Klaus Reuter

Philipps University of Marburg, Marburg, Hesse, Germany

Are you Klaus Reuter?

Claim your profile

Publications (40)144.04 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Shigella bacteria constitute the causative agent of bacillary dysentery, an acute inflammatory disease causing death of more than one million humans per year. Null mutation in the tgt gene encoding the tRNA-modifying enzyme tRNA-guanine transglycosylase (Tgt) was found to drastically decrease pathogenicity of Shigella bacteria, suggesting Tgt as putative target for selective antibiotics. The enzyme is only functionally active as homodimer, thus interference with its protein-protein interface formation is an attractive opportunity for therapeutic intervention. To better understand the driving forces responsible for the assembly, stability and formation of the homodimer, we studied the properties of residues establishing the dimer interface in details. We performed site-directed mutagenesis and controlled shifts of the monomer/dimer equilibrium ratio in solution in concentration-dependent manner by native mass spectrometry and used crystal structure analysis to elucidate the geometrical modulations resulting from mutational variations. The wild type nearly exclusively exhibits dimer geometry. A patch of four aromatic amino acids, embedded into a ring of hydrophobic residues and further stabilized by a network of H-bonds is essential for the stability of the dimer contact. Accordingly, any perturbance of the constitution of this aromatic patch by non-aromatic residues reduces dimer stability significantly with some of these exchanges resulting in nearly exclusively monomeric state. Apart from the aromatic hot spot, the interface comprises an extended loop-helix motif which exhibits remarkable flexibility. In the destabilized mutant variants, the loop-helix motif adopts deviating conformations in the interface region and a number of water molecules, penetrated into the interface, are observed.
    No preview · Article · May 2015 · ACS Chemical Biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Interference with protein-protein interactions of interfaces larger than 1500 Å2 by small drug-like molecules is notoriously difficult, particularly if targeting homodimers. The tRNA modifying enzyme Tgt is only functionally active as a homodimer. Thus, blocking Tgt dimerization is a promising strategy for drug therapy as this protein is key to the development of Shigellosis. Our goal was to identify hot-spot residues which, upon mutation, results in a predominantly monomeric state of Tgt. The detailed understanding of the spatial location and stability contribution of the individual interaction hot-spot residues and the plasticity of motifs involved in the interface formation is a crucial prerequisite for the rational identification of drug-like inhibitors addressing the respective dimerization interface. Using computational analyses, we identified hot-spot residues that contribute particularly to dimer stability: a cluster of hydrophobic and aromatic residues as well as several salt bridges. This in silico prediction led to the identification of a promising double mutant, which was validated experimentally. Native nano-ESI mass spectrometry showed that the dimerization of the suggested mutant is largely prevented resulting in a predominantly monomeric state. Crystal structure analysis and enzyme kinetics of the mutant variant further support the evidence for enhanced monomerization and provide first insights into the structural consequences of the dimer destabilization. © Proteins 2014;. © 2014 Wiley Periodicals, Inc.
    No preview · Article · Oct 2014 · Proteins Structure Function and Bioinformatics
  • [Show abstract] [Hide abstract]
    ABSTRACT: Clostridium propionicum is the only organism known to ferment β-alanine, a constituent of coenzyme A (CoA) and the phosphopantetheinyl prosthetic group of holo-acyl carrier protein. The first step in the fermentation is a CoA-transfer to β-alanine. Subsequently, the resulting β-alanyl-CoA is deaminated by the enzyme β-alanyl-CoA:ammonia lyase (Acl) to reversibly form ammonia and acrylyl-CoA. We have determined the crystal structure of Acl in its apo-form at a resolution of 0.97 Å as well as in complex with CoA at a resolution of 1.59 Å. The structures reveal that the enyzme belongs to a superfamily of proteins exhibiting a so called "hot dog fold" which is characterised by a five-stranded antiparallel β-sheet with a long α-helix packed against it. The functional unit of all "hot dog fold" proteins is a homodimer containing two equivalent substrate binding sites which are established by the dimer interface. In the case of Acl, three functional dimers combine to a homohexamer strongly resembling the homohexamer formed by YciA-like acyl-CoA thioesterases. Here, we propose an enzymatic mechanism based on the crystal structure of the Acl·CoA complex and molecular docking. © Proteins 2014;. © 2014 Wiley Periodicals, Inc.
