María López-Jurado

University of Granada, Granata, Andalusia, Spain

Are you María López-Jurado?

Claim your profile

Publications (65)138.37 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Stanozonol (ST) is a synthetic derivative of testosterone; it has anabolic/androgenic activity, increasing both the turnover of trabecular bone and the endocortical apposition of bone. The present study aimed to examine the effects of ST on bone status in rats by bone mineral content, markers of formation and resorption, bone density, and structural and microarchitectural parameters. Twenty male Wistar rats were randomly distributed into two experimental groups corresponding to placebo or ST administration, which consisted of weekly intramuscular injections of 10 mg/kg body weight of ST. Plasma parameters were analyzed by immunoassay. Bone mineral content was determined by spectrophotometry. Bone mineral density (BMD) and structural parameters were measured by peripheral quantitative computed tomography, and trabecular and cortical microarchitecture by micro-computed tomography. Plasma Ca, Mg, and alkaline phosphatase were higher, and urinary Ca excretion, corticosterone, and testosterone concentrations lower in the ST group. Femur Ca content was higher and P content was lower in the ST, whereas osteocalcin, aminoterminal propeptides of type I procollagen, and C-terminal telopeptides of type I collagen were lower. Total cross-sectional, trabecular, and cortical/subcortical areas were lower in the ST. No differences were observed on BMD and area parameters of the diaphysis as well as on trabecular and cortical microarchitecture. The use of ST increases bone mineralization, ash percentage, and Ca and Mg content in femur. In spite of an absence of changes in BMD, geometric metaphyseal changes were observed. We conclude that ST alters bone geometry, leads to low bone turnover, and thus may impair bone quality.
    No preview · Article · Jan 2016 · Calcified Tissue International
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aims To investigate the effects of interval aerobic training combined with strength-endurance exercise (IASE) and caloric restriction (CR) on body composition, glycaemic and lipid profile and inflammatory markers. Methods and results Thirty-two Zucker diabetic fatty rats were randomised into 4 groups (sedentary+CR; sedentary+adlibitum; IASE+CR; and IASE+adlibitum). Training groups conducted an IASE program in the same session, 5 days/week for 2 months. Body weight, fat and muscle mass and body water were measured using a body composition analyser. Plasma total, LDL and HDL cholesterol, phospholipids, triglycerides, insulin, adiponectin, tumour necrosis factor alpha, interleukin 1 and 10 were measured. Blood fasting and postprandial glucose were assessed. Body weight was lower in the CR compared to the adlibitum groups (p<0.001). Fat mass was lower in the CR compared to the adlibitum (p<0.05) and in the IASE compared to the sedentary groups (p<0.001), but IASE increased lean mass (p<0.001). Triglycerides were lower in the CR compared to the adlibitum groups (p<0.001) whereas total and LDL-cholesterol and fasting glucose were reduced only in the IASE groups (all, p<0.001). Phospholipids decreased in the CR compared to the adlibitum (p<0.05) and the IASE compared to the sedentary groups (p<0.001). The area under the curve after oral glucose tolerance test, insulin and homeostatic model assessment were lower in the IASE and the CR compared to the sedentary and adlibitum groups, respectively (all, p<0.001). Adiponectin was lower in the CR groups (p<0.001). Conclusion Overall, IASE as well as CR were both useful interventions, especially when combined. However, IASE showed greater improvements on body composition, inflammatory and glycaemic profile than CR did.
    No preview · Article · Jan 2016 · Nutrition Metabolism and Cardiovascular Diseases
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective: to study the effect of co-inoculation with Ensifer meliloti and Halomonas maura of the leguminous Medicago sativa L., on growth, nutritional and functional value, grown under salinity conditions. Methods: plants of M. sativa were grown in a solution with a mixture of salts (CaSO4, MgCl, NaCl and NaHCO 3) and were co-inoculated with its specific rhizobium and the halophilic moderated bacterium H. maura. Different physiologic parameters were determined, as well as, nitrogen and minerals content. Furthermore, an assay of in vitro digestibility was carried out. Results: salinity had a negative effect on the plants; however, co-inoculation increased yield, nitrogen content, total minerals, Ca and Mg. Moreover, physiologic parameters as water potential and leghemoglobin content in fresh nodules were higher compared to those of plants inoculated only with E. meliloti. Both, salinity and bacterial treatment with E. meliloti and H. maura increased the antioxidant capacity of the legume, in dialyzates and retentates collected after an in vitro digestibility assay. Conclusion: co-inoculation of plants with E. meliloti and H. maura could improve the alfalfa yield under specific salinity conditions, increasing the nutritional and functional value of the plants. M. sativa could be considered in the formulations of nutritional supplements for the human diet.
