Shilpa Buch

The Nebraska Medical Center, Omaha, Nebraska, United States

Are you Shilpa Buch?

Claim your profile

Publications (130)551.71 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although it has been documented that methamphetamine induces astrocyte activation, the mechanism(s) underlying this effect remain poorly understood. We thus sought to examine the molecular mechanisms involved in methamphetamine-mediated activation of astrocytes with a focus on the role of sigma-1 receptor (σ-1R) in this process. The expression of σ-1R and glial fibrillary acidic protein (GFAP) was examined by reverse transcription PCR (RT-PCR), real-time PCR, Western blot, and immunofluorescent staining; phosphorylation of cell signaling pathways was detected by Western blot analysis. Immunoprecipitation was used to determine the interaction between σ-1R and p-Src. Chromatin immunoprecipitation (ChIP) assay was employed to discern the binding of cAMP-response element-binding protein (CREB) with the promoter of σ-1R. The role of σ-1R in astrocyte activation was further validated in σ-1R knockout (KO) mice by Western blot combined with immunofluorescent staining. Exposure of primary rat astrocytes to methamphetamine increased the expression of σ-1R via the activation of Src, ERK mitogen-activated protein kinase, and downstream CREB pathways. Subsequently, CREB translocated into nucleus and interacted with the promoter of σ-1R resulting in increased expression of σ-1R with a concomitant increase in expression of GFAP. This effect was inhibited in cells treated with the σ-1R antagonist-BD1047, thereby implicating the role of σ-1R in the activation of astrocytes. In vivo relevance of these findings was further corroborated in σ-1R KO mice that were administered methamphetamine. In the methamphetamine administered mice, there was a failure of the drug to induce activation of astrocytes, an effect that was evident in wild-type (WT) mice exposed to methamphetamine. The study presented herein demonstrates that methamphetamine-mediated activation of astrocytes involved up-regulation of σ-1R through a positive-feedback mechanism. Understanding the regulation of σ-1R expression could provide insights into the development of potential therapeutic strategies for astrocyte activation induced by methamphetamine.
    Full-text · Article · Dec 2015 · Journal of Neuroinflammation
  • Source
    Lu Yang · Xufeng Chen · Guoku Hu · Yu Cai · Ke Liao · S Buch
    [Show abstract] [Hide abstract]
    ABSTRACT: Diminished adult neurogenesis is known to play a key role in the pathogenesis of diverse neurodegenerative disorders such as HIV-associated neurological disorders (HAND). Cocaine, often abused by HIV-infected patients, has been suggested to worsen HIV-associated CNS disease. Mounting evidence also indicates that HIV infection can lead not only to neuronal dysfunction or loss, but can also negatively impact neurogenesis, resulting in generation of fewer adult neural progenitor cells (NPCs) in the dentate gyrus of the hippocampus, brain area critical for memory and learning. The crucial role of platelet-derived growth factor-BB (PDGF-BB) in providing tropic support for the neurons as well as in promoting NPC proliferation has been demonstrated by us previously. However, whether PDGF-BB regulates neuronal differentiation especially in the context of HAND and drug abuse remains poorly understood. In this study, we demonstrate that pretreatment of rat hippocampal NPCs with PDGF-BB restored neuronal differentiation that had been impaired by HIV Tat and cocaine. To further study the intracellular mechanism(s) involved in this process, we examined the role of transient receptor potential canonical (TRPC) channels in mediating neuronal differentiation in the presence of PDGF-BB. TRPC channels are Ca(2+)-permeable, nonselective cationic channels that elicit a variety of physiological functions. Parallel but distinct ERK, Akt signaling pathways with downstream activation of CREB were found to be critical for neuronal differentiation. Pharmacological blocking of TRPC channels resulted in suppression of PDGF-mediated differentiation and PDGF-BB-induced activation of ERK and Akt, culminating also to inhibition of PDGF-induced activation of CREB. Taken together, these findings underpin the role of TRPC channel as a novel target regulating cell differentiation mediated by PDGF-BB. This finding could have implications for development of therapeutic interventions aimed at restoration of Tat and cocaine-mediated impairment of neurogenesis in drug abusing HAND patients.
    Full-text · Article · Nov 2015 · Molecular Neurobiology
  • Source

