Natalia Abuladze

University of California, Los Angeles, Los Ángeles, California, United States

Are you Natalia Abuladze?

Claim your profile

Publications (57)244.64 Total impact

  • Source
    Dataset: G418

    Full-text · Dataset · Apr 2015
  • Source
    Quansheng Zhu · Liyo Kao · Rustam Azimov · Natalia Abuladze · Debra Newman · Ira Kurtz
    [Show abstract] [Hide abstract]
    ABSTRACT: The extracellular loop 3 (EL-3) of SLC4 Na+-coupled transporters contains 4 highly conserved cysteines and multiple N-glycosylation consensus sites. In the electrogenic Na+-HCO3- cotransporter NBCe1-A, EL-3 is the largest extracellular loop and is predicted to consist of 82 amino acids. To determine the structure-functional importance of the conserved cysteines and the N-glycosylation sites in NBCe1-A EL-3, we analyzed the potential interplay between EL-3 disulfide bonding and N-glycosylation, and their roles in EL-3 topological folding. Our results demonstrate that the 4 highly conserved cysteines form 2 intramolecular disulfide bonds, Cys583-585 and Cys617-642 respectively that constrain EL-3 in a folded conformation. The formation of the second disulfide bond is spontaneous and unaffected by the N-glycosylation state of EL-3 or the first disulfide bond, whereas formation of the first disulfide bond relies on the presence of the second disulfide bond and is affected by N-glycosylation. Importantly, EL-3 from each monomer is adjacently located at the NBCe1-A dimeric interface. When the two disulfide bonds are missing, EL-3 adopts an extended conformation highly accessible to protease digestion. This unique adjacent parallel location of two symmetrically-folded EL-3 loops from each monomer resembles a domain-like structure that is potentially important for NBCe1-A function in vivo. Moreover, the formation of this unique structure is critically dependent on the finely tuned interplay between disulfide bonding and N-glycosylation in the membrane processed NBCe1-A dimer. Copyright © 2015, The American Society for Biochemistry and Molecular Biology.
    Full-text · Article · Jan 2015 · Journal of Biological Chemistry
  • Liyo Kao · Rustam Azimov · Natalia Abuladze · Debra Newman · Ira Kurtz
    [Show abstract] [Hide abstract]
    ABSTRACT: The SLC4A11 gene mutations cause a variety of genetic corneal diseases including CHED2, Harboyan syndrome, some cases of Fuchs' endothelial dystrophy (FECD) and possibly familial keratoconus. Three N-terminal variants of the human SLC4A11 gene, named SLC4A11-A,-B, and -C are known. The SLC4A11-B variant has been the focus of previous studies. Both the expression of the SLC4A11-C variant in the cornea and its functional properties have not been characterized, and therefore its potential pathophysiologic role in corneal diseases remains to be been explored. In the present study, we demonstrate that SLC4A11-C is the predominant SLC4A11 variant expressed in human corneal endothelial mRNA, and that the transporter functions as an electrogenic H+(OH-) permeation pathway. Disulfonic stilbenes including DIDS, H2DIDS, and SITS, and that are known to bind covalently increased SLC4A11-C mediated H(+)(OH(-)) flux by 150-200% without having a significant effect in mock-transfected cells. Noncovalently interacting DADS was without effect. We tested the efficacy of DIDS on the functionally impaired R109H mutant (SLC4A11-C numbering) that causes CHED2. DIDS (1 mM) increased H(+)(OH(-)) flux through the mutant transporter by ~ 40-90%. These studies provide a basis for future testing of more specific chemically modified dilsulfonic stilbenes as potential therapeutic agents to improve the functional impairment of specific SLC4A11 mutant transporters.
    No preview · Article · Nov 2014 · AJP Cell Physiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Anion exchanger 1 (AE1) is the major erythrocyte membrane protein that mediates chloride/bicarbonate exchange across the erythrocyte membrane facilitating CO(2) transport by the blood, and anchors the plasma membrane to the spectrin-based cytoskeleton. This multi-protein cytoskeletal complex plays an important role in erythrocyte elasticity and membrane stability. An in-frame AE1 deletion of nine amino acids in the cytoplasmic domain in a proximity to the membrane domain results in a marked increase in membrane rigidity and ovalocytic red cells in the disease Southeast Asian Ovalocytosis (SAO). We hypothesized that AE1 has a flexible region connecting the cytoplasmic and membrane domains, which is partially deleted in SAO, thus causing the loss of erythrocyte elasticity. To explore this hypothesis, we developed a new non-denaturing method of AE1 purification from bovine erythrocyte membranes. A three-dimensional (3D) structure of bovine AE1 at 2.4 nm resolution was obtained by negative staining electron microscopy, orthogonal tilt reconstruction and single particle analysis. The cytoplasmic and membrane domains are connected by two parallel linkers. Image classification demonstrated substantial flexibility in the linker region. We propose a mechanism whereby flexibility of the linker region plays a critical role in regulating red cell elasticity.
    Full-text · Article · Oct 2013 · PLoS ONE