    Full-text · Article · Dec 2015 · Nutricion hospitalaria: organo oficial de la Sociedad Espanola de Nutricion Parenteral y Enteral
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to investigate the effects of interval aerobic training combined with strength exercise in the same training session on body composition, and glycaemic and lipid profile in obese rats. Sixteen lean Zucker rats and sixteen obese Zucker rats were randomly divided into exercise and sedentary subgroups (4 groups, n = 8). Exercise consisted of interval aerobic training combined with strength exercise in the same training session. The animals trained 60 min/day, 5 days/week for 8 weeks. Body composition, lipid and glycaemic profiles and inflammatory markers were assessed. Results showed that fat mass was reduced in both lean and obese rats following the exercise training (effect size (95% confidence interval (CI)) = 1.8 (0.5-3.0)). Plasma low-density lipoprotein-cholesterol and fasting glucose were lower in the exercise compared to the sedentary groups (d = 2.0 (0.7-3.2) and 1.8 (0.5-3.0), respectively). Plasma insulin was reduced in exercise compared to sedentary groups (d = 2.1 (0.8-3.4)). Some exercise × phenotype interactions showed that the highest decreases in insulin, homeostatic model assessment-insulin resistance, fasting and postprandial glucose were observed in the obese + exercise group (all, P < 0.01). The findings of this study suggest that interval aerobic training combined with strength exercise would improve body composition, and lipid and glycaemic profiles, especially in obese rats.
    No preview · Article · Dec 2015 · Journal of Sports Sciences
  • [Show abstract] [Hide abstract]
    ABSTRACT: We analyzed the effects of high-intensity exercise (HIE) and anabolic androgenic steroids (AAS) on brain redox status. 40 male Wistar rats were randomly distributed in 4 experimental groups (n=10) with or without HIE and with or without weekly Stanozolol administration. Thiobarbituric acid-reactive substances (TBARs) and protein carbonyl content (PCC) were assessed. Total superoxide dismutase (tSOD), manganese superoxide dismutase (Mn-SOD), copper/zinc superoxide dismutase (CuZn-SOD) and catalase (CAT) activities were measured. Finally, protein expression levels of glutathione peroxidase (GPx), NAD(P)H dehydrogenase, Quinone 1 (NQO1), NF-E2-Related Factor 2 (Nrf2), glial fibrillary acidic protein (GFAP), nuclear factor kappa β p65 (NF-κβ) and signal transducer and activator of transcription 3 were determined. Brain PCC concentrations were lower in the HIE groups compared to the untrained controls, whereas CAT activity was higher (both, p<0.01). Both HIE and AAS groups exhibited higher expression levels of GFAP and GPx, but lower NQO1 levels (all, p<0.05). There were increased expression levels of NF-κβ in the AAS groups (p<0.01). In addition, there was increased expression of Nrf2 in the HIE groups (p<0.001). HIE*AAS interactions were found on TBARs content and GFAP expression, with HIE downregulating and upregulating AAS-mediated increases in TBARs and GFAP, respectively (p<0.05). Overall, HIE appeared to reduce the AAS-mediated negative effect on brain redox status. © Georg Thieme Verlag KG Stuttgart · New York.
