Ling Luo

307 Hospital of the Chinese People's Liberation Army, Peping, Beijing, China

Are you Ling Luo?

Claim your profile

Publications (23)150.29 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: In vivo quantification of choroidal neovascularization (CNV) based on noninvasive optical coherence tomography (OCT) examination and in vitro choroidal flatmount immunohistochemistry stained of CNV currently were used to evaluate the process and severity of age-related macular degeneration (AMD) both in human and animal studies. This study aimed to investigate the correlation between these two methods in murine CNV models induced by subretinal injection. Methods: CNV was developed in 20 C57BL6/j mice by subretinal injection of adeno-associated viral delivery of a short hairpin RNA targeting sFLT-1 (AAV.shRNA.sFLT-1), as reported previously. After 4 weeks, CNV was imaged by OCT and fluorescence angiography. The scaling factors for each dimension, x, y, and z (μm/pixel) were recorded, and the corneal curvature standard was adjusted from human (7.7) to mice (1.4). The volume of each OCT image stack was calculated and then normalized by multiplying the number of voxels by the scaling factors for each dimension in Seg3D software (University of Utah Scientific Computing and Imaging Institute, available at http://www.sci.utah.edu/cibc-software/seg3d.html). Eighteen mice were prepared for choroidal flatmounts and stained by CD31. The CNV volumes were calculated using scanning laser confocal microscopy after immunohistochemistry staining. Two mice were stained by Hematoxylin and Eosin for observing the CNV morphology. Results: The CNV volume calculated using OCT was, on average, 2.6 times larger than the volume calculated using the laser confocal microscopy. The correlation statistical analysis showed OCT measuring of CNV correlated significantly with the in vitro method (R 2 =0.448, P = 0.001, n = 18). The correlation coefficient for CNV quantification using OCT and confocal microscopy was 0.693 (n = 18, P = 0.001). Conclusions: There is a fair linear correlation on CNV volumes between in vivo and in vitro methods in CNV models induced by subretinal injection. The result might provide a useful evaluation of CNV both for the studies using CNV models induced by subretinal injection and human AMD studies.
    No preview · Article · May 2015 · Chinese medical journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the effect of Foxp3 gene modified dendritic cells (Foxp3 + DC) on allogeneic T cells proliferation and to study the effect of Foxp3 + DC on corneal allograft rejection. Lentivirus-Foxp3 was transfected into DC2.4 cells, as Foxp3 + DC cells. 42 BALB/c mice were randomly divided into: Group A (n = 6), normal group; Group B (n = 12), Group C (n = 12) and Group D (n = 12), allograft groups, were treated with normal saline, DC2.4, Foxp3 + DC by intraperitoneal injection, respectively. Compared with the control group, Foxp3 protein in the Foxp3 + DC cells increased significantly (P < 0.05); the expressions of CD80 and CD86 immunophenotypes of Foxp3 + DC cells decreased significantly (P < 0.05); IL-12 secretion reduced (P < 0.05), but IL-10 secretion was promoted (P < 0.05). The average transplant survival time in Group B was (14.833 ± 1.472) d, and Group C and Group D led to a statistically significant prolongation of transplant survival to (17.667 ± 1.366, 23.000 ± 2.000) d (P < 0.05) respectively. 14 d after transplantation, as compared with Group C and D, the expressions of IFN-γ in grafts markedly increased in Group B. 14 d after transplantation, as compared with Group B, the expressions of Foxp3 mRNA, IDO mRNA in grafts decreased remarkably in Group C and D (P < 0.05); as compared with Group C, the expressions of Foxp3 mRNA, IDO mRNA in grafts decreased remarkably in Group D (P < 0.05). Foxp3 + DC cells reduce the expression of costimulatory factors, reduce the secretion of IL-12, promote IL-10 production and inhibit the stimulation of alloreactive T cell proliferation response capacity. Foxp3 + DC cells play important roles in inhibiting corneal allograft immune response and prolonging graft survival time.