    No preview · Article · Sep 2014 · Proteins Structure Function and Bioinformatics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacterial tRNA-guanine transglycosylase (Tgt) catalyses the exchange of the genetically encoded guanine at the wobble position of tRNAs(His,Tyr,Asp,Asn) by the premodified base preQ1, which is further converted to queuine at the tRNA level. As eucaryotes are not able to synthesise queuine de novo but acquire it through their diet, eucaryotic Tgt directly inserts the hypermodified base into the wobble position of the tRNAs mentioned above. Bacterial Tgt is required for the efficient pathogenicity of Shigella sp, the causative agent of bacillary dysentery and, hence, it constitutes a putative target for the rational design of anti-Shigellosis compounds. Since mammalian Tgt is known to be indirectly essential to the conversion of phenylalanine to tyrosine, it is necessary to create substances which only inhibit bacterial but not eucaryotic Tgt. Therefore, it seems of utmost importance to study selectivity-determining features within both types of proteins. Homology models of Caenorhabditis elegans Tgt and human Tgt suggest that the replacement of Cys158 and Val233 in bacterial Tgt (Zymomonas mobilis Tgt numbering) by valine and accordingly glycine in eucaryotic Tgt largely accounts for the different substrate specificities. In the present study we have created mutated variants of Z. mobilis Tgt in order to investigate the impact of a Cys158Val and a Val233Gly exchange on catalytic activity and substrate specificity. Using enzyme kinetics and X-ray crystallography, we gained evidence that the Cys158Val mutation reduces the affinity to preQ1 while leaving the affinity to guanine unaffected. The Val233Gly exchange leads to an enlarged substrate binding pocket, that is necessary to accommodate queuine in a conformation compatible with the intermediately covalently bound tRNA molecule. Contrary to our expectations, we found that a priori queuine is recognised by the binding pocket of bacterial Tgt without, however, being used as a substrate.
    Preview · Article · May 2013 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: Apart from competitive active-site inhibition of protein function, perturbance of protein-protein interactions by small molecules in oligodomain enzymes opens new perspectives for innovative therapeutics. tRNA-guanine transglycosylase (TGT), a potential target to treat shigellosis, is only active as homodimer. Consequently, disruption of the dimer interface by small molecules provides a novel inhibition mode. A special feature of this enzyme is the short distance between active site and rim of the dimer interface. This suggests design of expanded active-site inhibitors decorated with rigid, needle-type substituents to spike into potential hot spots of the interaction interface. Ligands with attached ethinyl-type substituents have been synthesized and characterized by Kd measurements, crystallography, noncovalent mass spectrometry and computer simulations. In contrast to previously determined crystal structures with non-extended active-site inhibitors, a well-defined loop-helix motif, involved in several contacts across the dimer interface, falls apart and suggests enhanced flexibility once the spiking ligands are bound. Mass spectrometry indicates significant destabilization but not full disruption of the complexed TGT homodimer in solution. As directed interactions of the loop-helix motif obviously do not determine dimer stability, a structurally conserved hydrophobic patch composed by several aromatic amino acids is suggested as interaction hot spot. The residues of this patch reside on a structurally highly conserved helix-turn-helix motif which remains unaffected by the bound spiking ligands. Nevertheless, it is shielded from solvent access by the loop-helix motif which becomes perturbed upon binding of the spiking ligands which serves as a possible explanation for reduced interface stability.
