Bruno Di Jeso

Università del Salento, Lecce, Apulia, Italy

Are you Bruno Di Jeso?

Claim your profile

Publications (51)208.09 Total impact

  • Bruno Di Jeso · Peter Arvan
    [Show abstract] [Hide abstract]
    ABSTRACT: Thyroglobulin (Tg) is a vertebrate secretory protein synthesized in the thyrocyte endoplasmic reticulum (ER) where it acquires N-linked glycosylation and conformational maturation (including formation of many disulfide bonds), leading to homodimerization. Its primary functions include iodide storage and thyroid hormonogenesis. Tg consists largely of repeating domains, and many tyrosyl residues in these domains become iodinated to form monoiodo- and diiodotyrosine, whereas only a small portion of Tg structure is dedicated to hormone formation. Interestingly, evolutionary ancestors, dependent upon thyroid hormone for development, synthesize thyroid hormones without the complete Tg protein architecture. Nevertheless, in all vertebrates, Tg follows a strict pattern of region I, II-III, and the Cholinesterase-Like (ChEL) domain. In vertebrates, Tg first undergoes intracellular transport through the secretory pathway, which requires the assistance of thyrocyte ER chaperones and oxidoreductases, as well as coordination of distinct regions of Tg, to achieve a native conformation. Curiously, regions II-III and ChEL behave as fully independent folding units that could function as successful secretory proteins by themselves. However, the large Tg region I (bearing the primary thyroxine-forming site) is incompetent by itself for intracellular transport, requiring the downstream regions II-III and ChEL to complete its folding. A combination of nonsense mutations, frameshift mutations, splice site mutations, and missense mutations in Tg occur spontaneously to cause congenital hypothyroidism and thyroidal ER stress. These Tg mutants are unable to achieve a native conformation within the ER, interfering with the efficiency of Tg maturation and export to the thyroid follicle lumen for iodide storage and hormonogenesis.
    No preview · Article · Nov 2015 · Endocrine Reviews
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The small scaffold protein PED/PEA-15 is involved in several different physiologic and pathologic processes, such as cell proliferation and survival, diabetes and cancer. PED/PEA-15 exerts an anti-apoptotic function due to its ability to interfere with both extrinsic and intrinsic apoptotic pathways in different cell types. Recent evidence shows that mice overexpressing PED/PEA-15 present larger pancreatic islets and increased beta-cells mass. In the present work we investigated PED/PEA-15 role in hydrogen peroxide-induced apoptosis in Ins-1E beta-cells. In pancreatic islets isolated from TgPED/PEA-15 mice hydrogen peroxide-induced DNA fragmentation was lower compared to WT islets. TUNEL analysis showed that PED/PEA-15 overexpression increases the viability of Ins-1E beta-cells and enhances their resistance to apoptosis induced by hydrogen peroxide exposure. The activity of caspase-3 and the cleavage of PARP-1 were markedly reduced in Ins-1E cells overexpressing PED/PEA-15 (Ins-1EPED/PEA-15). In parallel, we observed a decrease of the mRNA levels of pro-apoptotic genes Bcl-xS and Bad. In contrast, the expression of the anti-apoptotic gene Bcl-xL was enhanced. Accordingly, DNA fragmentation was higher in control cells compared to Ins-1EPED/PEA-15 cells. Interestingly, the preincubation with propranolol, an inhibitor of the pathway of PLD-1, a known interactor of PED/PEA-15, responsible for its deleterious effects on glucose tolerance, abolishes the antiapoptotic effects of PED/PEA-15 overexpression in Ins-1E beta-cells. The same results have been obtained by inhibiting PED/PEA-15 interaction with PLD-1 in Ins-1EPED/PEA-15. These results show that PED/PEA-15 overexpression is sufficient to block hydrogen peroxide-induced apoptosis in Ins-1E cells through a PLD-1 mediated mechanism.