  • No preview · Article · Oct 2013 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the kidney proximal tubule, NBCe1-A plays a critical role in absorbing HCO3- from cell to blood. NBCe1-A transmembrane segment 1 (TM1) is involved in forming part of the ion permeation pathway and a missense mutation S427L in TM1 impairs ion transport causing pRTA. In the present study we examined the topology of NBCe1-A-TM1 in detail and its structural perturbation induced by S427L. We analyzed the N-terminal cytoplasmic region (Cys389-Gln424) of NBCe1-A-TM1 using the substituted cysteine scanning accessibility method combined with extensive chemical stripping, in situ chemical probing, and functional transport assays. NBCe1-A-TM1 was previously modeled on the anion exchanger 1 TM1 (AE1-TM1), however, our data demonstrated the topology of AE1-TM1 differs significantly from NBCe1-A-TM1. Our findings revealed that NBCe1-A-TM1 is unusually long consisting of 31 membrane embedded amino acids (Phe412 to Thr442). The linker region (Arg394-Pro411) between the N-terminus of TM1 and the cytoplasmic domain is minimally exposed to aqueous, and is potentially folded in a helical structure that intimately interacts with the NBCe1-A cytoplasmic domain. In contrast, AE1-TM1 contains 25 amino acids connected to an aqueous exposed cytoplasmic region. Based on our new NBCe1-A-TM1 model, Ser427 resides in the middle of TM1. Leucine substitution at S427 blocks the normal aqueous access to T442, A435 and K404 implying a significant alteration of NBCe1-TM1 orientation. Our study provides novel structural insights into the pathogenic mechanism of S427L in mediating pRTA.
    Full-text · Article · Jan 2013 · Journal of Biological Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aminoacylase 3 (AA3) mediates deacetylation of N-acetyl aromatic amino acids and mercapturic acids. Deacetylation of mercapturic acids of exo- and endobiotics are likely involved in their toxicity. AA3 is predominantly expressed in kidney, and to a lesser extent in liver, brain, and blood. AA3 has been recently reported to interact with the hepatitis C virus core protein (HCVCP) in the yeast two-hybrid system. Here we demonstrate that AA3 directly binds to HCVCP (K(d) ∼10μM) that may by implicated in HCV pathogenesis. AA3 also revealed a weak endopeptidase activity towards the N-terminus of HCVCP. STRUCTURED SUMMARY OF PROTEIN INTERACTIONS: AA3cleavesHCVCP by protease assay (View interaction). AA3cleavesAA3 by protease assay (View interaction). AA3binds to HCVCP by surface plasmon resonance (View Interaction:1,2,3,4,5).
    Full-text · Article · Sep 2012 · FEBS letters
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 4-Hydroxy-2-nonenal (4HNE) and acrolein (ACR) are highly reactive neurotoxic products of lipid peroxidation that are implicated in the pathogenesis and progression of Alzheimer's and Parkinson's diseases. Conjugation with glutathione (GSH) initiates the 4HNE and ACR detoxification pathway, which generates the mercapturates of 4HNE and ACR that can be excreted. Prior work has shown that the efficiency of the GSH-dependent renal detoxification of haloalkene derived mercapturates is significantly decreased upon their deacetylation because of rapid transformation of the deacetylated products into toxic compounds mediated by β-lyase. The enzymes of the GSH-conjugation pathway and β-lyases are expressed in the brain, and we hypothesized that a similar toxicity mechanism may be initiated in the brain by the deacetylation of 4HNE- and ACR-mercapturate. The present study was performed to identify an enzyme(s) involved in 4HNE- and ACR-mercapturate deacetylation, characterize the brain expression of this enzyme and determine whether its inhibition decreases 4HNE and 4HNE-mercapturate neurotoxicity. We demonstrated that of two candidate deacetylases, aminoacylases 1 (AA1) and 3 (AA3), only AA3 efficiently deacetylates both 4HNE- and ACR-mercapturate. AA3 was further localized to neurons and blood vessels. Using a small molecule screen we generated high-affinity AA3 inhibitors. Two of them completely protected rat brain cortex neurons expressing AA3 from the toxicity of 4HNE-mercapturate. 4HNE-cysteine (4HNE-Cys) was also neurotoxic and its toxicity was mostly prevented by a β-lyase inhibitor, aminooxyacetate. The results suggest that the AA3 mediated deacetylation of 4HNE-mercapturate may be involved in the neurotoxicity of 4HNE.