    No preview · Article · Aug 2015 · International Journal of Sports Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: Metabolic syndrome (MS) is a group of metabolic alterations that increase the susceptibility to cardiovascular disease and type 2 diabetes. Nonalcoholic fatty liver disease has been described as the liver manifestation of MS. We aimed to test the beneficial effects of an aerobic interval training (AIT) protocol on different biochemical, microscopic, and functional liver alterations related to the MS in the experimental model of obese Zucker rat. Two groups of lean and obese animals (6 weeks old) followed a protocol of AIT (4 min at 65%-80% of maximal oxygen uptake, followed by 3 min at 50%-65% of maximal oxygen uptake for 45-60 min, 5 days/week, 8 weeks of experimental period), whereas 2 control groups remained sedentary. Obese rats had higher food intake and body weight (P < 0.0001) and suffered significant alterations in plasma lipid profile, area under the curve after oral glucose overload (P < 0.0001), liver histology and functionality, and antioxidant status. The AIT protocol reduced the severity of alterations related to glucose and lipid metabolism and increased the liver protein expression of PPARγ, as well as the gene expression of glutathione peroxidase 4 (P < 0.001). The training protocol also showed significant effects on the activity of hepatic antioxidant enzymes, although this action was greatly influenced by rat phenotype. The present data suggest that AIT protocol is a feasible strategy to improve some of the plasma and liver alterations featured by the MS.
    No preview · Article · Jul 2015 · Applied Physiology Nutrition and Metabolism
  • [Show abstract] [Hide abstract]
    ABSTRACT: Crosstalk may occur between cannabinoids and other systems controlling appetite, since cannabinoid receptors are present in hypothalamic circuits involved in feeding regulation, and likely to interact with orexin. In this study, an immunohistochemical approach was used to examine the effect of the intracerebroventricular administration of cannabinoid receptor inverse agonist AM 251 on orexin neuropeptide in the hypothalamic system. AM-activated neurons were identified using c-Fos as a marker of neuronal activity. The results obtained show that AM 251 decreases orexin A immunoreactivity, and that it increases c-Fos-immunoreactive neurons within the hypothalamus when compared with the vehicle-injected control group. We also studied the effects of subchronic intraperitoneal administration of AM 251 on food intake, body weight, and protein utilization. The administration of AM 251 at 1, 2, or 5 mg/kg led to a significant reduction in food intake, along with a significant decrease in the digestive utilization of protein in the groups injected with 1 and 2 mg/kg. There was a dose-related slowdown in weight gain, especially at the doses of 2 and 5 mg/kg, during the initial days of the trial. The absence of this effect in the pair-fed group reveals that any impairment to digestibility was the result of administering AM 251. These data support our conclusion that hypothalamic orexigenic neuropeptides are involved in the reduction of appetite and mediated by the cannabinoid receptor inverse agonist. Furthermore, the subchronic administration of AM 251, in addition to its effect on food intake, has significant effects on the digestive utilization of protein.
    No preview · Article · Apr 2015 · Journal of physiology and pharmacology: an official journal of the Polish Physiological Society

  • No preview · Article · Apr 2015 · RICYDE. Revista internacional de ciencias del deporte
  • Source

    Full-text · Article · Mar 2015 · Revista Andaluza de Medicina del Deporte
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Salinity is the major environmental factor limiting crop production. Alfalfa is a legume with high nutritional value that establishes a symbiosis relation with Ensifer meliloti. Under saline conditions the alfalfa yield decreases and this symbiosis is affected. The aim of this work is to study the effect of the co-inoculation of alfalfa plants with Halomonas maura (a moderately halophile bacterium) and E. meliloti in saline soils to improve their productivity and growth under greenhouse and field conditions. Alfalfa plants were grown in Leonard jar under greenhouse conditions, using a N-free mineral solution to mimic the conditions of an Orthic Solonchak. Then alfalfa plants were grown in the field in the same soil type. Seeds were inoculated with E. meliloti,H. maura, co-inoculated with E. meliloti and H. Maura, or non-inoculated as a control in both experiments. In greenhouse experiments the co-inoculation of alfalfa plants increased significantly the shoot dry weight (0.64 (0.02) vs. 0.79 (0.02)), the leghaemoglobin content (10.17(0.03) vs. 11.25 (0.06)) and water potential (�3.12 (0.02) vs. �2.79 (0.02)) compared with the single inoculation with E. meliloti. In the field experiments, biomass of co-inoculated plants clearly outyielded those of plants inoculated with any inoculant. The co-inoculation of H. maura and E. meliloti enhances alfalfa productivity in saline soils, thus contributing to the agricultural exploitation of low productive areas. H. maura and E. meliloti could be considered in formulation of bioinoculants to contribute in the reduction of the overuse of chemical fertilizers and their environmental impacts.