    No preview · Article · Mar 2013 · ACS Chemical Biology
  • Source
    Clemens Grimm · Ashwin Chari · Klaus Reuter · Utz Fischer
    [Show abstract] [Hide abstract]
    ABSTRACT: Most commercially available crystallization screens are sparse-matrix screens with a predominance of inorganic salts and polyethylene glycols (PEGs) as precipitants. It was noted that commercially available screens are largely unsatisfactory for the purpose of the crystallization of multimeric protein and protein-nucleic acid complexes. This was reasoned to be a consequence of the redundancy in screening crystallization parameter space by the predominance of PEG as a precipitant in standard screens and it was suggested that this limitation could be overcome by introducing a variety of other organic polymers. Here, a set of 288 crystallization conditions was devised based on alternative polymeric precipitants and tested against a set of 20 different proteins/complexes; finally, a screen comprising the 96 most promising conditions designed to complement PEG- and salt-based commercial screens was proposed.
    Full-text · Article · Jun 2010 · Acta Crystallographica Section D Biological Crystallography
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As a response to high osmolality, many microorganisms synthesize various types of compatible solutes. These organic osmolytes aid in offsetting the detrimental effects of low water activity on cell physiology. One of these compatible solutes is ectoine. A sub-group of the ectoine producer's enzymatically convert this tetrahydropyrimidine into a hydroxylated derivative, 5-hydroxyectoine. This compound also functions as an effective osmostress protectant and compatible solute but it possesses properties that differ in several aspects from those of ectoine. The enzyme responsible for ectoine hydroxylation (EctD) is a member of the non-heme iron(II)-containing and 2-oxoglutarate-dependent dioxygenases (EC 1.14.11). These enzymes couple the decarboxylation of 2-oxoglutarate with the formation of a high-energy ferryl-oxo intermediate to catalyze the oxidation of the bound organic substrate. We report here the crystal structure of the ectoine hydroxylase EctD from the moderate halophile Virgibacillus salexigens in complex with Fe(3+) at a resolution of 1.85 A. Like other non-heme iron(II) and 2-oxoglutarate dependent dioxygenases, the core of the EctD structure consists of a double-stranded beta-helix forming the main portion of the active-site of the enzyme. The positioning of the iron ligand in the active-site of EctD is mediated by an evolutionarily conserved 2-His-1-carboxylate iron-binding motif. The side chains of the three residues forming this iron-binding site protrude into a deep cavity in the EctD structure that also harbours the 2-oxoglutarate co-substrate-binding site. Database searches revealed a widespread occurrence of EctD-type proteins in members of the Bacteria but only in a single representative of the Archaea, the marine crenarchaeon Nitrosopumilus maritimus. The EctD crystal structure reported here can serve as a template to guide further biochemical and structural studies of this biotechnologically interesting enzyme family.
    Full-text · Article · May 2010 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: The indispensability of RNase P for cell survival and its distinct architecture in Bacteria and Eukarya qualify this ribonucleoprotein enzyme as a potential drug target, although natural inhibitors of bacterial RNase P have not yet been identified. We report on the various attempts pursued so far to explore RNase P as a drug target. After an introduction into the topic and a brief historic synopsis, we will discuss antisense-based strategies, will detail recent advancements with respect to aminoglycoside-arginine conjugates, and will describe in silico-based high-throughput screening procedures that target the bacterial RNase P protein. The reader will be further updated on low molecular weight compounds that inhibit the activity of RNase P from the slime mold Dictyostelium, an amoebic eukaryote that might serve as a model system for some human pathogens. The chapter will finally be closed by mentioning ligands that bind to tRNA substrates as well as the macrolides which were reported to activate bacterial RNase P.