    Full-text · Article · Dec 2014 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies have indicated that endoplasmic reticulum stress, the unfolded protein response activation and altered GRP78 expression can play an important role in a variety of tumors development and progression. Very recently we reported for the first time that GRP78 is increased in endometrial tumors. However, whether GRP78 could play a role in the growth and/or invasiveness of endometrial cancer cells is still unknown. Here we report that the silencing of GRP78 expression affects both cell growth and invasiveness of Ishikawa and AN3CA cells, analyzed by the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) and transwell migration assay, respectively. At variance with Ishikawa cells, AN3CA cells showed, besides an endoplasmic reticulum, also a plasma membrane GRP78 localization, evidenced by both immunofluorescence and cell membrane biotinylation experiments. Intriguingly, flow cytometry experiments showed that the treatment with a specific antibody targeting GRP78 C-terminal domain caused apoptosis in AN3CA but not in Ishikawa cells. Induction of apoptosis in AN3CA cells was not mediated by the p53 pathway activation but was rather associated to reduced AKT phosphorylation. Interestingly, immunofluorescence analysis evidenced that endometrioid adenocarcinoma tissues displayed, similarly to AN3CA cells, also a GRP78 plasma membrane localization. These data suggest that GRP78 and its plasma membrane localization, might play a role in endometrial cancer development and progression and might constitute a novel target for the treatment of endometrial cancer. J. Cell. Physiol. © 2014 Wiley Periodicals, Inc.
    No preview · Article · Oct 2014 · Journal of Cellular Physiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Newly synthesized thyroglobulin (Tg), the thyroid prohormone, forms detectable high molecular weight mixed disulfide adducts: until now, only Tg “adduct B” was identified as primarily engaging the endoplasmic reticulum oxidoreductases ERp57 and protein disulfide isomerase. Here, we demonstrate that the faster migrating Tg adduct C primarily engages the CaBP1/P5 oxidoreductase, whereas the slower migrating Tg adduct A primarily engages ERp72. Upon siRNA-mediated knockdown of CaBP1/P5 or ERp72, adducts C or A, respectively, are decreased. Within the three Tg adduct bands that do not exhibit a precursor-product relationship, Tg exhibits distinct oxidation patterns. We present evidence suggesting that disulfide maturation occurs within Tg monomers engaged in each of the adduct bands. Moreover, the same Tg substrate molecules can form simultaneous mixed disulfides with both CaBP1/P5 and protein disulfide isomerase, although these are generally viewed as components of distinct oxidoreductase-chaperone protein complexes. Such substrate-oxidoreductase combinations offer Tg the potential for simultaneous oxidative maturation along different parallel tracks leading to the native state.
    Preview · Article · Mar 2014 · Journal of Biological Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Resin-based dental restorative materials release residual monomers that may affect the vitality of pulp cells. The purpose of this study was to evaluate the cytotoxic effect of two light-cured restorative materials with and without bis-GMA resin, respectively (Clearfil Majesty Posterior and Clearfil Majesty Flow) and a self-curing one (Clearfil DC Core Automix) when applied to the fibroblast cell line NIH-3T3. Samples of the materials were light-cured and placed directly in contact to cells for 24, 48, 72 and 96 h. Cytotoxicity was evaluated by measuring cell death by flow cytometry, cell proliferation by proliferation curves analysis and morphological changes by optical microscopy analysis. All the composite materials tested caused a decrease in cell proliferation, albeit at different degrees. However, only Clearfil DC Core Automix induced cell death, very likely by increasing apoptosis. Morphological alteration of treated cells was also evident, particularly in the Clearfil DC Core Automix-treated cells. The different cytotoxic effects of dental composites should be considered when selecting an appropriate resin-based dental restorative material for operative restorations. Copyright © 2011 John Wiley & Sons, Ltd.