    Full-text · Article · Mar 2015 · Applied Soil Ecology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objetivo: estudiar el efecto de la inoculación con Ensifer meliloti y Halomonas maura sobre el crecimiento, valor nutricional y funcional de la leguminosa Medicago sativa L., cultivada bajo condiciones de salinidad. Método: las plantas de M. sativa se cultivaron con una solución de mezcla de sales CaSO4, MgCl, NaCl and NaHCO3 y se co-inocularon con su rizobio específico y la bacteria H. maura. Se determinaron parámetros fisiológicos de las plantas así como el contenido en nitrógeno y minerales, y se llevó a cabo un proceso de digestibilidad in vitro. Resultados: La salinidad ejerció un efecto negativo sobre las plantas, sin embargo la co-inoculación de las mismas incrementó su productividad, el contenido en nitrógeno, minerales totales, Ca y Mg. Además, los parámetros fisiológicos de potencial hídrico y concentración de leghemoglobina incrementaron. Tanto la salinidad como la co-inoculación de las plantas aumentaron la capacidad antioxidante de la leguminosa, en los dializados y retenidos obtenidos tras someter a la planta a un proceso de digestibilidad in vitro. Conclusión: la co-inoculación con E. meliloti y H. maura podría mejorar el cultivo de la alfalfa bajo condiciones específicas de salinidad, aumentando su composición nutricional y funcional. y pudiendo considerarse en la formulación de suplementos nutricionales para el consumo humano
    Full-text · Article · Jan 2015 · Nutricion hospitalaria: organo oficial de la Sociedad Espanola de Nutricion Parenteral y Enteral
  • Source

    Full-text · Article · Jan 2015 · Proceedings of The Nutrition Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: It is well established that soy protein diets as well as aerobic exercise could promote antioxidant capacity and consequently reduce free radicals overproduction on brain. However, little is know regarding to the high-protein diets and high intensity exercise on oxidative stress production. The aim of this study was to analyse the effects of high-protein diets and high-intensity exercise (HIE) on brain oxidative stress markers. Materials and Methods: A total of 40 male Wistar rats were randomly distributed in 4 experimental groups (n=10): normal-protein or high-protein diets with or without HIE for an experimental period of 12 weeks. Main oxidative damage markers in brain such as thiobarbituric acid-reactive substances (TBARs) and protein carbonyl content (PCC) were assessed. In addition, brain manganese superoxide dismutase (Mn-SOD), cooper/ zinc superoxide dismutase (CuZn-SOD) and catalase (CAT) antioxidant enzymes activity, and protein level of Nuclear factor erythroid 2 related factor 2 (Nrf2) were measured. Results and discussion: Brain TBARs, PCC, tSOD, Mn-SOD, CuZn-SOD and CAT levels were higher in the high-protein compared to the normal-protein groups (all, p. Publisher: Abstract available from the publisher. Spa
    Full-text · Article · Nov 2014 · Nutricion hospitalaria: organo oficial de la Sociedad Espanola de Nutricion Parenteral y Enteral
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study examined the effects of the dietary amount and source of protein on bone status in rats. 140 male Wistar rats aged 8 weeks were randomly allocated to 4 groups (n = 35) fed normal-protein (NP, 10% richness) or high-protein (HP, 45% richness) diets based on whey protein (WP) or soy protein (SP) sources for 12 weeks. Plasma urea was 46% higher for the HP compared to the NP diet (p < 0.001). Urinary calcium was 65% higher for the HP compared to the NP and 60% higher for the WP compared to the SP diets (all, p < 0.001). Urinary pH was 8% more acidic in the HP compared to the NP diet (p < 0.001) and 4% in the WP compared to the SP diet (p < 0.01). The plasma osteocalcin concentration was 19% higher for the NP compared to the HP (p < 0.05) and 25% for the SP compared to the WP diets (p < 0.01). Femur ash, metaphyseal and diaphyseal cross-sectional, trabecular and cortical areas were 3% higher in the HP compared to the NP diet (all, p < 0.05). Femur diaphyseal periosteal and endocortical perimeters were also 3% higher in the HP compared to the NP diet (both, p < 0.01). Groups fed the SP diet showed 2% higher femur ash percentage, 7% higher calcium content (both, p < 0.001), and 3% higher diaphyseal cortical area and thickness (both, p < 0.05) than those fed the WP diet. Some interactions were found, such as the greater effects of the SP diet on decreasing the higher plasma urea concentration promoted by the intake of the HP diet (p < 0.001). Under adequate Ca intake, HP diets could better maintain bone properties than NP diets, even with increasing some acidity markers, which could be reduced by the intake of SP sources.
