    No preview · Article · Aug 2013 · Journal of neuroimmunology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Figure 2, X-axis description of each sample was inverted in the original publication [1]. Figure 2 The mRNA expression profiles of differentially expressed genes. Both the upregulated (A) and downregulated (B) genes were selected randomly. Gel images on top show the polymerase chain reaction (PCR) product bands stained with ethidium bromide; the band intensities are also presented graphically below for clarity. Lane numbers 1 to 8 indicate sham control (lanes 1, 2, 5, and 6) and permanent middle cerebral artery occlusion (PMCAO) treatment (lanes 3, 4, 7, and 8), respectively. P indicates pituitary adenylate cyclase-activating polypeptide (PACAP) treatment; C is the control (minus PACAP). GAPDH and beta-actin genes were used a positive control (C). Semi-quantitative RT-PCR was performed as described in Methods, and the specific 3'-UTR primers are detailed in Additional file 2: Table S2 With reference to corrected Figure 2, we have the following revised text. On Page 9, left column: lines 19-24 should read as - "Similarly, Il6, S100a5, Il22, Il1b, Igf1, and Ccl2 were highly expressed at 6 h in the PACAP-treated ischemic brain, whereas their expression level decreased at 24 h compared to the PMCAO effect alone (Figure 2). Fgf21, Pitpnc1, and Epha3 genes showed an increase in expression at 24 h over PMCAO alone (Figure 2)." On Page 11, right column: lines 16-19 should read as - "In the ischemic hemisphere at 24 h, the PACAP plus PMCAO expression level of Il6 was also reduced compared to the PMCAO plus saline control." We regret any inconvenience that this inaccuracy in Figure 2 and therein the figure legend, which could not be properly corrected at the proof stage, in the originally published manuscript might have caused.
    Full-text · Article · Jan 2013 · Journal of Neuroinflammation
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rice is one of the most important food and cereal crop plants in the world. Rice proteomics began in the 1990s. Since then, considerable progress has been made in establishing protocols from isolation of rice proteins from different tissues, organs, and organelles, to separation of complex proteins and to their identification by mass spectrometry. Since the year 2000, global proteomics studies have been performed during growth and development under numerous biotic and abiotic environmental conditions. Two-dimensional (2-D) gel-based proteomics platform coupled with mass spectrometry has been retained as the workhorse for proteomics of a variety of rice samples. In this chapter, we describe in detail the different protocols used for isolation of rice proteins, their separation, detection, and identification using gel-based proteomics and mass spectrometry approaches.
    No preview · Article · Jan 2013 · Methods in molecular biology (Clifton, N.J.)

Publication Stats

1k Citations
190.27 Total Impact Points

Institutions

  • 2015
    • Hoshi University
      Edo, Tokyo, Japan
  • 2013-2015
    • University of Tsukuba
      • Faculty of Health and Sport Sciences
      Tsukuba, Ibaraki, Japan
  • 2011-2015
    • Showa University
      • Department of Medicine
      Shinagawa, Tōkyō, Japan
    • Advance Institute of Science and Technology
      Dehra, Uttarakhand, India
  • 2012
    • National Institute for Environmental Studies
      Tsukuba, Ibaraki, Japan
  • 2010-2012
    • Toho University
      • • Department of Biology
      • • Faculty of Science
      Edo, Tokyo, Japan
    • Banaras Hindu University
      • Department of Botany
      Vārānasi, Uttar Pradesh, India
  • 2005-2012
    • National Institute of Advanced Industrial Science and Technology
      • Health Research Institute
      Tsukuba, Ibaraki, Japan
  • 1998-2002
    • Ibaraki University
      • College of Agriculture
      Mito-shi, Ibaraki, Japan