    Full-text · Article · Jun 2013 · Journal of Applied Toxicology
  • [Show abstract] [Hide abstract]
    ABSTRACT: The endoplasmic reticulum (ER) is a complex and multifunctional organelle. It is the intracellular compartment of protein folding, a complex task, both facilitated and monitored by ER folding enzymes and molecular chaperones. The ER is also a stress-sensing organelle. It senses stress caused by disequilibrium between ER load and folding capacity and responds by activating signal transduction pathways, known as unfolded protein response (UPR). Three major classes of transducer are known, inositol-requiring protein-1 (IRE1), activating transcription factor-6 (ATF6), and protein kinase RNA (PKR)-like endoplasmic reticulum kinase (PERK), which sense with their endoluminal domain the state of protein folding, although the exact mechanism(s) involved is not entirely clear. Depending on whether the homeostatic response of the UPR is successful in restoring an equilibrium between ER load and protein folding or not, the two possible outcomes of the UPR so far considered have been life or death. Indeed, recent efforts have been devoted to understand the life/death switch mechanisms. However, recent data suggest that what appears to be a pure binary decision may in fact be more complex, and survival may be achieved at the expenses of luxury cell functions, such as expression of differentiation genes.
    No preview · Article · Jan 2012 · Histology and histopathology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Beta cell failure is caused by loss of cell mass, mostly by apoptosis, but also by simple dysfunction (decline of glucose-stimulated insulin secretion, downregulation of specific gene expression). Apoptosis and dysfunction are caused, at least in part, by lipoglucotoxicity. The mechanisms implicated are oxidative stress, increase in the hexosamine biosynthetic pathway (HBP) flux and endoplasmic reticulum (ER) stress. Oxidative stress plays a role in glucotoxicity-induced beta cell dedifferentiation, while glucotoxicity-induced ER stress has been mostly linked to beta cell apoptosis. We sought to clarify whether ER stress caused by increased HBP flux participates in a dedifferentiating response of beta cells, in the absence of relevant apoptosis. We used INS-1E cells and murine islets. We analysed the unfolded protein response and the expression profile of beta cells by real-time RT-PCR and western blot. The signal transmission pathway elicited by ER stress was investigated by real-time RT-PCR and immunofluorescence. Glucosamine and high glucose induced ER stress, but did not decrease cell viability in INS-1E cells. ER stress caused dedifferentiation of beta cells, as shown by downregulation of beta cell markers and of the transcription factor, pancreatic and duodenal homeobox 1. Glucose-stimulated insulin secretion was inhibited. These effects were prevented by the chemical chaperone, 4-phenyl butyric acid. The extracellular signal-regulated kinase (ERK) signal transmission pathway was implicated, since its inhibition prevented the effects induced by glucosamine and high glucose. Glucotoxic ER stress dedifferentiates beta cells, in the absence of apoptosis, through a transcriptional response. These effects are mediated by the activation of ERK1/2.
    Full-text · Article · Jan 2012 · Diabetologia
  • [Show abstract] [Hide abstract]
    ABSTRACT: Endometrial cancer is the most common malignancy of the female genital tract. However, in spite of a huge advance in our understanding of endometrial cancer biology, therapeutic modalities haven't significantly changed over the past 40 years. The activation of the Unfolded Protein Response (UPR) and GRP78 increase following Endoplasmic Reticulum (ER) stress have been recently identified as mechanisms favoring growth, invasion and resistance to therapy of different types of cancer. However, a possible role of ER stress and GRP78 in endometrial cancer has never been investigated. Tissue specimens from normal and neoplastic endometrium were analyzed for the expression of the ER stress markers GRP78, ATF6 and CHOP by Real-Time RT-PCR. In addition, GRP78 protein expression and localization were evaluated by Western blot and immunohistochemistry, respectively. The effect of GRP78 knock down on cell growth of Ishikawa cells was analyzed by proliferation curve analysis. In this analysis, the expression levels of GRP78, ATF6 and CHOP mRNAs were significantly increased in specimens of endometrioid endometrial carcinomas. GRP78 and ATF6 protein expression levels were also increased in specimens of endometrial adenocarcinomas. GRP78 knock down caused a decrease of Ishikawa cells' growth. The increased expression of ER stress markers in endometrioid endometrial carcinomas suggests a role for ER stress, the UPR and, possibly, GRP78 in endometrial cancer. Whether these mechanisms have a substantial function in the pathogenesis of malignant transformation of human endometrium is still under investigation in our laboratory.
