Laima Valiuniene

Stony Brook University, Stony Brook, New York, United States

Are you Laima Valiuniene?

Claim your profile

Publications (9)36.6 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Gap junctions ensure the rapid propagation of the action potential throughout the myocardium. Three mutant forms of connexin40 (Cx40; A96S, M163V, and G38D), the primary component of the atrial gap junction channel, are associated with atrial fibrillation and retain the ability to form functional channels. We determined the biophysical properties of these mutant gap junctions in transiently transfected HeLa and N2A cells. All three mutants showed macroscopic junctional conductances over the range of 0.5 to 40 nS, and voltage dependences comparable to those of wild-type (WT) Cx40. However, the unitary conductance of G38D channels was ∼1.6-fold higher than that of WT Cx40 channels (∼220 vs. ∼135 pS), whereas the unitary conductances of the A96S and M163V mutants were similar to that of WT Cx40. Furthermore, the M163V and G38D channels exhibited approximately two- and approximately fivefold higher permeability to the anionic dye Lucifer yellow (LY) relative to K+ (LY/K+) compared with that of WT Cx40, whereas A96S LY transfer was similar to that of WT (G38D > M163V > A96S ≈ Cx40WT). In contrast, G38D channels were almost impermeable to cationic ethidium bromide (EtBr), suggesting that G38D alters channel selectivity. Conversely, A96S and M163V channels showed enhanced EtBr permeability relative to WT Cx40, with the following permeability order: M163V > A96S > Cx40WT > G38D. Altered conductive and permeability properties of mutant channels suggest an essential role for Cx40-mediated biochemical and electrical coupling in cardiac tissues. The altered properties of the three single-base substitution mutants may play a role in mechanisms of reentry arrhythmias.
    No preview · Article · Oct 2015 · The Journal of General Physiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cellular delivery of small interfering RNAs to target cells of a tissue has the potential to travel by two intercellular pathways. For intimately apposed cells gap junctions allow transport exclusive of the extracellular space. For cells not in intimate contact, exocytotic release of vesicular contents and subsequent retrieval via endocytosis of exosomes and other vesicular contents represent an alternative intercellular delivery system that utilizes the extracellular space. Previous studies have shown siRNA/miRNA transfer from a delivery cell to a target cell via gap junction channels. We hypothesized that siRNA can be delivered via gap junctions and downregulate the expression of a reporter gene, the cyclic nucleotide-gated cation channel gene (mHCN2), in the recipient cells of cell pairs. Whole-cell patch clamp was used to measure the mHCN2-induced current and junctional conductance. The target cells were HEK293 cells that endogenously express Cx43 or HeLaCx43 cells, both transfected with mHCN2. The source cells were HEK293 or HeLaCx43 cells transfected with fluorescent-labeled siRNA targeting mHCN2. We found that siRNA targeting mHCN2 resulted in significant downregulation of mHCN2 currents both in single cells and the recipient cell of a cell pair. In addition we also documented downregulation in target cells that were not in contact with source cells suggesting an extracellular-mediated delivery. To test further for extracellular delivery HEK293/HCN2 or HeLaCx43/HCN2 cells were cultured in medium collected from HEK293 or HeLaCx43 cells transfected with fluorescent-labeled siRNA or fluorescent-labeled morpholino designed to target HCN2. After 24 h single HEK293/HCN2 or HeLaCx43cells showed accumulation of siRNA. The mHCN2 currents were also down regulated in cells with siRNA uptake. Application of 200 nmol/L Bafilomycin A1, which has been shown to affect endosome acidification and endocytotic activity, resulted in a smaller accumulation of fluorescent-labeled siRNA in single target cells. In distinction to siRNA, morpholinos targeting HCN2 exhibited greatly reduced extracellularly mediated transfer while in cell pairs, target cells exhibited reduced HCN2 currents consistent with effective gap junction-mediated delivery. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
    Full-text · Article · Feb 2015
  • Source