    No preview · Chapter · Dec 2009
  • [Show abstract] [Hide abstract]
    ABSTRACT: The tRNA-modifying enzyme tRNA-guanine transglycosylase (Tgt) is a putative target for new selective antibiotics against Shigella bacteria. The formation of a Tgt homodimer was suggested on the basis of several crystal structures of Tgt in complex with RNA. In the present study, noncovalent mass spectrometry was used (i) to confirm the dimeric oligomerization state of Tgt in solution and (ii) to evidence the binding stoichiometry of the complex formed between Tgt and its full-length substrate tRNA. To further investigate the importance of Tgt protein-protein interaction, point mutations were introduced into the dimer interface in order to study their influence on the formation of the catalytically active complex. Enzyme kinetics revealed a reduced catalytic activity of these mutated variants, which could be related to a destabilization of the dimer formation as evidenced by both noncovalent mass spectrometry and X-ray crystallography. Finally, the effect of inhibitor binding was investigated by noncovalent mass spectrometry, thus providing the binding stoichiometries of Tgt:inhibitor complexes and showing competitive interactions in the presence of tRNA. Inhibitors that display an influence on the formation of the dimer interface in the crystal structure are promising candidates to alter the protein-protein interaction, which could provide a new way to inhibit Tgt.
    No preview · Article · Aug 2009 · Journal of Molecular Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacterial tRNA-guanine transglycosylase (Tgt) catalyses the exchange of guanine in the wobble position of particular tRNAs by the modified base preQ(1). In vitro, however, the enzyme is also able to insert the immediate biosynthetic precursor, preQ(0), into those tRNAs. This substrate promiscuity is based on a peptide switch in the active site, gated by the general acid/base Glu235. The switch alters the properties of the binding pocket to allow either the accommodation of guanine or preQ(1). The peptide conformer recognising guanine, however, is also able to bind preQ(0). To investigate selectivity regulation, kinetic data for Zymomonas mobilis Tgt were recorded. They show that selectivity in favour of the actual substrate preQ(1) over preQ(0) is not achieved by a difference in affinity but via a higher turnover rate. Moreover, a Tgt(Glu235Gln) variant was constructed. The mutation was intended to stabilise the peptide switch in the conformation favouring guanine and preQ(0) binding. Kinetic characterisation of the mutated enzyme revealed that the Glu235Gln exchange has, with respect to all substrate bases, no significant influence on k(cat). In contrast, K(M)(preQ(1)) is drastically increased, while K(M)(preQ(0)) seems to be decreased. Hence, regarding k(cat)/K(M) as an indicator for catalytic efficiency, selectivity of Tgt in favour of preQ(1) is abolished or even inverted in favour of preQ(0) for Tgt(Glu235Gln). Crystal structures of the mutated enzyme confirm that the mutation strongly favours the binding pocket conformation required for the accommodation of guanine and preQ(0). The way this is achieved, however, significantly differs from that predicted based on crystal structures of wild-type Tgt.
    Full-text · Article · Dec 2007 · Journal of Molecular Biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: The enzyme S-adenosylmethionine:tRNA ribosyltransferase-isomerase (QueA) is involved in the biosynthesis of the hypermodified tRNA nucleoside queuosine. It is unprecedented in nature as it uses the cofactor S-adenosylmethionine as the donor of a ribosyl group. We have determined the crystal structure of Bacillus subtilis QueA at a resolution of 2.9A. The structure reveals two domains representing a 6-stranded beta-barrel and an alpha beta alpha-sandwich, respectively. All amino acid residues invariant in the QueA enzymes of known sequence cluster at the interface of the two domains indicating the localization of the substrate binding region and active center. Comparison of the B. subtilis QueA structure with the structure of QueA from Thermotoga maritima suggests a high domain flexibility of this enzyme.