    No preview · Article · Dec 2011 · Gynecologic Oncology
  • Jaemin Lee · Bruno Di Jeso · Peter Arvan
    [Show abstract] [Hide abstract]
    ABSTRACT: In vertebrates, the thyroglobulin (Tg) gene product must be exported to the lumen of thyroid follicles for thyroid hormone synthesis. In toto, Tg is composed of multiple type-1 repeats connected by linker and hinge (altogether considered as "region I," nearly 1,200 residues); regions II-III (~720 residues); and cholinesterase-like (ChEL) domain (~570 residues). Regions II-III and ChEL rapidly acquire competence for secretion, yet regions I-II-III require 20 min to become a partially mature disulfide isomer; stabilization of a fully oxidized form requires ChEL. Transition from partially mature to mature Tg occurs as a discrete "jump" in mobility by nonreducing SDS-PAGE, suggesting formation of at most a few final pairings of Cys residues that may be separated by significant intervening primary sequence. Using two independent approaches, we have investigated which portion of Tg is engaged in this late stage of its maturation. First, we demonstrate that this event is linked to oxidation involving region I. Introduction of the Tg-C1245R mutation in the hinge (identical to that causing human goitrous hypothyroidism) inhibits this maturation, although the Cys-1245 partner remains unidentified. Second, we find that Tg truncated after its fourth type-1 repeat is a fully independent secretory protein. Together, the data indicate that final acquisition of secretory competence includes conformational maturation in the interval between linker and hinge segments of region I.
    No preview · Article · Aug 2011 · Journal of Biological Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We recently reported that, in thyroid cells, ER stress triggered by thapsigargin or tunicamycin, two well known ER stressing agents, induced dedifferentiation and loss of the epithelial phenotype in rat thyroid cells. In this study, we sought to evaluate if, in thyroid cells, ER stress could affect MHC class I expression and the possible implications of this effect in the alteration of function of natural killer cells, suggesting a role in thyroid pathology. In both, a human line of fetal thyroid cells (TAD-2 cells) and primary cultures of human thyroid cells, thapsigargin and tunicamicin triggered ER stress evaluated by BiP mRNA levels and XBP-1 splicing. In both cell types, TAD-2 cell line and primary cultures, major histocompatibility complex class I (MHC-I) plasmamembrane expression was significantly reduced by ER stress. This effect was accompanied by signs of natural killer activation. Thus, natural killer cells dramatically increased IFN-γ production and markedly increased their cytotoxicity against thyroid cells. Together, these data indicate that ER stress induces a decrease of MHC class I surface expression in thyroid cells, resulting in reduced natural killer-cell self-tolerance.
    Full-text · Article · Apr 2011 · Biochimica et Biophysica Acta
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Activation of the Ras-Raf-extracellular signal-regulated kinase (ERK) pathway causes not only proliferation and suppression of apoptosis but also the antioncogenic response of senescence. How these contrasting effects are reconciled to achieve cell transformation and cancer formation is poorly understood. In a system of two-step carcinogenesis (dedifferentiated PC EIA, transformed PC EIA-polyoma-middle T [PC EIA + Py] and PC EIA-v-raf [PC EIA + raf] cells], v-raf cooperated with EIA by virtue of a strong prosurvival effect, not elicited by Py-middle T, evident toward serum-deprivation-and H(2)O(2)-induced apoptosis. Apoptosis was detected by DNA fragmentation and annexin V staining. The prosurvival function of v-raf was, in part, mitogen-activated protein kinase/ERK kinase (MEK)-dependent, as shown by pharmacological MEK inhibition. The MEK-dependent antiapoptotic effect of v-raf was exerted despite a lower level of P-ERK1/2 in EIA + raf cells with respect to EIA + Py/EIA cells, which was dependent on a high tyrosine phosphatase activity, as shown by orthovanadate blockade. An ERK1/2 tyrosine phosphatase was likely involved. The high tyrosine phosphatase activity was instrumental to the complete suppression of senescence, detected by β-galactosidase activity, because tyrosine phosphatase blockade induced senescence in EIA + raf but not in EIA + Py cells. High tyrosine phosphatase activity and evasion from senescence were confirmed in an anaplastic thyroid cancer cell line. Therefore, besides EIA, EIA + raf cells suppress senescence through a new mechanism, namely, phosphatase-mediated P-ERK1/2 inhibition, but, paradoxically, retain the oncogenic effects of the Raf-ERK pathway. We propose that the survival effect of Raf is not a function of absolute P-ERK1/2 levels at a given time but is rather dynamically dependent on greater variations after an apoptotic stimulus.