    No preview · Article · Mar 2015 · International Journal of Clinical and Experimental Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Optimal phototransduction requires separation of the avascular photoreceptor layer from the adjacent vascularized inner retina and choroid. Breakdown of peri-photoreceptor vascular demarcation leads to retinal angiomatous proliferation or choroidal neovascularization, two variants of vascular invasion of the photoreceptor layer in age-related macular degeneration (AMD), the leading cause of irreversible blindness in industrialized nations. Here we show that sFLT-1, an endogenous inhibitor of vascular endothelial growth factor A (VEGF-A), is synthesized by photoreceptors and retinal pigment epithelium (RPE), and is decreased in human AMD. Suppression of sFLT-1 by antibodies, adeno-associated virus-mediated RNA interference, or Cre/lox-mediated gene ablation either in the photoreceptor layer or RPE frees VEGF-A and abolishes photoreceptor avascularity. These findings help explain the vascular zoning of the retina, which is critical for vision, and advance two transgenic murine models of AMD with spontaneous vascular invasion early in life.
    Full-text · Article · Jun 2013 · eLife Sciences
  • Source

    Full-text · Article · May 2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Corneal transparency is a prerequisite for optimal vision and in turn relies on an absence of blood and lymphatic vessels, which is remarkable given the cornea's proximity to vascularized tissues. Membrane-bound vascular endothelial growth factor receptor 3 (VEGFR-3), with its cognate ligand vascular endothelial growth factor C (VEGF-C), is a major mediator of lymphangiogenesis. Here, we demonstrate that the cornea expresses a novel truncated isoform of this molecule, soluble VEGFR-3 (sVEGFR-3), which is critical for corneal alymphaticity, by sequestering VEGF-C. sVEGFR-3 binds and sequesters VEGF-C, thereby blocking signaling through VEGFR-3 and suppressing lymphangiogenesis induced by VEGF-C. sVEGFR-3 knockdown leads to lymphangiogenesis and hemangiogenesis in the mouse cornea, while overexpression of sVEGFR-3 inhibits lymphangiogenesis and hemangiogenesis in a murine suture injury model. Pax6(+/-) mice spontaneously develop corneal and lymphatic vessels and are deficient in sVEGFR-3. sVEGFR-3 suppresses hemangiogenesis by blocking VEGF-C-induced phosphorylation of VEGFR-2. Overexpression of sVEGFR-3 leads to a 5-fold increase in corneal transplant survival in mouse models. sVEGFR-3 holds promise as a molecule to control and regress lymphatic-vessel-based dysfunction. Therefore, sVEGFR-3 has the potential to protect the injured cornea from opacification secondary to infection, inflammation, or transplant rejection.
    Preview · Article · Mar 2013 · Blood
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Monthly intraocular injections are widely used to deliver protein-based drugs that cannot cross the blood-retina barrier for the treatment of leading blinding diseases such as age-related macular degeneration (AMD). This invasive treatment carries significant risks, including bleeding, pain, infection, and retinal detachment. Further, current therapies are associated with a rate of retinal fibrosis and geographic atrophy significantly higher than that which occurs in the described natural history of AMD. A novel therapeutic strategy which improves outcomes in a less invasive manner, reduces risk, and provides long-term inhibition of angiogenesis and fibrosis is a felt medical need. Here we show that a single intravenous injection of targeted, biodegradable nanoparticles delivering a recombinant Flt23k intraceptor plasmid homes to neovascular lesions in the retina and regresses CNV in primate and murine AMD models. Moreover, this treatment suppressed subretinal fibrosis, which is currently not addressed by clinical therapies. Murine vision, as tested by OptoMotry©, significantly improved with nearly 40% restoration of visual loss induced by CNV. We found no evidence of ocular or systemic toxicity from nanoparticle treatment. These findings offer a nanoparticle-based platform for targeted, vitreous-sparing, extended-release, nonviral gene therapy.