    Full-text · Dataset · Jun 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cocaine abuse leads to neuroinflammation, which in turn, contributes to the pathogenesis of neurodegeneration associated with advanced HIV-1 infection. Autophagy plays important roles in both innate and adaptive immune responses. However, the possible functional link between cocaine and autophagy has not been explored before. Herein, we demonstrated that cocaine exposure induced autophagy in both BV-2 and primary rat microglial cells as demonstrated by a dose- and time-dependent induction of autophagy-signature proteins such as BECN1/Beclin1, ATG5, and MAP1LC3B. These findings were validated wherein cocaine treatment of BV-2 cells resulted in increased formation of puncta in cells expressing either endogenous MAP1LC3B or overexpressing GFP-MAP1LC3B. Specificity of cocaine-induced autophagy was confirmed by treating cells with inhibitors of autophagy (3-MA and wortmannin). Intriguingly, cocaine-mediated induction of autophagy involved upstream activation of 2 ER stress pathways (EIF2AK3- and ERN1-dependent), as evidenced by the ability of the ER stress inhibitor salubrinal to ameliorate cocaine-induced autophagy. In vivo validation of these findings demonstrated increased expression of BECN1, ATG5, and MAP1LC3B-II proteins in cocaine-treated mouse brains compared to untreated animals. Increased autophagy contributes to cocaine-mediated activation of microglia since pretreatment of cells with wortmannin resulted in decreased expression and release of inflammatory factors (TNF, IL1B, IL6, and CCL2) in microglial cells. Taken together, our findings suggest that cocaine exposure results in induction of autophagy that is closely linked with neuroinflammation. Targeting autophagic proteins could thus be considered as a therapeutic strategy for the treatment of cocaine-related neuroinflammation diseases.
    Full-text · Article · Jun 2015 · Autophagy
  • Guoku Hu · Lu Yang · Howard Fox · Shilpa Buch

    No preview · Conference Paper · Jun 2015
  • Shilpa Buch · Guoku Hu · Lu Yang

    No preview · Conference Paper · Jun 2015
  • Ming-Lei Guo · Shilpa Buch

    No preview · Conference Paper · Jun 2015

  • No preview · Conference Paper · Jun 2015
  • Source
    Fang Niu · honghong yao · ke liao · shilpa Buch
    [Show abstract] [Hide abstract]
    ABSTRACT: HIV-1-associated neurocognitive disorders (HAND) affect almost 30-50% of infected individuals, even in the presence of successful control of virus replication by combined antiretroviral therapy (cART).HIV Tat protein, a nuclear trans-activator of viral gene transcription, that is secreted by infected cells and can be taken up by the neighboring cells, is present in various tissues despite the presence of cART, and has been shown to break down the integrity of the blood-brain barrier (BBB). This, in turn, leads to disruption of the neovascular unit, affecting functioning of the brain microvascular endothelial cells as well as astrocytes. Pericytes, yet another important constituent of the BBB, play a critical role in the maintenance of the integrity of the BBB. Loss of pericytes resulting in disruption of BBB has been observed in several pathologies including HAND. Furthermore, while PDGF-BB is essential for pericyte generation, paradoxically, high concentrations of PDGF-BB lead to loss of pericytes in tumor vessels. In this research highlight, we provide a brief review of our recently published finding, which have demonstrated a novel role of PDGF-BB in HIV-Tat mediated migration of pericytes, leading ultimately to loss of pericyte coverage from the endothelium, with a subsequent breach of the BBB. These findings underpin yet another mechanism by which BBB integrity is disrupted in HAND.
    Full-text · Article · May 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Disruption of the blood-brain barrier (BBB) integrity occurring during the early onset of stroke is not only a consequence of, but also contributes to the further progression of stroke. Although it has been well documented that brain microvascular endothelial cells and astrocytes play a critical role in the maintenance of BBB integrity, pericytes, sandwiched between endothelial cells and astrocytes, remain poorly studied in the pathogenesis of stroke. Our findings demonstrated that treatment of human brain microvascular pericytes with sodium cyanide (NaCN) and glucose deprivation resulted in increased expression of vascular endothelial growth factor (VEGF) via the activation of tyrosine kinase Src, with downstream activation of mitogen activated protein kinase and PI3K/Akt pathways and subsequent translocation of NF-κB into the nucleus. Conditioned medium from NaCN-treated pericytes led to increased permeability of endothelial cells, and this effect was significantly inhibited by VEGF-neutralizing antibody. The in vivo relevance of these findings was further corroborated in the stroke model of mice wherein the mice, demonstrated disruption of the BBB integrity and concomitant increase in the expression of VEGF in the brain tissue as well as in the isolated microvessel. These findings thus suggest the role of pericyte-derived VEGF in modulating increased permeability of BBB during stroke. Understanding the regulation of VEGF expression could open new avenues for the development of potential therapeutic targets for stroke and other neurological disease.
    Full-text · Article · Apr 2015 · PLoS ONE
  • Yu Cai · Jyothi Arikkath · Shilpa Buch