    Full-text · Article · Jan 2014 · Biophysical Journal

  • No preview · Article · Jan 2012 · Biophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We examined whether coupling of a ventricular myocyte to a non-myocyte cell expressing HCN2 could create a two-cell syncytium capable of generating sustained pacing. Three non-myocyte cell types were transfected with the mHCN2 gene and used as sources of mHCN2-induced currents. They were human mesenchymal stem cells and HEK293 cells, both of which express connexin43 (Cx43), and HeLa cells transfected with Cx43. Cell-cell coupling between heterologous pairs increased with time in co-culture, and hyperpolarization of the myocyte induced HCN2 currents, indicating current transfer from the mHCN2-expressing cell to the myocyte via gap junctions. The magnitude of the HCN2 currents recorded in myocytes increased with increasing junctional conductance. Once a critical level of electrical cell-cell coupling between myocytes and mHCN2 transfected cells was exceeded spontaneous action potentials were generated at frequencies of approximately 0.6 to 1.7 Hz (1.09 +/- 0.05 Hz). Addition of carbenoxolone (200 microM), a gap junction channel blocker, to the media stopped spontaneous activity in heterologous cell pairs. Carbenoxolone washout restored activity. Blockade of HCN2 currents by 100 microM 9-amino-1,2,3,4-tetrahydroacridine (THA) stopped spontaneous activity and subsequent washout restored it. Neither THA nor carbenoxolone affected electrically stimulated action potentials in isolated single myocytes. In summary, the inward current evoked in the genetically engineered (HCN2-expressing) cell was delivered to the cardiac myocyte via gap junctions and generated action potentials such that the cell pair could function as a pacemaker unit. This finding lays the groundwork for understanding cell-based biological pacemakers in vivo once an understanding of delivery and target cell geometry is defined.
    Full-text · Article · Oct 2009 · The Journal of Physiology
  • Source