    No preview · Article · Jan 2007 · Biochemical and Biophysical Research Communications
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper describes the rational design, synthesis, and biological evaluation of a new generation of inhibitors of the bacterial enzyme tRNA-guanine transglycosylase (TGT), which has been identified as a new target in the fight against bacillary dysentery (Shigellosis). The enzyme catalyzes the exchange of guanine in the anticodon wobble position of tRNA by the modified base preQ1, a guanine derivative, according to a ping-pong mechanism involving a covalent TGT-tRNA intermediate (Fig. 2). Based on computer modeling (Fig. 3), lin-benzoguanine (6-aminoimidazol[4,5-g]quinazolin-8(7H)-one (2)) was selected as an extended central scaffold, to form up to seven in-plane intermolecular H-bonds with the protein while sandwiching between Tyr106 and Met260. Versatile synthetic protocols were developed for the synthesis of 2, and derivatives with phenyl, benzyl, and 2-phenylethyl side chains (i.e., 16, 17a, and 12a, 12b, 13, 17, resp.) to reach into the lipophilic pocket lined by Val282, Val45, and Leu68 (Schemes 1–3). To account for the limited solubility of the new ligands and in consequence of a recently developed detailed understanding of the mechanism of TGT catalysis (Fig. 2), the enzyme kinetic assay was completely redesigned, providing competitive (Kic) and uncompetitive (Kiu) inhibition constants with respect to tRNA binding by TGT. The modifications of the various parameters in the new assay are described in detail. Binding affinities of the new inhibitors were found to be in the single-digit micromolar range (Kic values, Fig. 8). Decoration of the lin-benzoguanine scaffold with lipophilic residues only gave a modest improvement in biological activity which was explained on structural grounds with the help of four crystal structures (Fig. 10) obtained by soaking the protein with inhibitors 2 and 12a–12c. Both biochemical and biostructural analyses reported in this paper provide a fertile basis for the development of more potent future generations of TGT inhibitors.
    No preview · Article · Apr 2006 · Helvetica Chimica Acta
  • Bernhard Stengl · Klaus Reuter · Gerhard Klebe
    [Show abstract] [Hide abstract]
    ABSTRACT: Transfer RNA-guanine transglycosylases (TGTs) are evolutionarily ancient enzymes, present in all kingdoms of life, catalyzing guanine exchange within their cognate tRNAs by modified 7-deazaguanine bases. Although distinct bases are incorporated into tRNA at different positions in a kingdom-specific manner, the catalytic subunits of TGTs are structurally well conserved. This review provides insight into the sequential steps along the reaction pathway, substrate specificity, and conformational adaptions of the binding pockets by comparison of TGT crystal structures in complex with RNA substrates of a eubacterial and an archaebacterial species. Substrate-binding modes indicate an evolutionarily conserved base-exchange mechanism with a conserved aspartate serving as a nucleophile through covalent binding to C1' of the guanosine ribose moiety in an intermediate state. A second conserved aspartate seems to control the spatial rearrangement of the ribose ring along the reaction pathway and supposedly operates as a general acid/base. Water molecules inside the binding pocket accommodating interaction sites subsequently occupied by polar atoms of substrates help to elucidate substrate-recognition and substrate-specificity features. This emphasizes the role of water molecules as general probes to map binding-site properties for structure-based drug design. Additionally, substrate-bound crystal structures allow the extraction of valuable information about the classification of the TGT superfamily into a subdivision of presumably homologous superfamilies adopting the triose-phosphate isomerase type barrel fold with a standard phosphate-binding motif.
    No preview · Article · Nov 2005 · ChemBioChem
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In vivo studies with the fruit-fly Drosophila melanogaster have shown that the Sniffer protein prevents age-dependent and oxidative stress-induced neurodegenerative processes. Sniffer is a NADPH-dependent carbonyl reductase belonging to the enzyme family of short-chain dehydrogenases/reductases (SDRs). The crystal structure of the homodimeric Sniffer protein from Drosophila melanogaster in complex with NADP+ has been determined by multiple-wavelength anomalous dispersion and refined to a resolution of 1.75 A. The observed fold represents a typical dinucleotide-binding domain as detected for other SDRs. With respect to the cofactor-binding site and the region referred to as substrate-binding loop, the Sniffer protein shows a striking similarity to the porcine carbonyl reductase (PTCR). This loop, in both Sniffer and PTCR, is substantially shortened compared to other SDRs. In most enzymes of the SDR family this loop adopts a well-defined conformation only after substrate binding and remains disordered in the absence of any bound ligands or even if only the dinucleotide cofactor is bound. In the structure of the Sniffer protein, however, the conformation of this loop is well defined, although no substrate is present. Molecular modeling studies provide an idea of how binding of substrate molecules to Sniffer could possibly occur.