    No preview · Article · Apr 2015 · Journal of Neuroimmune Pharmacology

  • No preview · Article · Apr 2015 · Journal of Neuroimmune Pharmacology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cocaine abuse has been shown to accelerate the progression of human immunodeficiency virus (HIV)-1-associated neurological disorders (HANDs) partially through increasing neuroinflammatory response mediated by activated astrocytes; however, the detailed molecular mechanism of cocaine-mediated astrocyte activation is unclear. In the current study, we demonstrated increased astrogliosis in the cortical regions of brains from HIV(+) cocaine abusers compared with the HIV(+) group without cocaine abuse. We next sought to explore whether cocaine exposure could result in increased expression of glial fibrillary acidic protein (GFAP), a filament protein critical for astrocyte activation. Exposure of cocaine to astrocytes resulted in rapid translocation of sigma receptor to the plasma membrane with subsequent activation of downstream signaling pathways. Using a pharmacological approach, we provide evidence that cocaine-mediated upregulation of GFAP expression involved activation of mitogen-activated protein kinase (MAPK) signaling with subsequent downstream activation of the early growth response gene 1 (Egr-1). Egr-1 activation, in turn, caused transcriptional regulation of GFAP. Corroboration of these findings in vivo demonstrated increased expression of GFAP in the cortical region of mice treated with cocaine compared with the saline injected controls. A thorough understanding of how cocaine mediates astrogliosis could have implications for the development of therapeutic interventions aimed at HIV-infected cocaine abusers.
    Full-text · Article · Jan 2015 · Molecular Neurobiology
  • Rong Ma · Lu Yang · Fang Niu · Shilpa Buch
    [Show abstract] [Hide abstract]
    ABSTRACT: Endoplasmic reticulum (ER) stress triggered under hyperglycemic, hypoxic, and oxidative conditions has been implicated in cellular dysfunction through activation of the unfolded protein response (UPR). Recent clinical studies have documented that the release of soluble cellular and host factors following HIV infection in the central nervous system (CNS) results in induction of the ER stress response. Herein, we demonstrate that exposure of human brain microvascular endothelial cells (HBMECs) to HIV transactivator protein Tat101 resulted in early induction of several major ER stress regulators including ER chaperones Bip/GRP78 and ER stress sensors ATF6, p-PERK, and downstream mediators p-eIF2α and ATF4. Upregulation of the ER stress mediators was accompanied by decreased cell viability and increased apoptosis as evidenced by MTT and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assays, respectively. Pretreatment of HBMECs with either ER inhibitor or knockdown of the effector C/EBP homologous protein (CHOP) resulted in increased cell viability and abrogation of apoptosis following Tat exposure. Notably, Tat-mediated activation of the UPR response involved reactive oxygen species. Furthermore, treatment of Tat also resulted in mitochondrial dysfunction, evidenced by decrease in Bcl2/Bax ratio, dysfunction of mitochondrial membrane potential, and release of cytochrome c, all of which could be partially reversed by the ER stress inhibitor. The current study demonstrates that exposure of HBMECs to Tat induces multiple stress responses, including ER stress and mitochondrial dysfunction which in turn lead to apoptosis.
    No preview · Article · Nov 2014 · Molecular Neurobiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the era of antiretroviral therapy, although the human immunodeficiency virus (HIV) replication can be successfully controlled, complications of the CNS continue to affect infected individuals. Viral Tat protein is not only neurotoxic but has also been shown to disrupt the integrity of the blood-brain barrier (BBB). Although the role of brain microvascular endothelial cells and astrocytes in Tat-mediated impairment has been well documented, pericytes, which are important constituents of the BBB and play a key role in maintaining the integrity of the barrier, remain poorly studied in the context of HIV-associated neurocognitive disorders (HAND). In the present study, we demonstrated that exposure of human brain microvascular pericytes and C3H/10T1/2 cells to HIV-1 Tat101 resulted in increased expression of platelet-derived growth factor subunit B homodimer (PDGF-BB) and increased migration of the treated cells. Furthermore, we also demonstrated that this effect of Tat was mediated via activation of mitogen-activated protein kinases and nuclear factor-κB pathways. Secreted PDGF-BB resulted in autocrine activation of the PDGF-BB/PDGF β receptor signaling pathway, culminating ultimately into increased pericyte migration. Ex vivo relevance of these findings was further corroborated in isolated microvessels of HIV Tg26 mice that demonstrated significantly increased expression of PDGF-BB in isolated brain microvessels with a concomitant loss of pericytes. Intriguingly, loss of pericyte coverage was also detected in sections of frontal cortex from humans with HIV-encephalitis compared with the uninfected controls. These findings thus implicate a novel role of PDGF-BB in the migration of pericytes, resulting in loss of pericyte coverage from the endothelium with a subsequent breach of the BBB.
    Full-text · Article · Aug 2014 · The Journal of Neuroscience : The Official Journal of the Society for Neuroscience
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microglia participate in innate inflammatory responses within the central nervous system. The highly conserved microRNA-9 (miR-9) plays critical roles in neurogenesis as well as axonal extension. Its role in microglial inflammatory responses, however, remains poorly understood. Here we identify a unique role of miR-9 in mediating the microglial inflammatory response via distinct signalling pathways. MiR-9-mediated regulation of cellular activation involved downregulated expression of the target protein, monocyte chemotactic protein-induced protein 1 (MCPIP1) that is crucial for controlling inflammation. Results indicate that miR-9-mediated cellular activation involved signalling via the NF-κB pathway, but not the β-catenin pathway.
