Kwon-Sik Park

The University of Manchester, Manchester, England, United Kingdom

Are you Kwon-Sik Park?

Claim your profile

Publications (6)34.83 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Following injury, bronchiolar cells undergo rapid squamous metaplasia, followed by proliferation and re-establishment of the complex columnar epithelium that is characteristic of the normal airway. Mechanisms that regulate the repair of bronchiolar epithelium are of considerable relevance for understanding the pathogenesis of both acute and chronic lung diseases associated with airway remodeling. This study was designed to identify the role of the GP130-STAT3 signaling pathway during repair of the bronchiolar epithelium. STAT3 (signal transducer and activator of transcription 3) and GP130 (glycoprotein 130) were each selectively deleted from the pulmonary epithelial cells of transgenic mice in vivo, producing Stat3(Delta/Delta) and Gp130(Delta/Delta) mice, respectively. Airway injury was induced in adult mice by administration of naphthalene, a toxicant of nonciliated respiratory epithelial cells (Clara cells). Nuclear STAT3 staining was induced in bronchiolar epithelial cells following naphthalene-mediated injury in control (Stat3(flox/flox)) mice. Whereas nearly complete repair of the bronchiolar epithelium was observed in control mice within 13 days, restoration of cell shape, cell density, and the pattern of ciliated and nonciliated cells did not occur in the peripheral bronchioles of either Stat3(Delta/Delta) or Gp130(Delta/Delta) mice. Expression of dominant-negative STAT3 inhibited airway epithelial cell migration during repair in vitro; wild-type STAT3 expression activated such migration. In the present study, we show that GP130-STAT3 signaling functions in a cell-autonomous manner to restore cell shape and numbers required for repair of the bronchiolar epithelium following injury.
    Full-text · Article · Jul 2008 · American Journal Of Pathology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Goblet cell hyperplasia and mucous hypersecretion contribute to the pathogenesis of chronic pulmonary diseases including cystic fibrosis, asthma, and chronic obstructive pulmonary disease. In the present work, mouse SAM pointed domain-containing ETS transcription factor (SPDEF) mRNA and protein were detected in subsets of epithelial cells lining the trachea, bronchi, and tracheal glands. SPDEF interacted with the C-terminal domain of thyroid transcription factor 1, activating transcription of genes expressed selectively in airway epithelial cells, including Sftpa, Scgb1a1, Foxj1, and Sox17. Expression of Spdef in the respiratory epithelium of adult transgenic mice caused goblet cell hyperplasia, inducing both acidic and neutral mucins in vivo, and stainined for both acidic and neutral mucins in vivo. SPDEF expression was increased at sites of goblet cell hyperplasia caused by IL-13 and dust mite allergen in a process that was dependent upon STAT-6. SPDEF was induced following intratracheal allergen exposure and after Th2 cytokine stimulation and was sufficient to cause goblet cell differentiation of Clara cells in vivo.
    Full-text · Article · May 2007 · Journal of Clinical Investigation
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of Stat3 in the maintenance of pulmonary homeostasis following adenoviral-mediated lung injury was assessed in vivo. Stat3 was selectively deleted from bronchiolar and alveolar epithelial cells in Stat3(DeltaDelta) mice. Although lung histology and function were unaltered by deletion of Stat3 in vivo, Stat3(DeltaDelta) mice were highly susceptible to lung injury caused by intratracheal administration of AV1-GFP, an early (E) region 1- and E3-deleted, nonproliferative adenovirus. Severe airspace enlargement, loss of alveolar septae, and sloughing of the bronchiolar epithelium were observed in Stat3(DeltaDelta) mice as early as 1 day after exposure to the virus. Although surfactant protein A, B, and C content and surfactant protein-B mRNA expression in Stat3(DeltaDelta) mice were similar, TUNEL staining and caspase-3 were increased in alveolar type II epithelial cells of Stat3(DeltaDelta) mice after exposure to virus. RNA microarray analysis of type II epithelial cells isolated from Stat3(DeltaDelta) mice demonstrated significant changes in expression of numerous genes, including those genes regulating apoptosis, supporting the concept that the susceptibility of Stat3-deficient mice to adenovirus was related to the role of Stat3 in the regulation of cell survival. AV1-Bcl-x(L), an E1- and E3-deleted, nonproliferative adenovirus expressing the antiapoptotic protein Bcl-x(L), protected Stat3(DeltaDelta) mice from adenoviral-induced lung injury. Adenoviral infection of the lungs of Stat3-deficient mice was associated with severe injury of the alveolar and bronchiolar epithelium. Thus, Stat3 plays a critical cytoprotective role that is required for epithelial cell survival and maintenance of alveolar structures during the early phases of pulmonary adenoviral infection.