    Full-text · Article · Nov 2004 · Journal of Molecular Biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: The enzyme tRNA-guanine transglycosylase (TGT) is involved in the pathogenicity of Shigellae. As the crystal structure of this protein is known, it is a putative target for the structure-based design of inhibitors. Here we report a crystallographic study of several new ligands exhibiting a 2,6-diamino-3H-quinazolin-4-one scaffold, which has been shown recently to be a promising template for TGT-inhibitors. Crystal structure analysis of these complexes has revealed an unexpected movement of the side-chain of Asp102. A detailed analysis of the water network disrupted by this rotation has lead to the derivation of a new composite pharmacophore. A virtual screening has been performed based on this pharmacophore hypothesis and several new inhibitors of micromolar binding affinity with new skeletons have been discovered.
    No preview · Article · May 2004 · Journal of Molecular Biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: tRNA-guanine transglycosylase (TGT) catalyzes a post-transcriptional base-exchange reaction involved in the incorporation of the modified base queuine (Q) into the wobble position of certain tRNAs. Catalysis by TGT occurs through a double-displacement mechanism that involves the formation of a covalent enzyme-RNA intermediate (Kittendorf, J. D., Barcomb, L. M., Nonekowski, S. T., and Garcia, G. A. (2001) Biochemistry 40, 14123-14133). The TGT chemical mechanism requires the protonation of the displaced guanine and the deprotonation of the incoming heterocyclic base. Based on its position in the active site, it is likely that aspartate 264 is involved in these proton transfer events. To investigate this possibility, site-directed mutagenesis was employed to convert aspartate 264 to alanine, asparagine, glutamate, glutamine, lysine, and histidine. Biochemical characterization of these TGT mutants revealed that only the conservative glutamate mutant retained catalytic activity, with Km values for both tRNA and guanine 3-fold greater than those for wild-type, whereas the kcat was depressed by an order of magnitude. Furthermore, of these six TGT mutants, only the TGT(D264E) was capable of forming a TGT.RNA covalent intermediate; however, unlike wild-type TGT, only hydroxylamine is capable of cleaving the TGT(D264E).RNA covalent complex. In an effort to better understand the unique biochemical properties of the D264E TGT mutant, we solved the crystal structure of the Zymomonas mobilis TGT with the analogous mutation (D280E). The results of these studies support two roles for aspartate 264 in catalysis by TGT, protonation of the leaving guanine and deprotonation of the incoming preQ1.
    No preview · Article · Nov 2003 · Journal of Biological Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Following acetate, propionate is the second most abundant low molecular mass carbon compound found in soil. Many microorganisms, including most, if not all fungi, as well as several aerobic bacteria, such as Escherichia coli and Salmonella enterica oxidize propionate via the methylcitrate cycle. The enzyme 2-methylisocitrate lyase (PrpB) from Escherichia coli catalysing the last step of this cycle, the cleavage of 2-methylisocitrate to pyruvate and succinate, was crystallised and its structure determined to a resolution of 1.9A. The enzyme, which strictly depends on Mg(2+) for catalysis, belongs to the isocitrate lyase protein family. A common feature of members of this enzyme family is the movement of a so-called "active site loop" from an open into a closed conformation upon substrate binding thus shielding the reactants from the surrounding solvent. Since in the presented structure, PrpB contains, apart from a Mg(2+), no ligand, the active site loop is found in an open conformation. This conformation, however, differs significantly from the open conformation present in the so far known structures of ligand-free isocitrate lyases. A possible impact of this observation with respect to the different responses of isocitrate lyases and PrpB upon treatment with the common inhibitor 3-bromopyruvate is discussed. Based on the structure of ligand-bound isocitrate lyase from Mycobacterium tuberculosis a model of the substrate-bound PrpB enzyme in its closed conformation was created which provides hints towards the substrate specificity of this enzyme.