    Full-text · Article · Jul 2014 · Nature Communications
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuroinflammation plays critical roles in multiple sclerosis (MS). In addition to the part played by the lymphocytes, the underlying mechanisms could, in part, be also attributed to activation mediated by astrocytes. Macrophage inflammatory protein-1α (MIP-1α) has been implicated in a number of pathological conditions, specifically attributable to its potent chemottractant effects. Its modulation by IL-17, however, has received very little attention. In the present study, we demonstrated IL-17-mediated induction of MIP-1α in rat primary astroctyes through its binding to the cognate IL-17RA. Furthermore, this effect was mediated via the activation of Src, mitogen-activated protein kinases (MAPKs), PI3K/Akt and NF-kB pathways, culminating ultimately into increased expression of MIP-1α. Exposure of primary mouse astrocytes to IL-17 resulted in increased expression of glial fibrillary acidic protein and, this effect was abrogated in cells cultured in presence of the MIP-1α neutralizing antibody, thus underscoring its role in the activation of astrocytes. In vivo relevance of these findings was further corroborated in experimental autoimmune encephalomyelitis mice that demonstrated significantly increased activation of astrocytes with concomitant increased expression of MIP-1α in the corpus callosum compared with control group. Understanding the regulation of MIP-1α expression may provide insights into the development of potential therapeutic targets for neuroinflammation associated with multiple sclerosis.
    Full-text · Article · Jul 2014 · Journal of Neuroimmune Pharmacology
  • Source
    Ming Duan · Honghong Yao · Yu Cai · Ke Liao · Pankaj Seth · Shilpa Buch
    [Show abstract] [Hide abstract]
    ABSTRACT: Microglia are critical for the pathogenesis of HIV-associated dementia not only by acting as conduits of viral entry but also as reservoirs for productive and latent virus infection, and as producers of neurotoxins. Interaction between CX3CL1 (fractalkine) and FKN receptor (CX3CR1) is highly functional in the brain, and is known to regulate a complex network of paracrine and autocrine interactions between neurons and microglia. The aim of the present study was to determine what extent HIV-1 Tat protein causes the alteration of CX3CR1 expression and to investigate the regulatory mechanism for CX3CR1 expression. Here we showed that exposure of primary microglia and BV2 cells to exogenous Tat protein resulted in down-regulation of CX3CR1 mRNA and protein expression, with a concomitant induction of proinflammatory responses. Next, we further showed that NF-κB activation by Tat treatment negatively regulated CX3CR1 expression. Since a YY1 binding site ~10kb upstream of CX3CR1 promoter was predicted in rats, mice and humans, the classical NF-κB-YY1 regulatory pathway was considered. Our findings indicated that Tat repressed CX3CR1 expression via NF-κB-YY1 regulatory pathway. To gain insight into the effect of Tat on CX3CL1-CX3CR1 communication, calcium mobilization, MAPK activation and microglial migration, respectively, were tested in microglial cells after successive treatment with Tat and CX3CL1. The results suggested that Tat disrupted the responses of microglia to CX3CL1. Taken together, these results demonstrate that HIV-1 Tat protein suppresses CX3CR1 expression in microglia via NF-κB-YY1 pathway and attenuates CX3CL1-induced functional response of microglia.
    Full-text · Article · May 2014 · Current HIV Research
  • [Show abstract] [Hide abstract]
    ABSTRACT: On May 23, 2013 scientific leaders in the neuroAIDS community met at the University of Nebraska Medical Center to discuss cellular interaction and signaling for the third annual human immunodeficiency virus and neuroAIDS colloquium. The meeting continues a series of contemporary scientific issues related to how virus effects the nervous system. In 2011 the focus was on animal models and in 2012 in biomarkers. Here, our 2013 meeting featured ten presentations from outstanding scientists examining how inter- and intra-cellular processes contribute to neuropathogenesis. Talks highlighted emerging issues, findings, and potential therapies, followed by a panel discussion in which controversies in the field and gaps in our current knowledge were identified. The panel discussion was transcribed into the article and published as a field perspective. A link is available where all of the presentations and the concluding discussion can be seen and heard. The third annual University of Nebraska Medical Center (UNMC) colloquium on current issues in neuroAIDS was held on May 23, 2013. Following the presentations, which can be viewed at http://www.unmc.edu/pharmacology/CISN.htm . A panel discussion ensued. This discussion raised important topical issues. To disseminate this information, a transcript is provided below.
    No preview · Article · May 2014 · Journal of Neuroimmune Pharmacology
  • Shilpa Buch
    [Show abstract] [Hide abstract]
    ABSTRACT: Cells possess complex growth factor networks that play vital roles in regulating fundamental life processes. Such protein factors exert their action by binding to cognate cell specific receptors resulting in regulation of cell division, differentiation, chemotaxis or apoptosis. Engagement of receptors by their respective ligands results in activation of sequential protein phosphorylation cascades, culminating downstream into activation of gene transcription. These factors are expressed ubiquitously under a variety of conditions by normal as well as transformed cells, thereby underpinning their function in autocrine and paracrine stimulation of cells under several physiological and pathological conditions. Despite major advances in our understanding of growth factors, their paradoxical roles in normal cellular homeostasis and pathologies underpin the need to examine their roles in disease and health. The goal of this special issue is to present emerging trends in the roles that growth factors play in inflammatory disease processes that include cardiovascular, cancer, stroke and neurodegenerative processes associated with aging, viral infection and substance abuse with the ultimate aim to pave the way for future therapeutic breakthroughs.
    No preview · Article · Mar 2014 · Journal of Neuroimmune Pharmacology