    Full-text · Article · Feb 2014 · Food & Function
  • [Show abstract] [Hide abstract]
    ABSTRACT: The role of vanadium as a micronutrient and hypoglycaemic agent has yet to be fully clarified. The present study was undertaken to investigate changes in the metabolism of iron and in antioxidant defences of diabetic STZ rats following treatment with vanadium. Four groups were examined: control; diabetic; diabetic treated with 1 mgV/day; and Diabetic treated with 3 mgV/day. The vanadium was supplied in drinking water as bis(maltolato) oxovanadium (IV) (BMOV). The experiment had a duration of five weeks. Iron was measured in food, faeces, urine, serum, muscle, kidney, liver, spleen, and femur. Superoxide dismutase, catalase, quinone-oxidoreductase-1 (NQO1) activity, and protein carbonyl group levels in the liver were determined. In the diabetic rats, higher levels of Fe absorbed, Fe content in kidney, muscle, and femur, and NQO1 activity were recorded, together with decreased catalase activity, in comparison with the control rats. In the rats treated with 3 mgV/day, there was a significant decrease in fasting glycaemia, Fe content in the liver, spleen, and heart, catalase activity, and levels of protein carbonyl groups in comparison with the diabetic group. In conclusion BMOV was a dose-dependent hypoglycaemic agent. Treatment with 3 mgV/day provoked increased Fe deposits in the tissues, which promoted a protein oxidative damage in the liver.
    No preview · Article · Jan 2014 · The Scientific World Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: Export Date: 18 October 2014, Article in Press
    No preview · Conference Paper · Jan 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: New functional foods are increasingly sought to improve the treatment of diseases related to glucose and lipid metabolism. Lupin (Lupinus albus) is an excellent candidate since it exhibits several health-promoting effects. Such beneficial effects can be enhanced by technological treatments like protein hydrolysis with microbial proteases. The aim of this study was to assess the effect of lupin protein hydrolyzate, combined or not with lupin insoluble fiber, on different plasmatic, hepatic, renal and large intestine parameters using an in vivo experimental model of diet-induced hypercholesterolemia. Lupin protein hydrolyzate and insoluble fiber residue were obtained by aqueous protein extraction and sequential hydrolysis with proteases from Bacillus licheniformis and Aspergillus oryzae. The protein hydrolyzate was effective at reducing plasma and hepatic triglycerides, and showed promising effects on glucose metabolism as well as protection against dietary-induced renal alterations. The insoluble fiber residue increased fecal fat excretion, and improved parameters of large intestine physiological status due to its fermentative and water holding capacity.