    Full-text · Article · Mar 2013 · ACS Nano
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The KDR gene, which participates in angiogenesis and lymphangiogenesis, produces two functionally distinct protein products, membrane-bound KDR (mbKDR) and its isoform, soluble KDR (sKDR). Since sKDR does not have a tyrosine kinase domain and does not dimerize, it is principally an antagonist of lymphangiogenesis by sequestering VEGF-C. Alternative polyadenylation of exon 30 or intron 13 leads to the production of mbKDR or sKDR, respectively, yet the regulatory mechanisms are unknown. Here we show that an antisense morpholino oligomer directed against the exon 13-intron 13 junction increases sKDR (suppressing lymphangiogenesis) and decreases mbKDR (inhibiting hemangiogenesis). The latent polyadenylation site in intron 13 of KDR is activated by blocking the upstream 5' splicing site with an antisense morpholino oligomer. Intravitreal morpholino injection suppressed laser choroidal neovascularization while increasing sKDR. In the mouse cornea, subconjunctival injection of the morpholino-inhibited corneal angiogenesis and lymphangiogenesis, and suppressed graft rejection after transplantation. Thus, this morpholino can be used for concurrent suppression of hemangiogenesis and lymphangiogenesis. This study offers new insight into the mechanisms and potential therapeutic modulation of alternative polyadenylation.-Uehara, H., Cho, Y. K., Simonis, J., Cahoon, J., Archer, B., Luo, L., Das, S. K., Singh, N., Ambati, J., Ambati, B. K. Dual suppression of hemangiogenesis and lymphangiogenesis by splice-shifting morpholinos targeting vascular endothelial growth factor receptor 2 (KDR).
    Preview · Article · Sep 2012 · The FASEB Journal

  • No preview · Conference Paper · May 2012
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To determine the efficacy of a plasmid containing a small hairpin RNA expression cassette (pSEC.shRNA) against VEGF-A-loaded poly(lactic co-glycolic acid) nanoparticles (PLGA NPs) in the sustained regression of murine corneal neovascularization. PLGA nanoparticles were loaded with pSEC.shRNA.VEGF-A plasmids using the double emulsion-solvent evaporation method. KNV was induced in BALB/c mice by mechanical-alkali injury. Four weeks after induction of KNV, the mice were randomly divided to receive one of four treatments intrastromally: pSEC.shRNA.VEGF-A PLGA NPs (2 μg plasmid); naked pSEC.shRNA.VEGF-A plasmid only (2 μg plasmid); control blank PLGA NPs (equivalent dry weight of NPs); and vehicle. Two and five days after intervention, corneas were harvested to determine VEGF-A gene and protein expression using reverse transcriptase polymerase chain reaction and ELISA, respectively. Four weeks after intervention, corneas were photographed, mice sacrificed, and the corneal whole mounts were immunostained for CD31 (panendothelial cell marker). Immunofluorescence microscopy was performed and the neovascular area was quantitated. VEGF-A mRNA (49.6 ± 12.4 vs. 82.9 ± 6.0%, P < 0.01) and protein (4.0 ± 5.2 vs. 20.0 ± 7.5 ρg VEGF-A/mg total protein, P < 0.05) expression were significantly reduced in pSEC.shRNA.VEGF-A PLGA NP-treated corneas as compared with control blank NP. The pSEC.shRNA.VEGF-A PLGA NP-treated corneas showed significant regression in the mean fractional areas of KNV (0.125 ± 0.042; 12.5%, P <0.01) compared with both naked plasmid only (0.283 ± 0.004; 28.3%) and control (blank NPs = 0.555 ± 0.072, 55.5%) at 4 weeks post-treatment. The pSEC.shRNA.VEGF-A-loaded PLGA NPs are an effective, nonviral, nontoxic, and sustainable form of gene therapy for the regression of murine KNV.