    Full-text · Article · Jul 2012 · Toxicology and Applied Pharmacology
  • Source
    Liyo Kao · Natalia Abuladze · Xuesi M Shao · Kevin McKeegan · Ira Kurtz
    [Show abstract] [Hide abstract]
    ABSTRACT: The patch clamp technique is widely used for recording the activity of ion channels in single cells and lipid bilayers. Most platforms utilize borosilicate glass configured as a pipette, however more recently planar patch clamp chips have been developed that require less technical expertise. Planar patch clamp chips in systems like the Nanion Port-a-Patch are useful in that they allow more rapid throughput in drug screening studies. This technique also has the ability to perform rapid solution changes from the intracellular side. A current drawback with the planar patch clamp chips is the need to utilize a separate chip for each experiment. This increases the cost of each experiment and is due to the fact that the ∼1μm aperture used for cell attachment is thought to retain cellular debris thereby preventing subsequent cell attachment and formation of GΩ seals. In the present study we have for the first time solved the technical problem of developing a simple protocol for re-use of Nanion planar patch clamp chips. The re-use methodology is demonstrated in whole cell patch clamp studies of HEK-293 cells expressing the electrogenic sodium bicarbonate cotransporter NBCe1-A in protocols involving external and internal solution changes, and CHO-K1 cells with incorporated gramicidin channels.
    Full-text · Article · May 2012 · Journal of Neuroscience Methods
  • [Show abstract] [Hide abstract]
    ABSTRACT: The sodium-driven chloride/bicarbonate exchanger (NDCBE), a member of the SLC4 family of bicarbonate transporters, was recently found to modulate excitatory neurotransmission in hippocampus. By using light and electron microscopic immunohistochemistry, we demonstrate here that NDCBE is expressed throughout the adult rat brain, and selectively concentrates in presynaptic terminals, where it is closely associated with synaptic vesicles. NDCBE is in most glutamatergic axon terminals, and is also present in the terminals of parvalbumin-positive γ-aminobutyric acid (GABA)ergic cells. These findings suggest that NDCBE can regulate glutamatergic transmission throughout the brain, and point to a role for NDCBE as a possible regulator of GABAergic neurotransmission.
    No preview · Article · May 2012 · The Journal of Comparative Neurology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Membrane transporter proteins exist in a complex dynamic equilibrium between various oligomeric states that include monomers, dimers, dimer of dimers and higher order oligomers. Given their sub-optical microscopic resolution size, the oligomerization state of membrane transporters is difficult to quantify without requiring tissue disruption and indirect biochemical methods. Here we present the application of a fluorescence measurement technique which combines fluorescence image moment analysis and spatial intensity distribution analysis (SpIDA) to determine the oligomerization state of membrane proteins in situ. As a model system we analyzed the oligomeric state(s) of the electrogenic sodium bicarbonate cotransporter NBCe1-A in cultured cells and in rat kidney. The approaches that we describe offer for the first time the ability to investigate the oligomeric state of membrane transporter proteins in their native state.