    No preview · Article · Jun 2003 · Journal of Molecular Biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Shigellosis, a bacterial disease, causes the death of more than one million people per year. Extensive studies of Shigella flexneri have recognized tRNA-guanine transglycosylase (TGT, EC as one of the key enzymes involved in the regulation of bacterial virulence. Based on the crystal structure of the Zymomonas mobilis enzyme, we have embarked on the rational design of TGT inhibitors. Herein, we describe the structure-based optimization of hits previously found by virtual screening (see Tables 1–3). For the pteridines, the most potent compound class discovered in a previous virtual screening run, a versatile synthesis could be established giving access to a broad range of substituted derivatives (see Scheme 5). The best ligand in this series, 14, exhibits a Ki=0.45 μM.
    No preview · Article · Apr 2003 · Helvetica Chimica Acta
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Eubacterial tRNA-guanine transglycosylase (TGT) is involved in the hypermodification of cognate tRNAs, leading to the exchange of G34 by preQ1 at the wobble position in the anticodon loop. Mutation of the tgt gene in Shigella flexneri results in a significant loss of pathogenicity of the bacterium due to inefficient translation of a virulence protein mRNA. Herein, we describe the discovery of a ligand with an unexpected binding mode. On the basis of this binding mode, three slightly deviating pharmacophore hypotheses have been derived. Virtual screening based on this composite pharmacophore model retrieved a set of potential TGT inhibitors belonging to several compound classes. All nine tested inhibitors being representatives of these classes showed activity in the micromolar range, two of them even in the submicromolar range.
    Full-text · Article · Apr 2003 · Journal of Medicinal Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have solved the 2.5-Å crystal structure of 1-deoxy-d-xylulose-5-phosphate reductoisomerase, an enzyme involved in the mevalonate-independent 2-C-methyl-d-erythritol-4-phosphate pathway of isoprenoid biosynthesis. The structure reveals that the enzyme is present as a homodimer. Each monomer displays a V-like shape and is composed of an amino-terminal dinucleotide binding domain, a connective domain, and a carboxyl-terminal four-helix bundle domain. The connective domain is responsible for dimerization and harbors most of the active site. The strictly conserved acidic residues Asp150, Glu152, Glu231, and Glu234 are clustered at the putative active site and are probably involved in the binding of divalent cations mandatory for enzyme activity. The connective and four-helix bundle domains show significant mobility upon superposition of the dinucleotide binding domains of the three conformational states present in the asymmetric unit of the crystal. A still more pronounced flexibility is observed for a loop spanning residues 186 to 216, which adopts two completely different conformations within the three protein conformers. A possible involvement of this loop in an induced fit during substrate binding is discussed.
    Full-text · Article · Mar 2002 · Journal of Biological Chemistry

Publication Stats

1k Citations
144.04 Total Impact Points


  • 1999-2015
    • Philipps University of Marburg
      • • Institut für Pharmazeutische Chemie
      • • Institut für Molekularbiologie und Tumorforschung
      Marburg, Hesse, Germany
  • 2000
    • Max Planck Institute for Biophysical Chemistry
      • Department of Cellular Biochemistry
      Göttingen, Lower Saxony, Germany
  • 1996
    • Friedrich-Alexander-University of Erlangen-Nürnberg
      Erlangen, Bavaria, Germany
  • 1994
    • University of Michigan
      • College of Pharmacy
      Ann Arbor, Michigan, United States