    Full-text · Article · Mar 2012 · Investigative ophthalmology & visual science
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To determine if nanoparticles delivering plasmids expressing Flt23k (an anti-VEGF intraceptor) can enhance murine cornea transplant survival and whether their effect is synergistic with steroid therapy. Biodegradable PLGA Flt23k loaded or blank nanoparticles were prepared using the emulsion solvent evaporation Graft survival, corneal neovascularization, and corneal lymphangiogenesis were compared among the Flt23k nanoparticles, blank nanoparticles, triamcinolone acetonide, and PBS groups following subconjunctival injection in mice that underwent penetrating keratoplasty. Graft survival, corneal neovascularization, and corneal lymphangiogenesis in a group treated with both nanoparticles and steroid therapy were also analyzed. The Flt23k nanoparticle group showed less neovascularization, lymphangiogenesis, and graft failure compared with the PBS control group (P < 0.01). The 2-month graft survival rate was 20% in the Flt23k nanoparticle group with no grafts surviving in the PBS group. When the Flt23k nanoparticle was combined with steroid therapy, a significant increase in graft survival was seen compared with both steroid treatment alone (P < 0.05) and steroid combined with blank nanoparticle treatment (P < 0.05). The 2-month graft survival rate was 91.6% in the combination group compared with 47.6% in the triamcinolone-only group and 42.4% in the triamcinolone plus blank nanoparticle group. Anti-VEGF nanoparticles (Flt23k) have a significant effect on decreasing neovascularization and lymphangiogenesis, resulting in increased graft survival in penetrating keratoplasty. This beneficial effect is synergistically enhanced with steroid treatment.
    Full-text · Article · Mar 2012 · Investigative ophthalmology & visual science
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Anomalous neuritogenesis is a hallmark of neurodegenerative disorders, including retinal degenerations, epilepsy, and Alzheimer's disease. The neuritogenesis processes result in a partial reinnervation, new circuitry, and functional changes within the deafferented retina and brain regions. Using the light-induced retinal degeneration (LIRD) mouse model, which provides a unique platform for exploring the mechanisms underlying neuritogenesis, we found that retinoid X receptors (RXRs) control neuritogenesis. LIRD rapidly triggered retinal neuron neuritogenesis and up-regulated several key elements of retinoic acid (RA) signaling, including retinoid X receptors (RXRs). Exogenous RA initiated neuritogenesis in normal adult retinas and primary retinal cultures and exacerbated it in LIRD retinas. However, LIRD-induced neuritogenesis was partly attenuated in retinol dehydrogenase knockout (Rdh12(-/-)) mice and by aldehyde dehydrogenase inhibitors. We further found that LIRD rapidly increased the expression of glutamate receptor 2 and β Ca(2+)/calmodulin-dependent protein kinase II (βCaMKII). Pulldown assays demonstrated interaction between βCaMKII and RXRs, suggesting that CaMKII pathway regulates the activities of RXRs. RXR antagonists completely prevented and RXR agonists were more effective than RA in inducing neuritogenesis. Thus, RXRs are in the final common path and may be therapeutic targets to attenuate retinal remodeling and facilitate global intervention methods in blinding diseases and other neurodegenerative disorders.
    Full-text · Article · Sep 2011 · The FASEB Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in the elderly. Wet AMD includes typical choroidal neovascularization (CNV) and polypoidal choroidal vasculopathy (PCV). The etiology and pathogenesis of CNV and PCV are not well understood. Genome-wide association studies have linked a multifunctional serine protease, HTRA1, to AMD. However, the precise role of HTRA1 in AMD remains elusive. By transgenically expressing human HTRA1 in mouse retinal pigment epithelium, we showed that increased HTRA1 induced cardinal features of PCV, including branching networks of choroidal vessels, polypoidal lesions, severe degeneration of the elastic laminae, and tunica media of choroidal vessels. In addition, HTRA1 mice displayed retinal pigment epithelium atrophy and photoreceptor degeneration. Senescent HTRA1 mice developed occult CNV, which likely resulted from the degradation of the elastic lamina of Bruch's membrane and up-regulation of VEGF. Our results indicate that increased HTRA1 is sufficient to cause PCV and is a significant risk factor for CNV.