    Full-text · Article · Feb 2011 · Neoplasia (New York, N.Y.)
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thyroglobulin (Tg, precursor for thyroid hormone synthesis) is a large secreted glycoprotein composed of upstream regions I-II-III, followed by the approximately 570 residue cholinesterase-like (ChEL) domain. ChEL has two identified functions: 1) homodimerization, and 2) binding to I-II-III that facilitates I-II-III oxidative maturation required for intracellular protein transport. Like its homologs in the acetylcholinesterase (AChE) family, ChEL possesses two carboxyl-terminal alpha-helices. We find that a Tg-AChE chimera (swapping AChE in place of ChEL) allows for dimerization with monomeric AChE, proving exposure of the carboxyl-terminal helices within the larger context of Tg. Further, we establish that perturbing trans-helical interaction blocks homodimerization of the Tg ChEL domain. Additionally, ChEL can associate with neuroligins (a related family of cholinesterase-like proteins), demonstrating potential for Tg cross-dimerization between non-identical partners. Indeed, when mutant rdw-Tg (Tg-G2298R, defective for protein secretion) is co-expressed with wild-type Tg, the two proteins cross-dimerize and secretion of rdw-Tg is partially restored. Moreover, we find that AChE and soluble neuroligins also can bind to the upstream Tg regions I-II-III; however, they cannot rescue secretion, because they cannot facilitate oxidative maturation of I-II-III. These data suggest that specific properties of distinct Tg ChEL mutants may result in distinct patterns of Tg monomer folding, cross-dimerization with wild-type Tg, and variable secretion behavior in heterozygous patients.
    No preview · Article · Mar 2010 · Journal of Biological Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glucosamine, generated during hyperglycaemia, causes insulin resistance in different cells. Here we sought to evaluate the possible role of endoplasmic reticulum (ER) stress in the induction of insulin resistance by glucosamine in skeletal muscle cells. Real-time RT-PCR analysis, 2-deoxy-D: -glucose (2-DG) uptake and western blot analysis were carried out in rat and human muscle cell lines. In both rat and human myotubes, glucosamine treatment caused a significant increase in the expression of the ER stress markers immunoglobulin heavy chain-binding protein/glucose-regulated protein 78 kDa (BIP/GRP78 [also known as HSPA5]), X-box binding protein-1 (XBP1) and activating transcription factor 6 (ATF6). In addition, glucosamine impaired insulin-stimulated 2-DG uptake in both rat and human myotubes. Interestingly, pretreatment of both rat and human myotubes with the chemical chaperones 4-phenylbutyric acid (PBA) or tauroursodeoxycholic acid (TUDCA), completely prevented the effect of glucosamine on both ER stress induction and insulin-induced glucose uptake. In both rat and human myotubes, glucosamine treatment reduced mRNA and protein levels of the gene encoding GLUT4 and mRNA levels of the main regulators of the gene encoding GLUT4 (myocyte enhancer factor 2 a [MEF2A] and peroxisome proliferator-activated receptor-gamma coactivator 1alpha [PGC1alpha]). Again, PBA or TUDCA pretreatment prevented glucosamine-induced inhibition of GLUT4 (also known as SLC2A4), MEF2A and PGC1alpha (also known as PPARGC1A). Finally, we showed that overproduction of ATF6 is sufficient to inhibit the expression of genes GLUT4, MEF2A and PGC1alpha and that ATF6 silencing with a specific small interfering RNA is sufficient to completely prevent glucosamine-induced inhibition of GLUT4, MEF2A and PGC1alpha in skeletal muscle cells. In this work we show that glucosamine-induced ER stress causes insulin resistance in both human and rat myotubes and impairs GLUT4 production and insulin-induced glucose uptake via an ATF6-dependent decrease of the GLUT4 regulators MEF2A and PGC1alpha.