    Full-text · Article · Feb 2009 · Biophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gap junction channels exhibit connexin dependent biophysical properties, including selective intercellular passage of larger solutes, such as second messengers and siRNA. Here, we report the determination of cyclic nucleotide (cAMP) permeability through gap junction channels composed of Cx43, Cx40, or Cx26 using simultaneous measurements of junctional conductance and intercellular transfer of cAMP. For cAMP detection the recipient cells were transfected with a reporter gene, the cyclic nucleotide-modulated channel from sea urchin sperm (SpIH). cAMP was introduced via patch pipette into the cell of the pair that did not express SpIH. SpIH-derived currents (I(h)) were recorded from the other cell of a pair that expressed SpIH. cAMP diffusion through gap junction channels to the neighboring SpIH-transfected cell resulted in a five to sixfold increase in I(h) current over time. Cyclic AMP transfer was observed for homotypic Cx43 channels over a wide range of conductances. However, homotypic Cx40 and homotypic Cx26 exhibited reduced cAMP permeability in comparison to Cx43. The cAMP/K(+) permeability ratios were 0.18, 0.027, and 0.018 for Cx43, Cx26, and Cx40, respectively. Cx43 channels were approximately 10 to 7 times more permeable to cAMP than Cx40 or Cx26 (Cx43 > Cx26 > or = Cx40), suggesting that these channels have distinctly different selectivity for negatively charged larger solutes involved in metabolic/biochemical coupling. These data suggest that Cx43 permeability to cAMP results in a rapid delivery of cAMP from cell to cell in sufficient quantity before degradation by phosphodiesterase to trigger relevant intracellular responses. The data also suggest that the reduced permeability of Cx26 and Cx40 might compromise their ability to deliver cAMP rapidly enough to cause functional changes in a recipient cell.
    Full-text · Article · May 2008 · The Journal of General Physiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to determine whether oligonucleotides the size of siRNA are permeable to gap junctions and whether a specific siRNA for DNA polymerase beta (pol beta) can move from one cell to another via gap junctions, thus allowing one cell to inhibit gene expression in another cell directly. To test this hypothesis, fluorescently labelled oligonucleotides (morpholinos) 12, 16 and 24 nucleotides in length were synthesized and introduced into one cell of a pair using a patch pipette. These probes moved from cell to cell through gap junctions composed of connexin 43 (Cx43). Moreover, the rate of transfer declined with increasing length of the oligonucleotide. To test whether siRNA for pol beta was permeable to gap junctions we used three cell lines: (1) NRK cells that endogenously express Cx43; (2) Mbeta16tsA cells, which express Cx32 and Cx26 but not Cx43; and (3) connexin-deficient N2A cells. NRK and Mbeta16tsA cells were each divided into two groups, one of which was stably transfected to express a small hairpin RNA (shRNA), which gives rise to siRNA that targets pol beta. These two pol beta knockdown cell lines (NRK-kcdc and Mbeta16tsA-kcdc) were co-cultured with labelled wild type, NRK-wt or Mbeta16tsA-wt cells or N2A cells. The levels of pol beta mRNA and protein were determined by semiquantitative RT-PCR and immunoblotting. Co-culture of Mbeta16tsA-kcdc cells with Mbeta16tsA-wt, N2A or NRK-wt cells had no effect on pol beta levels in these cells. Similarly, co-culture of NRK-kcdc with N2A cells had no effect on pol beta levels in the N2A cells. In contrast, co-culture of NRK-kcdc with NRK-wt cells resulted in a significant reduction in pol beta in the wt cells. The inability of Mbeta16tsA-kcdc cells to transfer siRNA is consistent with the fact that oligonucleotides of the 12 nucleotide length were not permeable to Cx32/Cx26 channels. This suggested that Cx43 but not Cx32/Cx26 channels allowed the cell-to-cell movement of the siRNA. These results support the novel hypothesis that non-hybridized and possible hybridized forms of siRNA can move between mammalian cells through connexin-specific gap junctions.
    Full-text · Article · Nov 2005 · The Journal of Physiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human mesenchymal stem cells (hMSCs) are a multipotent cell population with the potential to be a cellular repair or delivery system provided that they communicate with target cells such as cardiac myocytes via gap junctions. Immunostaining revealed typical punctate staining for Cx43 and Cx40 along regions of intimate cell-to-cell contact between hMSCs. The staining patterns for Cx45 rather were typified by granular cytoplasmic staining. hMSCs exhibited cell-to-cell coupling to each other, to HeLa cells transfected with Cx40, Cx43 and Cx45 and to acutely isolated canine ventricular myocytes. The junctional currents (I(j)) recorded between hMSC pairs exhibited quasi-symmetrical and asymmetrical voltage (V(j)) dependence. I(j) records from hMSC-HeLaCx43 and hMSC-HeLaCx40 cell pairs also showed symmetrical and asymmetrical V(j) dependence, while hMSC-HeLaCx45 pairs always produced asymmetrical I(j) with pronounced V(j) gating when the Cx45 side was negative. Symmetrical I(j) suggests that the dominant functional channel is homotypic, while the asymmetrical I(j) suggests the activity of another channel type (heterotypic, heteromeric or both). The hMSCs exhibited a spectrum of single channels with transition conductances (gamma(j)) of 30-80 pS. The macroscopic I(j) obtained from hMSC-cardiac myocyte cell pairs exhibited asymmetrical V(j) dependence, while single channel events revealed gamma(j) of the size range 40-100 pS. hMSC coupling via gap junctions to other cell types provides the basis for considering them as a therapeutic repair or cellular delivery system to syncytia such as the myocardium.
    Full-text · Article · Apr 2004 · The Journal of Physiology

Publication Stats

379 Citations
36.60 Total Impact Points


  • 2004-2015
    • Stony Brook University
      • • Department of Physiology & Biophysics
      • • Institute for Molecular Cardiology
      Stony Brook, New York, United States
  • 2005
    • SUNY Ulster
      Кингстон, New York, United States