    Full-text · Article · Aug 2011 · Proceedings of the National Academy of Sciences

  • No preview · Conference Paper · May 2011
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Whirlin is the causative gene for Usher syndrome type IID (USH2D), a condition manifested as both retinitis pigmentosa and congenital deafness. Mutations in this gene cause disruption of the USH2 protein complex composed of USH2A and VLGR1 at the periciliary membrane complex (PMC) in photoreceptors. In this study, the adeno-associated virus (AAV)-mediated whirlin replacement was evaluated as a treatment option. Murine whirlin cDNA driven by the human rhodopsin kinase promoter (hRK) was packaged as an AAV2/5 vector and delivered into the whirlin knockout retina through subretinal injection. The efficiency, efficacy, and safety of this treatment were examined using immunofluorescent staining, confocal imaging, immunoelectron microscopy, Western blot analysis, histologic analysis, and electroretinogram. The AAV-mediated whirlin expression started at two weeks, reached its maximum level at 10 weeks, and lasted up to six months post injection. The transgenic whirlin product had a molecular size and an expression level comparable to the wild-type. It was distributed at the PMC in both rod and cone photoreceptors from the central to peripheral retina. Importantly, the transgenic whirlin restored the cellular localization and expression level of both USH2A and VLGR1 and did not cause defects in the retinal histology and function in the whirlin knockout mouse. Whirlin transgene recruits USH2A and VLGR1 to the PMC and is sufficient for the formation of the USH2 protein complex in photoreceptors. The combined hRK and AAV gene delivery system could be an effective gene therapy approach to treat retinal degeneration in USH2D patients.
    Preview · Article · Apr 2011 · Investigative ophthalmology & visual science
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To record multifocal electroretinogram from different dosage of N(2)O(4) injected mice. In order to provide a foundation for further study. Normal winstar mice which were injected by different dosage of N(2)O(4) were studied for recording multifocal electroretinogram in the same time in the evening after N(2)O(4) injection. The latency and amplitude density of "b" wave of each ring of multifocal electroretinogram was studied. The latency of "b" wave of each ring of multifocal electroretinogram of each group varies to each other. But the difference of the amplitude of "b" wave of multifocal electroretinogram of each ring between each group had no significance. Recording multifocal electroretinogram of N(2)O(4) injected mice will give more support for further study in related science and clinic research.
    Preview · Article · Sep 2010 · International Journal of Ophthalmology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is known that SPARC gates VEGF-A signal transduction towards KDR, the primary angiogenic VEGF receptor. We sought to determine whether inhibition of SPARC activity using anti-SPARC peptide could inhibit laser-induced CNV by promoting binding of VEGF-A to FLT-1. We created anti-SPARC l-peptide and retro-inverso anti-SPARC d-peptide. Anti-SPARC peptides or PBS were injected intravitreally 1day before or after laser induction. Intravitreal injection of anti-SPARC l-peptide 1day before laser induction promotes FLT-1 phosphorylation and inhibited laser-induced CNV and anti-SPARC d-peptide had no effect. Injection 1day after laser injury did not affect size of laser-induced CNV. Inhibition of SPARC activity could be complementary to existing anti-CNV therapy.
    Full-text · Article · Dec 2009 · Vision research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Age-related macular degeneration is the most common cause of irreversible visual impairment in the developed world. Advanced age-related macular degeneration consists of geographic atrophy and choroidal neovascularization. The specific genetic variants that predispose patients to geographic atrophy are largely unknown. We tested for an association between the functional toll-like receptor 3 gene (TLR3) variant rs3775291 (involving the substitution of phenylalanine for leucine at amino acid 412) and age-related macular degeneration in Americans of European descent. We also tested for the effect of TLR3 Leu and Phe variants on the viability of human retinal pigment epithelial cells in vitro and on apoptosis of retinal pigment epithelial cells from wild-type mice and Tlr3-knockout (Tlr3(-/-)) mice. The Phe variant (encoded by the T allele at rs3775291) was associated with protection against geographic atrophy (P=0.005). This association was replicated in two independent case-control series of geographic atrophy (P=5.43x10(-4) and P=0.002). No association was found between TLR3 variants and choroidal neovascularization. A prototypic TLR3 ligand induced apoptosis in a greater fraction of human retinal pigment epithelial cells with the Leu-Leu genotype than those with the Leu-Phe genotype and in a greater fraction of wild-type mice than Tlr3(-/-) mice. The TLR3 412Phe variant confers protection against geographic atrophy, probably by suppressing the death of retinal pigment epithelial cells. Since double-stranded RNA (dsRNA) can activate TLR3-mediated apoptosis, our results suggest a role of viral dsRNA in the development of geographic atrophy and point to the potential toxic effects of short-interfering-RNA therapies in the eye.