    Full-text · Article · Apr 2012 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NBCe1-A and AE1 both belong to the SLC4 HCO3− transporter family. The two transporters share 40% sequence homology in the C-terminal transmembrane region. In this study, we performed extensive substituted cysteine-scanning mutagenesis analysis of the C-terminal region of NBCe1-A covering amino acids Ala800–Lys967. Location of the introduced cysteines was determined by whole cell labeling with a membrane-permeant biotin maleimide and a membrane-impermeant 2-((5(6)-tetramethylrhodamine)carboxylamino) ethyl methanethiosulfonate (MTS-TAMRA) cysteine-reactive reagent. The results show that the extracellular surface of the NBCe1-A C-terminal transmembrane region is minimally exposed to aqueous media with Met858 accessible to both biotin maleimide and TAMRA and Thr926–Ala929 only to TAMRA labeling. The intracellular surface contains a highly exposed (Met813–Gly828) region and a cryptic (Met887–Arg904) connecting loop. The lipid/aqueous interface of the last transmembrane segment is at Asp960. Our data clearly determined that the C terminus of NBCe1-A contains 5 transmembrane segments with greater average size compared with AE1. Functional assays revealed only two residues in the region of Pro868–Leu967 (a functionally important region in AE1) that are highly sensitive to cysteine substitution. Our findings suggest that the C-terminal transmembrane region of NBCe1-A is tightly folded with unique structural and functional features that differ from AE1.
    Full-text · Article · Nov 2010 · Journal of Biological Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: NBCe1-A and AE1 both belong to the SLC4 HCO3− transporter family. The two transporters share 40% sequence homology in the C-terminal transmembrane region. In this study, we performed extensive substituted cysteine-scanning mutagenesis analysis of the C-terminal region of NBCe1-A covering amino acids Ala800–Lys967. Location of the introduced cysteines was determined by whole cell labeling with a membrane-permeant biotin maleimide and a membrane-impermeant 2-((5(6)-tetramethylrhodamine)carboxylamino) ethyl methanethiosulfonate (MTS-TAMRA) cysteine-reactive reagent. The results show that the extracellular surface of the NBCe1-A C-terminal transmembrane region is minimally exposed to aqueous media with Met858 accessible to both biotin maleimide and TAMRA and Thr926–Ala929 only to TAMRA labeling. The intracellular surface contains a highly exposed (Met813–Gly828) region and a cryptic (Met887–Arg904) connecting loop. The lipid/aqueous interface of the last transmembrane segment is at Asp960. Our data clearly determined that the C terminus of NBCe1-A contains 5 transmembrane segments with greater average size compared with AE1. Functional assays revealed only two residues in the region of Pro868–Leu967 (a functionally important region in AE1) that are highly sensitive to cysteine substitution. Our findings suggest that the C-terminal transmembrane region of NBCe1-A is tightly folded with unique structural and functional features that differ from AE1.
    No preview · Article · Nov 2010 · Journal of Biological Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Trichloroethylene (TCE) is one of the most widespread environmental contaminants, which is metabolized to N-acetyl-S-1,2-dichlorovinyl-L-cysteine (NA-DCVC) before being excreted in the urine. Alternatively, NA-DCVC can be deacetylated by aminoacylase 3 (AA3), an enzyme that is highly expressed in the kidney, liver, and brain. NA-DCVC deacetylation initiates the transformation into toxic products that ultimately causes acute renal failure. AA3 inhibition is therefore a target of interest to prevent TCE induced nephrotoxicity. Here we report the crystal structure of recombinant mouse AA3 (mAA3) in the presence of its acetate byproduct and two substrates: N(α)-acetyl-L-tyrosine and NA-DCVC. These structures, in conjunction with biochemical data, indicated that AA3 mediates substrate specificity through van der Waals interactions providing a dynamic interaction interface, which facilitates a diverse range of substrates.