    Full-text · Article · Feb 2010 · Diabetologia
  • Jaemin Lee · Xiaofan Wang · Bruno Di Jeso · Peter Arvan
    [Show abstract] [Hide abstract]
    ABSTRACT: The carboxyl-terminal cholinesterase-like (ChEL) domain of thyroglobulin (Tg) has been identified as critically important in Tg export from the endoplasmic reticulum. In a number of human kindreds suffering from congenital hypothyroidism, and in the cog congenital goiter mouse and rdw rat dwarf models, thyroid hormone synthesis is inhibited because of mutations in the ChEL domain that block protein export from the endoplasmic reticulum. We hypothesize that Tg forms homodimers through noncovalent interactions involving two predicted alpha-helices in each ChEL domain that are homologous to the dimerization helices of acetylcholinesterase. This has been explored through selective epitope tagging of dimerization partners and by inserting an extra, unpaired Cys residue to create an opportunity for intermolecular disulfide pairing. We show that the ChEL domain is necessary and sufficient for Tg dimerization; specifically, the isolated ChEL domain can dimerize with full-length Tg or with itself. Insertion of an N-linked glycan into the putative upstream dimerization helix inhibits homodimerization of the isolated ChEL domain. However, interestingly, co-expression of upstream Tg domains, either in cis or in trans, overrides the dimerization defect of such a mutant. Thus, although the ChEL domain provides a nidus for Tg dimerization, interactions of upstream Tg regions with the ChEL domain actively stabilizes the Tg dimer complex for intracellular transport.
    No preview · Article · Apr 2009 · Journal of Biological Chemistry
  • Source
    Jaemin Lee · Bruno Di Jeso · Peter Arvan
    [Show abstract] [Hide abstract]
    ABSTRACT: Thyroid hormonogenesis requires secretion of thyroglobulin, a protein comprising Cys-rich regions I, II, and III (referred to collectively as region I-II-III) followed by a cholinesterase-like (ChEL) domain. Secretion of mature thyroglobulin requires extensive folding and glycosylation in the ER. Multiple reports have linked mutations in the ChEL domain to congenital hypothyroidism in humans and rodents; these mutations block thyroglobulin from exiting the ER and induce ER stress. We report that, in a cell-based system, mutations in the ChEL domain impaired folding of thyroglobulin region I-II-III. Truncated thyroglobulin devoid of the ChEL domain was incompetent for cellular export; however, a recombinant ChEL protein ("secretory ChEL") was secreted efficiently. Coexpression of secretory ChEL with truncated thyroglobulin increased intracellular folding, promoted oxidative maturation, and facilitated secretion of region I-II-III, indicating that the ChEL domain may function as an intramolecular chaperone. Additionally, we found that the I-II-III peptide was cosecreted and physically associated with secretory ChEL. A functional ChEL domain engineered to be retained intracellularly triggered oxidative maturation of I-II-III but coretained I-II-III, indicating that the ChEL domain may also function as a molecular escort. These insights into the role of the ChEL domain may represent potential therapeutic targets in the treatment of congenital hypothyroidism.