Publication Stats

3k Citations
551.71 Total Impact Points

Institutions

  • 2013-2015
    • The Nebraska Medical Center
      Omaha, Nebraska, United States
  • 2011-2015
    • University of Nebraska at Omaha
      • Department of Pharmacology and Experimental Neuroscience
      Omaha, Nebraska, United States
  • 2009-2015
    • University of Nebraska Medical Center
      • Department of Pharmacology and Experimental Neuroscience
      Omaha, Nebraska, United States
  • 2007-2009
    • University of Kansas
      • Department of Molecular and Integrative Physiology
      Lawrence, Kansas, United States
  • 2000-2009
    • Kansas City VA Medical Center
      Kansas City, Missouri, United States
    • Samuel Lunenfeld Research Institute
      Toronto, Ontario, Canada
  • 2006
    • University of Kansas Medical Center
      Kansas City, Kansas, United States
  • 2005-2006
    • Emory University
      • Department of Pathology and Laboratory Medicine
      Atlanta, Georgia, United States
  • 2004
    • Johns Hopkins University
      • Department of Neurology
      Baltimore, Maryland, United States
  • 1993-1998
    • University of Toronto
      • Hospital for Sick Children
      Toronto, Ontario, Canada
  • 1991-1994
    • SickKids
      • Department of Paediatrics
      Toronto, Ontario, Canada