    Full-text · Article · Aug 2006 · The Journal of Immunology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Sry-related HMG box transcription factor, Sox17, is required for formation of definitive endoderm that gives rise to various organs, including thyroid, lung, liver, pancreas, and intestine. While expressed at high levels in the embryonic endoderm, Sox17 is also expressed in mature tissues, including the lung. Sox17 expression in respiratory epithelial cells was first detected in the fetal lung at embryonic day 18. Thereafter, Sox17 expression was restricted primarily to ciliated cells, suggesting its potential role in airway cell differentiation. When expressed in epithelial cells of the embryonic lung, Sox17 inhibited peripheral epithelial cell differentiation and disrupted branching morphogenesis. In vitro, Sox17 inhibited Sftpc and enhanced Foxj1 promoter activity, consistent with its expression in proximal airway cells. Conditional expression of Sox17 in peripheral respiratory epithelial cells of adult lung induced hyperplastic clusters of cells expressing increased levels of beta-catenin and differentiation markers representing multiple proximal respiratory epithelial cell types. Sox17 prolonged survival and enhanced growth and differentiation of respiratory epithelial cells in vitro. Sox17 induced plasticity of respiratory epithelial cells, reprogramming alveolar cells into epithelial cells with characteristics more typical of the proximal airway. Sites of expression and the effects of Sox17 in vivo and in vitro are consistent with a role for Sox17 or other members of the Sox family of transcription factors in differentiation of the conducting airway epithelium.
    Full-text · Article · Jul 2006 · Developmental Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since the lung is repeatedly subjected to injury by pathogens and toxicants, maintenance of pulmonary homeostasis requires rapid repair of its epithelial surfaces. Ciliated bronchiolar epithelial cells, previously considered as terminally differentiated, underwent squamous cell metaplasia within hours after bronchiolar injury with naphthalene. Expression of transcription factors active in morphogenesis and differentiation of the embryonic lung, including beta-catenin, Foxa2, Foxj1, and Sox family members (Sox17 and Sox2), was dynamically regulated during repair and redifferentiation of the bronchiolar epithelium after naphthalene injury. Squamous cells derived from ciliated cells spread beneath injured Clara cells within 6-12 h after injury, maintaining the integrity of the epithelium. Dynamic changes in cell shape and gene expression, indicating cell plasticity, accompanied the transition from squamous to cuboidal to columnar cell types as differentiation-specific cell markers typical of the mature airway were restored. Similar dynamic changes in the expression of these transcription factors occurred in ciliated and Clara cells during regeneration of the lung after unilateral pneumonectomy. Taken together, these findings demonstrate that ciliated epithelial cells spread and transdifferentiate into distinct epithelial cell types to repair the airway epithelium.
    Full-text · Article · Mar 2006 · American Journal of Respiratory Cell and Molecular Biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thyroid transcription factor-1 (TTF-1/Nkx-2.1) is required for formation of the lung and differentiation of peripheral respiratory epithelial cells. TTF-1 activates transcription of target genes, including the surfactant proteins critical for lung function. A recently identified protein TAZ (transcriptional co-activator with PDZ-binding motif) contains a WW domain and a COOH-terminal PDZ-binding motif that are proposed to mediate its interactions with various transcriptional proteins. To determine the role of TAZ in the regulation of gene expression in the lung, the sites of TAZ expression and the role of TAZ in the regulation of respiratory epithelial gene expression were assessed. TAZ mRNA was detected in immortalized mouse lung epithelial cells, primary isolates of mouse alveolar type II epithelial cells, and epithelial cells of fetal lung. Sites of TAZ mRNA and protein overlapped with those of TTF-1 and surfactant protein C (SP-C) in the respiratory epithelial cells of the mouse lung. In the presence of TTF-1, TAZ synergistically activated the expression of mouse SP-C-luciferase reporter constructs. Mammalian two-hybrid assays and pull-down experiments demonstrated that the TAZ directly interacted with TTF-1. Further, deletion analysis demonstrated that TAZ binds to the NH(2)-terminal domain of TTF-1. TAZ binds to TTF-1, increasing the transcriptional activity of TTF-1 on the SP-C promoter. Developmental and cell-selective regulation of TAZ provides a mechanism by which the activity of TTF-1 on target genes is modulated.
    No preview · Article · May 2004 · Journal of Biological Chemistry

Publication Stats

473 Citations
34.83 Total Impact Points


  • 2008
    • The University of Manchester
      • Faculty of Life Sciences
      Manchester, England, United Kingdom
  • 2004-2006
    • Cincinnati Children's Hospital Medical Center
      • • Department of Pediatrics
      • • Division of Pulmonary Biology
      Cincinnati, Ohio, United States