    Full-text · Article · Aug 2008 · Journal of Clinical Investigation
  • [Show abstract] [Hide abstract]
    ABSTRACT: Conditions perturbing the homeostasis of the endoplasmic reticulum (ER) cause accumulation of unfolded proteins and trigger ER stress. In PC Cl3 thyroid cells, thapsigargin and tunicamycin interfered with the folding of thyroglobulin, causing accumulation of this very large secretory glycoprotein in the ER. Consequently, mRNAs encoding BiP and XBP-1 were induced and spliced, respectively. In the absence of apoptosis, differentiation of PC Cl3 cells was inhibited. mRNA and protein levels of the thyroid-specific genes encoding thyroglobulin, thyroperoxidase and the sodium/iodide symporter and of the genes encoding the thyroid transcription factors TTF-1, TTF-2 and Pax-8 were dramatically downregulated. These effects were, at least in part, transcriptional. Moreover, they were selective and temporally distinct from the general and transient PERK-dependent translational inhibition. Thyroid dedifferentiation was accompanied by changes in the organization of the polarized epithelial monolayer. Downregulation of the mRNA encoding E-cadherin, and upregulation of the mRNAs encoding vimentin, alpha-smooth muscle actin, alpha(1)(I) collagen and SNAI1/SIP1, together with formation of actin stress fibers and loss of trans-epithelial resistance were found, confirming an epithelial-mesenchymal transition (EMT). The thyroid-specific and epithelial dedifferentiation by thapsigargin or tunicamycin were completely prevented by the PP2 inhibitor of Src-family kinases and by stable expression of a dominant-negative Src. Together, these data indicate that ER stress induces dedifferentiation and an EMT-like phenotype in thyroid cells through a Src-mediated signaling pathway.
    No preview · Article · Mar 2008 · Journal of Cell Science
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In PC Cl3 cells, a continuous, fully differentiated rat thyroid cell line, P2Y(2) purinoceptor activation provoked a transient increase of [Ca(2+)](i), followed by a decreasing sustained phase. The alpha and beta1 protein kinase C (PKC) inhibitor Gö6976 decreased the rate of decrement to the basal [Ca(2+)](i) level and increased the peak of Ca(2+) entry of the P2Y(2)-provoked Ca(2+)transients. These effects of Gö 6976 were not caused by an increased permeability of the plasma membrane, since the Mn(2+) and Ba(2+) uptake were not changed by Gö 6976. Similarly, the Na(+)/Ca(2+) exchanger was not implicated, since the rate of decrement to the basal [Ca(2+)](i) level was equally decreased in physiological and Na(+)-free buffers, in the presence of Gö 6976. On the contrary, the activity of the sarcoplasmic-endoplasmic reticulum Ca(2+)ATPase (SERCA) 2b was profoundly affected by Gö 6976 since the drug was able to completely inhibit the stimulation of the SERCA 2b activity elicited by P2-purinergic agonists. Finally, the PKC activator phorbol myristate acetate had effects opposite to Gö 6976, in that it markedly increased the rate of decrement to the basal [Ca(2+)](i) level after P2Y(2) stimulation and also increased the activity of SERCA 2b. These results suggest that SERCA 2b plays a role in regulating the sustained phase of Ca(2+) transients caused by P2Y(2) stimulation.
    Full-text · Article · Oct 2006 · Journal of Endocrinology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The present work was a comparative study of the bio-effects induced by exposure to 6 mT static magnetic field (MF) on several primary cultures and cell lines. Particular attention was dedicated to apoptosis. Cell viability, proliferation, intracellular Ca(2+) concentration and morphology were also examined. Primary cultures of human lymphocytes, mice thymocytes and cultures of 3DO, U937, HeLa, HepG2 and FRTL-5 cells were grown in the presence of 6 mT static MF and different apoptosis-inducing agents (cycloheximide, H(2)O(2), puromycin, heat shock, etoposide). Biological effects of static MF exposure were found in all the different cells examined. They were cell type-dependent but apoptotic inducer-independent. A common effect of the exposure to static MF was the promotion of apoptosis and mitosis, but not of necrosis or modifications of the cell shape. Increase of the intracellular levels of Ca(2+) ions were also observed. When pro-apoptotic drugs were combined with static MF, the majority of cell types rescued from apoptosis. To the contrary, apoptosis of 3DO cells was significantly increased under simultaneous exposure to static MF and incubation with pro-apoptotic drugs. From these data we conclude that 6 mT static MF exposure interfered with apoptosis in a cell type- and exposure time-dependent manner, while the effects of static MF exposure on the apoptotic program were independent of the drugs used.