    Full-text · Article · Oct 2010 · Proceedings of the National Academy of Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: N-acetyl-S-(1,2-dichlorovinyl)-l-cysteine (Ac-DCVC) and S-(1,2-dichlorovinyl)-l-cysteine (DCVC) are the glutathione conjugation pathway metabolites of a common industrial contaminant and potent nephrotoxicant trichloroethylene (TCE). Ac-DCVC and DCVC are accumulated in the renal proximal tubule where they may be secreted into the urine by an unknown apical transporter(s). In this study, we explored the hypothesis that the apical transport of Ac-DCVC and/or DCVC may be mediated by the multidrug resistance associated protein 2 (Mrp2, ABCC2), which is known to mediate proximal tubular apical ATP-dependent transport of glutathione and numerous xenobiotics and endogenous substances conjugated with glutathione. Transport experiments using membrane vesicles prepared from mouse proximal tubule derived cells expressing mouse Mrp2 utilizing ATPase assay and direct measurements of Ac-DCVC/DCVC using liquid chromatography/tandem mass-spectrometry (LC/MS/MS) demonstrated that mouse Mrp2 mediates ATP-dependent transport of Ac-DCVC. Expression of mouse Mrp2 antisense mRNA significantly inhibited the vectorial basolateral to apical transport of Ac-DCVC but not DCVC in mouse proximal tubule derived cells endogenously expressing mouse Mrp2. The results suggest that Mrp2 may be involved in the renal secretion of Ac-DCVC.
    Full-text · Article · Apr 2010 · Toxicology and Applied Pharmacology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NBCe1-A electrogenically cotransports Na(+) and HCO(3)(-) across the basolateral membrane of renal proximal tubule cells. Eight missense mutations and 3 nonsense mutations in NBCe1-A cause severe proximal renal tubular acidosis (pRTA). In this study, the topologic properties and structural importance of the 8 endogenous residues mutated in pRTA and the in situ topology of NBCe1-A were examined by the substituted cysteine accessibility method. Of the 55 analyzed individually introduced cysteines, 8 were labeled with both membrane permeant (biotin maleimide (BM)) and impermeant (2-((5(6)-tetramethylrhodamine)carboxylamino)ethyl methanethiosulfonate (MTS-TAMRA)) sulfhydryl reagents, 4 with only BM, and 3 with only MTS-TAMRA. The location of the labeled and unlabeled introduced cysteines clearly indicates that the transmembrane region of NBCe1-A contains 14 transmembrane segments (TMs). In this in situ based NBCe1-A topology, residues mutated in pRTA (pRTA residues) are assigned as: Ser(427), TM1; Thr(485) and Gly(486), TM3; Arg(510) and Leu(522), TM4; Ala(799), TM10; and Arg(881), TM12. Substitution of pRTA residues with cysteines impaired the membrane trafficking of R510C and R881C, the remaining membrane-processed constructs had various impaired transport function. Surprisingly, none of the membrane-processed constructs was accessible to labeling with BM and MTS-TAMRA, nor were they functionally sensitive to the inhibition by (2-aminoethyl)methanethiosulfonate. Functional analysis of Thr(485) with different amino acid substitutions indicated it resides in a unique region important for NBCe1-A function. Our findings demonstrate that the pRTA residues in NBCe1-A are buried in the protein complex/lipid bilayer where they perform important structural roles.
    Full-text · Article · Mar 2010 · Journal of Biological Chemistry
  • Source