    Full-text · Article · Sep 2008 · New England Journal of Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Significant morbidity and mortality among patients with diabetes mellitus result largely from a greatly increased incidence of microvascular complications. Proliferative diabetic retinopathy (PDR) and end stage renal disease (ESRD) are two of the most common and severe microvascular complications of diabetes. A high concordance exists in the development of PDR and ESRD in diabetic patients, as well as strong familial aggregation of these complications, suggesting a common underlying genetic mechanism. However, the precise gene(s) and genetic variant(s) involved remain largely unknown. Erythropoietin (EPO) is a potent angiogenic factor observed in the diabetic human and mouse eye. By a combination of case-control association and functional studies, we demonstrate that the T allele of SNP rs1617640 in the promoter of the EPO gene is significantly associated with PDR and ESRD in three European-American cohorts [Utah: P = 1.91 x 10(-3); Genetics of Kidneys in Diabetes (GoKinD) Study: P = 2.66 x 10(-8); and Boston: P = 2.1 x 10(-2)]. The EPO concentration in human vitreous body was 7.5-fold higher in normal subjects with the TT risk genotype than in those with the GG genotype. Computational analysis suggests that the risk allele (T) of rs1617640 creates a matrix match with the EVI1/MEL1 or AP1 binding site, accounting for an observed 25-fold enhancement of luciferase reporter expression as compared with the G allele. These results suggest that rs1617640 in the EPO promoter is significantly associated with PDR and ESRD. This study identifies a disease risk-associated gene and potential pathway mediating severe diabetic microvascular complications.
    Full-text · Article · Jun 2008 · Proceedings of the National Academy of Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Single nucleotide polymorphism (SNP), rs11200638, in the promoter of HTRA1 has recently been shown to increase the risk for AMD. In order to investigate the association of this HTRA1 polymorphism and the bilaterality of AMD, we genotyped rs11200638 in control, unilateral, and bilateral advanced AMD patients. The A allele for SNP rs11200638 in HTRA1, was significantly more prevalent in bilateral wet AMD and GA patients than in unilateral groups (p=.02 and p=.03, respectively). The homozygote odds ratios of bilateral wet AMD and GA are significantly greater than those seen in unilateral groups (twofold and threefold increase, respectively). This finding is consistent with the role of HTRA1 in AMD pathogenesis and will help aid in the clinical management and prognosis of AMD patients.
    Full-text · Article · Mar 2008 · Vision Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Exfoliation glaucoma (XFG) is the commonest identifiable cause of secondary open-angle glaucoma worldwide, characterized by the deposition of fibrillar proteins in the anterior segment of the eye. We investigated LOXL1 gene variants previously identified to confer susceptibility to XFG in a Utah Caucasian cohort. After a standard eye examination protocol we genotyped SNPs rs2165241and rs3825942 in 62 XFG or exfoliation syndrome (XFS) patients and 170 normal controls. Genotype frequency distribution, odds ratios (ORs) and population attributable risks were calculated for the risk alleles. The SNP rs2165241 was significantly associated with XFG and XFS (p = 4.13 x 10(-9)) for an additive model, OR(het) = 4.42 (2.30-8.50), OR(hom) = 34.19 (4.48-261.00); T allele: 83.1% in cases versus 52.4% in controls). Significant association was also found for rs3825942: (p = 1.89 x 10(-6)). Our findings confirm genetic association of LOXL1 with XFG and XFS and implicate a potential role of cross linking of elastin in the pathogenesis of XFG. This information will potentially guide glaucoma monitoring efforts by targeting individuals whose genetic profiles put them at higher risk for XFG.
    Full-text · Article · Mar 2008 · Cell cycle (Georgetown, Tex.)