    Full-text · Article · Oct 2006 · Bioelectromagnetics
  • [Show abstract] [Hide abstract]
    ABSTRACT: The effects of cisplatin (cisPt) on the extra cellular signal-regulated kinase (ERK) and the protein kinase B (PKB/Akt), known to play important roles in promoting cell survival and in down regulating apoptosis, were investigated in thyroid cell lines. The cytotoxic effect of cisPt was highest in normal PC-Cl3 cells, intermediate in dedifferentiated PC-E1A and PC-raf cells and lowest in fully transformed and tumorigenic PC-E1Araf cells. CisPt provoked ERK phosphorylation; such phosphorylation was unaltered by Gö6976, a conventional PKC inhibitor, whilst blocked by low doses (0.1 microM) or high doses (10 microM) of GF109203X, an inhibitor of all PKC isozymes, in PC-Cl3 and in PC-E1Araf cells, respectively. In PC-E1Araf, but not in PC-Cl3 cells, the cisPt-provoked ERK phosphorylation was also blocked by a myristoylated PKC-zeta pseudo substrate peptide (PS-zeta). The cytotoxic effects of cisPt increased when cells were pre-incubated with the mitogen-activated protein kinase (MEK) inhibitor PD98059. CisPt provoked the phosphorylation of PKB/Akt and this effect was blocked by LY294002, a PI3K inhibitor. In PC-Cl3 cells pre-incubated with LY294002 the effects of cisPt on ERK phosphorylation and cell mortality resulted unaffected; conversely, LY294002 reduced the ERK phosphorylation and increased cisPt cytotoxity of in PC-E1Araf cells. Furthermore, in PC-E1Araf cells pre-incubated with LY294002 and PS-zeta ERK phosphorylation was abolished and cisPt cytotoxicity was highest. Altogether results highlight a role for PKCs in the upstream regulation of ERK pathway facing the cell response to cisPt treatments. Understanding the mechanisms by which cells process cisPt provides important insights for designing more efficient platinum-based drugs.
    No preview · Article · Jan 2006 · Biochemical Pharmacology
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the effects of cisplatin (cisPt) in normal PC Cl3 and in transformed and tumourigenic PC E1Araf cells. cisPt cytotoxicity was higher in PC Cl3 than in PC E1Araf cells. In both cell lines, cisPt provoked the ERK1/2 phosphorylation; this was unaltered by Gö6976, a conventional PKC inhibitor, whilst it was blocked by low doses (0.1 microM) or high doses (10 microM) of GF109203X, an inhibitor of all PKC isozymes, in PC Cl3 and in PC E1Araf cells, respectively. In PC E1Araf, the cisPt-provoked ERK phosphorylation was also blocked by the use of a myristoylated PKC-zeta pseudosubstrate peptide. Conversely, in PC Cl3 the cisPt-provoked ERK phosphorylation was blocked by the use of rottlerin, a PKC-delta inhibitor. Results show that cisPt activates both PKC (the -delta and the -zeta isozymes in PC Cl3 and in PC E1Araf cells, respectively) and ERK in association with prolonged survival of thyroid cell lines.
    No preview · Article · Dec 2005 · Biochemical and Biophysical Research Communications

Publication Stats

892 Citations
208.09 Total Impact Points


  • 2000-2014
    • Università del Salento
      • Department of Biotechnology and Environmental Science
      Lecce, Apulia, Italy
  • 2004-2006
    • Università degli Studi di Siena
      Siena, Tuscany, Italy
  • 1995-2005
    • University of Naples Federico II
      • • Department of Biology
      • • Department of Molecular Medicine and Health Biotechnology
      Napoli, Campania, Italy
  • 1993
    • University of Udine
      Udine, Friuli Venezia Giulia, Italy
    • Second University of Naples
      Caserta, Campania, Italy