    Full-text · Article · Dec 2013 · Food Research International
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent research suggests that cannabinoid receptor CB1 antagonists can affect appetite and body weight gain, although their influence on other parameters related to metabolic syndrome is not well documented. The present study was designed to assess the effects of chronic treatment with the CB1 receptor inverse agonist AM 251 (3mg/kg for 3weeks) in obese and lean Zucker rats on parameters related to metabolic syndrome. Four groups of rats were used: lean Zucker rats, untreated obese Zucker rats, AM 251-treated obese Zucker rats and a pair-fed obese Zucker rat experimental group which received the same amount of food as that consumed by the animals treated with AM251. Food intake, body weight gain, energy expenditure, plasma biochemical parameters, leptin, insulin and hepatic status markers were analysed. Daily injection of AM 251 in obese Zucker rats produced a marked and sustained decrease in daily food intake and body weight and a considerable increase in energy expenditure in comparison with untreated obese Zucker rats. AM 251 administration to obese rats significantly reduced plasma levels of glucose, leptin, AST, ALT, Gamma GT, total bilirubin and LDL cholesterol whereas HDL cholesterol plasma levels increased. The results also showed a decrease in liver/weight body ratio and total fat content in the liver. The main effects of AM251 (3mg/kg) found in this study were not observed in pair-fed obese animals, highlighting the additional beneficial effects of treatment with AM 251. The results obtained in obese rats can be interpreted as a decrease in leptin and insulin resistance, thereby improving glucose and lipid metabolism, alleviating the steatosis present in the metabolic syndrome and thus favourably modifying plasma levels of hepatic biomarkers. Our results indicate that the cannabinoid CB1 inverse agonist AM 251 represents a promising therapeutic strategy for the treatment of obesity and metabolic syndrome.
    Full-text · Article · Aug 2013 · Metabolism: clinical and experimental
  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Vitamin A deficiency can result from malnutrition, malabsorption of vitamin A, impaired vitamin metabolism associated with liver disease, or chronic debilitating diseases like HIV infection or cancer. Background & aims: Cannabis administration has been described as a palliative symptom management therapy in such pathological stages. Therefore, this research aimed to study the effects of acute administration of cannabidiol (CBD) or thetrahydrocannabinol (THC) on the levels of retinol in plasma and in the liver, and biochemical parameters related to lipid and glucose metabolism (cholesterolaemia, triglyceridemia and glycemia) in a rat experimental model of vitamin A deficiency. Methods: The experimental animal model of Vitamin A deficiency was developed during a 50-day experimental period in which rats consumed a vitamin A-free diet. Cannabidiol (10 mg/kg body weight) or thetrahydrocannabinol (5 mg/kg body weight) were administered intraperitoneally 2 hours prior to sacrifice of the animals. Results: The nutritional deficiency caused a significant decrease in plasmatic and liver contents of retinol and biochemical parameters of glycemic, lipidic, and mineral metabolism. Acute intraperitoneal administration of Cannabidiol and thetrahydrocannabinol did not improve the indices of vitamin A status in either control or vitamin A-deficient rats. However, it had a significant effect on specific biochemical parameters such as glucose, triglycerides, and cholesterol. Conclusion: Under our experimental conditions, the reported effects of cannabinoid administration on certain signs of nutritional vitamin A deficiency appeared to be mediated through mechanisms other than changes in retinol metabolism or its mobilization after the acute administration of such compounds.
    No preview · Article · May 2013 · Nutricion hospitalaria: organo oficial de la Sociedad Espanola de Nutricion Parenteral y Enteral
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The control of appetite and satiety is extremely complex and involves a balance between neurotransmitters and neuropeptides to stimulate and/or inhibit feeding behaviour. The effect of cannabinoids on food intake is well established, but little is known about the mechanism of action underlying their activity. In the present report, the effect of pharmacological manipulation of the cannabinoid receptor on the expression of hypothalamic neuropeptides is investigated. We used an immunohistochemical approach to examine the effect of intracerebroventricular administration of the cannabinoid receptor agonist WIN55,212-2 and the inverse agonist AM251 on neuropeptide Y (NPY) and the β-endorphin (β-end) neuronal hypothalamic systems. Double immunohistochemistry (c-fos/β-end) was used to assess the number of β-end neurons activated by the cannabinoid agonist. The present results showed that 1 μg WIN 55,212-2 increases β-end immunoreactivity within the arcuate nucleus while no significant changes were noted in the NPY-immunoreactive nerve fibres network in comparison to the control group. Injection of 1 μg AM251 decreases both NPY and β-end immunoreactivity within the arcuate nucleus. The number of β-end neurons exhibiting c-fos increased significantly in WIN 55,212-2 compared with the control group. These results suggest that cannabinoids affect the expression of hypothalamic neuropeptides, notably the NPY and β-end systems, which may have implications in the orexigenic action of cannabinoids.
    Full-text · Article · Feb 2011 · The British journal of nutrition