    Preview · Article · Jan 2010 · Biophysical Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: NaBC1 (the SLC4A11 gene) belongs to the SLC4 family of sodium-coupled bicarbonate (carbonate) transporter proteins and functions as an electrogenic sodium borate cotransporter. Mutations in SLC4A11 cause either corneal abnormalities (corneal hereditary dystrophy type 2) or a combined auditory and visual impairment (Harboyan syndrome). The role of NaBC1 in sensory systems is poorly understood, given the difficulty of studying patients with NaBC1 mutations. We report our findings in Slc4a11−/− mice generated to investigate the role of NaBC1 in sensorineural systems. In wild-type mice, specific NaBC1 immunoreactivity was detected in fibrocytes of the spiral ligament, from the basal to the apical portion of the cochlea. NaBC1 immunoreactivity was present in the vestibular labyrinth, in stromal cells underneath the non-immunoreactive sensory epithelia of the macula utricle, sacule, and crista ampullaris, and the membranous vestibular labyrinth was collapsed. Both auditory brain response and vestibular evoked potential waveforms were significantly abnormal in Slc4a11−/− mice. In the cornea, NaBC1 was highly expressed in the endothelial cell layer with less staining in epithelial cells. However, unlike humans, the corneal phenotype was mild with a normal slit lamp evaluation. Corneal endothelial cells were morphologically normal; however, both the absolute height of the corneal basal epithelial cells and the relative basal epithelial cell/total corneal thickness were significantly increased in Slc4a11−/− mice. Our results demonstrate for the first time the importance of NaBC1 in the audio-vestibular system and provide support for the hypothesis that SLC4A11 should be considered a potential candidate gene in patients with isolated sensorineural vestibular hearing abnormalities.
    No preview · Article · Sep 2009 · Journal of Biological Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NaBC1 (the SLC4A11 gene) belongs to the SLC4 family of sodium-coupled bicarbonate (carbonate) transporter proteins and functions as an electrogenic sodium borate cotransporter. Mutations in SLC4A11 cause either corneal abnormalities (corneal hereditary dystrophy type 2) or a combined auditory and visual impairment (Harboyan syndrome). The role of NaBC1 in sensory systems is poorly understood, given the difficulty of studying patients with NaBC1 mutations. We report our findings in Slc4a11(-/-) mice generated to investigate the role of NaBC1 in sensorineural systems. In wild-type mice, specific NaBC1 immunoreactivity was detected in fibrocytes of the spiral ligament, from the basal to the apical portion of the cochlea. NaBC1 immunoreactivity was present in the vestibular labyrinth, in stromal cells underneath the non-immunoreactive sensory epithelia of the macula utricle, sacule, and crista ampullaris, and the membranous vestibular labyrinth was collapsed. Both auditory brain response and vestibular evoked potential waveforms were significantly abnormal in Slc4a11(-/-) mice. In the cornea, NaBC1 was highly expressed in the endothelial cell layer with less staining in epithelial cells. However, unlike humans, the corneal phenotype was mild with a normal slit lamp evaluation. Corneal endothelial cells were morphologically normal; however, both the absolute height of the corneal basal epithelial cells and the relative basal epithelial cell/total corneal thickness were significantly increased in Slc4a11(-/-) mice. Our results demonstrate for the first time the importance of NaBC1 in the audio-vestibular system and provide support for the hypothesis that SLC4A11 should be considered a potential candidate gene in patients with isolated sensorineural vestibular hearing abnormalities.
    Full-text · Article · Aug 2009 · Journal of Biological Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aminoacylase 3 (AA3) deacetylates N-acetyl-aromatic amino acids and mercapturic acids including N-acetyl-1,2-dichlorovinyl-L-cysteine (Ac-DCVC), a metabolite of a xenobiotic trichloroethylene. Previous studies did not demonstrate metal-dependence of AA3 despite a high homology with a Zn(2+)-metalloenzyme aminoacylase 2 (AA2). A 3D model of mouse AA3 was created based on homology with AA2. The model showed a putative metal binding site formed by His21, Glu24 and His116, and Arg63, Asp68, Asn70, Arg71, Glu177 and Tyr287 potentially involved in catalysis/substrate binding. The mutation of each of these residues to alanine inactivated AA3 except Asn70 and Arg71, therefore the corrected 3D model of mouse AA3 was created. Wild type (wt) mouse AA3 expressed in E. coli contained approximately 0.35 zinc atoms per monomer. Incubation with Co(2+) and Ni(2+) activated wt-AA3. In the cobalt-activated AA3 zinc was replaced with cobalt. Metal removal completely inactivated wt-AA3, whereas addition of Zn(2+), Mn(2+) or Fe(2+) restored initial activity. Co(2+) and to a lesser extent Ni(2+) increased activity several times in comparison with intact wt-AA3. Co(2+) drastically increased the rate of deacetylation of Ac-DCVC and significantly increased the toxicity of Ac-DCVC in the HEK293T cells expressing wt-AA3. The results indicate that AA3 is a metalloenzyme significantly activated by Co(2+) and Ni(2+).
    Full-text · Article · May 2009 · Biochimica et Biophysica Acta

Publication Stats

2k Citations
244.64 Total Impact Points

Institutions

  • 1999-2015
    • University of California, Los Angeles
      • • Department of Medicine
      • • Division of Nephrology
      Los Ángeles, California, United States
  • 1998-2008
    • Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center
      Torrance, California, United States